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INTRODUCTION

The concept of groupoid is one of the means by which the twentieth century

reclaims the original domain of application of the group concept. The modern,

rigorous concept of group is far too restrictive for the range of geometrical

applications envisaged in the work of Lie. There have thus arisen the concepts of

Lie pseudogroup, of differentiable and of Lie groupoid, and of principal bundle - as

well as various related infinitesimal concepts such as Lie equation, graded Lie

algebra and Lie algebroid - by which mathematics seeks to acquire a precise and

rigorous language in which to study the symmetry phenomenae associated with

geometrical transformations which are only locally defined.

This book is both an exposition of the basic theory of differentiable and

Lie groupoids and their Lie algebroids, with an emphasis on connection theory, and

an account of the author's work, not previously published, on the abstract theory of

transitive Lie algebroids, their cohomology theory, and the integrability problem

and its relationship to connection theory.

The concept of groupoid was introduced into differential geometry by

Ehresmann in the 1950's, following his work on the concept of principal bundle.

Indeed the concept of Lie groupoid - a differentiable groupoid with a local

triviality condition - is, modulo some details, equivalent to that of principal

bundle. Since the appearance of Kobayashi and Nomizu (1963), the concept of

principal bundle has been recognized as a natural setting for the formulation and

study of general geometric problems; both the theory of G-structures and the theory

of general connections are set in the context of principal bundles, and so too is

much work on gauge theory. As an analytical tool in differential geometry, the

importance of the principal bundle concept undoubtedly goes back to the fact that it

abstracts the moving frame technique of Cartan. An important secondary aim of these

notes is to establish that the theory of principal bundles and general connection

theory is illuminated and clarified by its groupoid formulation; it will be shown in

Chapter III that the Lie theory of Lie groupoids with a given base is coextensive

with the standard theory of connections.

To summarize very briefly the work done on groupoids within differential

geometry since Ehresmann, there are the following two main areas.

(1) Work on groupoid theory itself. The construction by Pradines (1966,

1967, 1968a,b) of a first-order infinitesimal invariant of a differential groupoid,

the Lie algebroid, and his announcement of a full Lie theory for differentiable
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groupoids, paralleling the Lie theory of Lie groups and Lie algebras.

Proofs of many of the Lie theoretic results announced by Pradines were given

by Almeida (1980); the construction of counterexamples to the tntegrabLlity of Lie

algebroids was announced by Almeida and Molino (1985).

The general theory of differentiable and microdifferentiable groupoids is a

generalization of foliation theory, and the techniques used are largely foliation -

theoretic in character.

A very recent article on general differentiable groupoids, expanding

considerably on Pradines (1966), is Pradines (1986).

(2) Work in which Lie groupoids have been used as a tool or language. Here

there is firstly a range of work which may be somewhat loosely described as the

theory of Lie equations and Spencer cohomology - see, for example, Ngo Van Que

(1967, 1968, 1969), Kumpera and Spencer (197 2) and Kumpera (197 5). Secondly, much

of the theory of higher-order connections is in terms of Lie groupoids - see Virsik

(1969, 1971), Bowshell (1971), and ver Eecke (1981), for example.

Much of this work has also contributed to the theory of differentiable and

Lie groupoids per se.

Outside of differential geometry, there are the following major areas.

(3) The work of Brown and a number of co-authors on the theory of general

topological groupoids. See Brown and Hardy (1976) and Brown et al (1976).

For references to the considerable body of work by Brown, Higgins and others

on multiple groupoid structures and homotopy theory, see the survey by Brown ("Some

non-abelian methods in homotopy theory and homological algebra", in Categorical

Topology: Proc. Conf. Toledo, Ohio, 1983. Ed. H.L. Bentley et al, Helderman-Verlag,

Berlin (1984), 108-146).

(4) Work on the algebraic theory of groupoids, and their application to

problems in group theory. See Higgins (1971).

(5) Work on the cohomology of classifying spaces associated with groupoids,

usually having non-Hausdorff, sheaf-like topologies. See the survey by Stasheff

(1978).

(6) A rapidly growing body of work on the C*-algebras associated with a

topological or measured groupoid. See Renault (1980) and Connes ("A survey of
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foliations and operator algebras." Proc. Symp. Pure Mathematics, 38 (1), 1982, 521-

628. American Mathematical Society, Providence, R.I.).

For the measure theory of groupoids and its use in functional analytic

questions see also Seda (1980) and references given there.

A bibliography on all aspects of groupoid theory up to 1976 is given in

Brown and Hardy (1976) and Brown et al (1976). The list of references to the

present work is not a bibliography.

The primary aim of this book is to present certain new results in the theory

of transitive Lie algebroids, and in their connection and cohomology theory; we

intend that these results establish a significant theory of abstract Lie algebroids

independent of groupoid theory. As a necessary preliminary, we give the first full

account of the basic theory of differentiable groupoids and Lie algebroids, with

emphasis on the case of Lie groupoids and transitive Lie algebroids. One important

secondary aim has already been mentioned - to integrate the standard theory of

connections in principal bundles with the Lie theory of Lie groupoids on a given

base, to the benefit of both theories. As a matter of exposition, we describe the

principal bundle versions of groupoid concepts and constructions whenever this

appears to clarify the groupoid theory.

The concept of Lie algebroid was introduced by Pradines (1967), as the

first-order invariant attached to a differentiable groupoid, generalizing the

construction of the Lie algebra of a Lie group. In the case of Lie groupoids, the

Lie algebroid is the Atiyah sequence of the corresponding principal bundle, as

introduced by Atiyah (1957). For a differentiable groupoid arising from a

foliation, the Lie algebroid is the corresponding involutive distribution. The

closely related concept of Lie pseudo-algebra has also been introduced by a number

of authors, under a variety of names - see III§2 for references.

In Chapter IV, and in Chapter III§§2,5,7 we undertake the first development

of the abstract theory of transitive Lie algebroids and of their connection and

cohomology theory. The condition of transitivity for Lie algebroids is related to

that of local triviality for groupoids - for example, the Lie algebroid of a

differentiable groupoid on a connected base is transitive iff the groupoid is

locally trivial. (However that the transitivity condition implies a true local

triviality condition for the Lie algebroid is non-trivial - see IV§4.) A transitive

Lie algebroid is naturally written as an exact sequence L >-> A -^ TB, where TB is

the tangent bundle of the base manifold and L is, a priori, a vector bundle whose

fibres are Lie algebras; it is, in fact, a Lie algebra bundle.



Exact sequences are generally classified by cohomology in the second

degree. Using this point of view, we develop two separate cohoraological

classifications of transitive Lie algebroids. Firstly, there is a "global"

classification in terms of curvature forms and what we propose to call adjoint

connections. A. transitive Lie algebroid L +—• A -•••*• TB is characterized by the

curvature 2-form R : TB * TB —•• L of any connection y: TB — + A in it, together

with the connection V in the Lie algebra bundle L induced by y. Thus, for example,

we obtain simple algebraic criteria for a 2-form, with values in a Lie algebra

bundle, to be the curvature of a connection in a Lie algebroid. The criteria are a

Bianchi identity and a compatibility condition between the given form and

the curvature properties of the Lie algebra bundle. At the simplest level, this

generalizes the observation that the curvature form of a connection in a principal

bundle with abelian structure group must be closed. In cohomological terms this

classification is a specialization of the classification of non-abelian extensions

of Lie algebroids.

Secondly we give a "local" classification of transitive Lie algebroids by

what we propose to call transition forms. These are Lie algebra valued Maurer-

Cartan forms. The classification is analogous to that of principal bundles by

transition functions, and indeed for a Lie algebroid which is given as the Atiyah

sequence of a principal bundle, the transition forms may be obtained as the right-

derivatives of transition functions for the bundle. This classification establishes

that transitive Lie algebroids are locally trivial in a sense precisely analogous to

that true of Lie groupoids. The author obtained this result in 1979 at a time when

it was generally believed that all transitive Lie algebroids were the Lie algebroids

of Lie groupoids; it is now known that this is not so, and this classification is

the more interesting. The key to this result is that a transitive Lie algebroid on

a contractible base admits a flat connection, and we obtain this from the

cohomological classification of extensions. In turn, the classification of

transitive Lie algebroids by systems of transition forms may be regarded as an

element in a non-abelian cohomology theory for manifolds with values in Lie algebra

bundles, in the same way that the classification of principal bundles by transition

functions may be regarded as a cohomological classification.

In §5 of Chapter IV we show that there is a spectral sequence associated in

a natural algebraic manner with a transitive Lie algebroid, which generalizes the

Leray-Serre spectral sequence for de Rham cohomology of a principal bundle and, in

particular, allows coefficients in general vector bundles to be introduced. This

algebraization allows the transfer to principal bundle theory of techniques
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developed for the cohomology of discrete groups and Lie algebras, and we believe it

will also provide the correct setting for the study of the cohomology structure of

principal bundles with noncompact structure group. Here we only make a beginning on

these questions.

In Chapter V we present a cohomological obstruction to the integrability of

a transitive Lie algebroid on a simply-connected base. In this case, this

obstruction gives a complete resolution of the problem of when a transitive Lie

algebroid is the Lie algebroid of a Lie groupoid.

Combining the obstruction to integrability with the global classification of

transitive Lie algebroids by curvature forms, we obtain necessary and sufficient

conditions for a Lie algebra bundle valued 2-form to be the curvature of a

connection in a principal bundle, providing that the base manifold is simply-

connected. These conditions generalize and reformulate the integrality lemma of

Weil (1958); see also Kostant (1970).

The methods developed in Chapter IV and in Chapter V represent a rather

intricate combination of cohomological and connection-theoretic techniques. We

believe we have in fact shown that these two subjects are even more inextricably

linked, in a nontrivial fashion, than has been realized.

Indeed it should perhaps be emphasized that this is a book about the general

theory of connections, since this may not be fully evident from a glance at the

table of contents. General connection theory has traditionally taken place on

principal bundles, but we argue here that the proper setting for much of connection

theory is on a Lie algebroid, and that the relationship between principal bundles and

Lie algebroids is best understood by replacing principal bundles by Lie groupoids.

A reader who is interested in the abstract theory of Lie algebroids and/or

the integrability obstruction, and who is familiar with principal bundle theory, but

does not wish to acquire the Lie groupoid language, could read Chapter III§§2, 5,

Appendix A and Chapters IV and V, though they will miss much explanatory material by

so doing.

In Chapters I, II and III we give a detailed account of the basic theory of

differentiable groupoids and Lie algebroids, with emphasis on the locally trivial

case. The presentation is intended to resemble, as far as is possible, the standard

treatment of the theory of Lie groups and Lie algebras. Chapter I is an

introduction to the algebra of groupoids. In Chapter II we treat topological

groupoids, not so much for their own interest - which is considerable - but as a

device for setting down the formal content of certain later constructions without

the need to address questions of differentiability. Thus - with a few brief
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exceptions - we address only those matters which have meaning in the differentiable

case.

The main business of the book starts in Chapter III and the resemblance

between this part of the subject and the standard treatment of Lie groups and Lie

algebras will be evident. We first treat questions of differentiability for the

constructions of Chapter II and then, in §§2-3, introduce the Lie algebroid of a

differentiable groupoid. In §4 we construct the exponential map and use it to compute

the Lie algebroids of several important Lie groupoids, central to connection theory.

In §6 we establish two of the main results of the Lie theory of Lie groupoids with a

given base. In §5 and §7 we present an account of the connection theory of Lie

groupoids and transitive Lie algebroids; §5 giving the infinitesimal theory and §7

those aspects which depend on path-lifting or holonomy. In §5 we also begin the

classification of transitive Lie algebroids by transition forms.

Much of Chapters I, II and III is the work of other minds. I have given

references to the original literature in the text itself, but I have not attempted

to write a comparative history. The following features of these chapters are, I

believe, new and significant.

-The construction in II§6 of the monodromy groupoid of a locally trivial

topological groupoid, and the proof in III§6 that there is a bijective

correspondence between cc-connected Lie subgroupoids of a given Lie groupoid, and

transitive Lie subalgebroids of its Lie algebroid, and between base-preserving local

morphisms of Lie groupoids and base-preserving morphisms of their Lie algebroids.

These results were announced, for general differentiable groupoids and

general morphisms, by Pradines (1966, 1967) and proofs in that generality were given

by Almeida (1980) and Almeida and Kumpera (1981). The proofs given here make

essential use of local triviality to bypass questions of holonomy, and are new and

considerably simpler.

The circle of ideas concerning frame groupoids of a geometric structure on a

vector bundle: The proof of Ngo's theorem III 1.20 by use of III 1.9 - and thus,

ultimately, by Pradines1 theorem III 1.4; the calculation III 4.7 of the Lie

algebroids of isotropy subgroupoids and of the induced representations III 4.8; and

the derivation of III 7.11 from these results.

The separation of standard connection theory into the infinitesimal

connection theory of abstract transitive Lie algebroids (III§5, IV§1) and the path

connection theory of locally trivial topological or Lie groupoids (II§7, III§7).

The deduction of the Ambrose-Singer theorem (III 7.27) from the correspondence
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III 6.1 between a-connected Lie subgroupoids and Lie subalgebroids.

The concept of transition form in III§5, and the results and techniques of

Chapters IV and V, have already been referred to above.

Three appendices follow the main text. Appendices B and C are brief

summaries of relevant formulas for Lie groups and vector bundles, respectively, and

also serve to fix some matters of notation. Appendix A, however, is substantial, and

gives a detailed translation of the elementary theory of connections in principal

bundles (as given, for example, by Kobayashi and Nomizu (1963) or Greub et al (1973))

into the language of Atiyah sequences. This Appendix is entirely in terms of

principal bundles, and makes no use of groupoid concepts. The Atiyah sequence

formulation of connection theory has been mentioned in passing by many writers on

gauge theory but - to the knowledge of the author - this is the first full account

of its equivalence with the usual formulation. Care has been taken with matters of

signs, especially since it is necessary to use the right-hand bracket on the Lie

algebra of the structure group.

Two major topics have been omitted from these notes. Firstly there is the

theory of jet prolongations of differentiable groupoids and Lie algebroids. This is

thoroughly treated in existing accounts - see, for example, Kumpera and Spencer

(1972), Kumpera (1975) and ver Eecke (1981).

Secondly there is the important body of work revolving around the concept of

microdifferentiable groupoid. This is a generalization of the theory of foliations,

both in results and techniques. For the construction of the holonomy groupoid of a

microdifferentiable groupoid, announced by Pradines (1966), and its applications,

see Almeida (1980). Some very brief indications of the results of this theory are

included here. The author hopes that this book will also facilitate a wider

appreciation of the importance and depth of the general theory of microdifferentiable

groupoids. See Pradines (1986) and references given there.

Some nonstandard terminology deserves comment. In I 2.18 and III 2.1 we

have used the word "anchor" where Pradines uses "fleche". It seems to us that the

English word, "arrow", is overused and colourless. A possible alternative,

"transitivity projection", is cumbersome. The anchor ties - or fails to tie - the

structure of the groupoid or algebroid to the topology of the base. Secondly, in II

2.22 we use the word "produced" to describe what in principal bundle terms is the
p X TT

bundle — - — (B,H) constructed from a given P(B, G) and a morphism G —•> H. The
G

usual terms "prolongation" and "extension" have other uses in this subject, and
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"produced" has the virtue of being clearly antonymous to the word "reduced", used to

describe the dual concept.

The background needed for this book is slight. A knowledge of the elementary

theory of Lie groups and Lie algebras (not including any structure theory), of vector

bundles (not including the homotopy classification), and of de Rham cohomology, is

essential. Some acquaintance with the theory of connections in principal bundles is

desirable, but only so that the purpose of the constructions given here will be clear.

For Chapter IV a familiarity with the cohomology theory of either discrete groups of

Lie algebras will help, but - as with connection theory - proofs of almost all

results are given in full.

This book is designed primarily for those interested in differential geometry.

The methods given here are essentially algebraic and since much recent differential

geometry is very firmly rooted in analysis, we have given the algebraic

constructions in some detail. We feel that the use of algebraic methods to produce

cohomological invariants has a substantial history in differential geometry and is

capable of much further development.

We use the words 'category1 and 'functor' when it is convenient, but we make

no actual use of category theory.

In conclusion, there is a point to be made about the need in differential

geometry for the general connection theory of principal bundles, as distinct from

that merely of vector bundles. So long as one is interested only in geometries with

a matrix structure group (that is, in G-structures), the two approaches are, of

course, perfectly equivalent. However one of the points of global Lie group theory

is that not all Lie groups are realizable as matrix Lie groups (unlike Lie algebras,

which always admit faithful finite-dimensional representations), and to work in this

generality it is essential to use principal bundles - or Lie groupoids.

Throughout this book we have given most proofs and constructions in

considerable detail. In the case of the first three chapters, we have found that

even quite simple details can be difficult to supply quickly, on account of the

eclectic nature of groupoid theory. In the case of Chapter IV, we have not wanted

to presuppose a knowledge of homological algebra. In any case, we believe that

there is enough good mathematics to go around, and there seems no reason why anyone

should have to do for themselves what the author has done in preparing this book.



This book has been some time in the making. Some of the work recorded here

comes from the author's Ph.D. thesis of 1979 written at Monash University and

supervised by Dr. Juraj Virsik. I acknowledge with gratitude my debt to Dr. Virsik
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CHAPTER I THE ALGEBRA OF GROUPQIDS

In this chapter we define groupoids and their morphisms and give the basic

algebraic definitions and constructions of subgroupoids, quotient groupoids, kernels

of morphisms, products of groupoids and other standard concepts. We do not address

the algebraic theory of groupoids for its own sake, and we do not prove any of the

deeper results from the algebraic theory.

An interesting algebraic theory of groupoids exists, and was begun by Brandt

and by Baer in the 1920's, well before Ehresmann made the concept of groupoid

central to his vision of differential geometry. However the algebraic theory is

primarily concerned with problems which are largely trivial for categories of

transitive groupoids and there is therefore no reason for us to treat it here. See

Higgins (1971) for a full account and further references, and Brown (1968) for an

account which is more accessible to the non-algebraist, though less comprehensive

than Higgins1. Much material on the algebraic theory of groupoids, from a different

point of view to that of the work cited above, can be extracted from Ehresmann

(1965). See also Clifford and Preston (1961, §3.3).

The examples given in this chapter are examples of topological or

differentiable groupoids, presented without their topological, or smooth,

structures. We have managed to avoid giving examples which can arise only in the

purely algebraic setting.

The development of the algebraic theory of groupoids has been succinctly

chronicled by Higgins (1971, pp. 171-17 2). The examples, as has been said, belong

to the topological and differentiable theories, and will be sourced when they

reappear in full in later chapters.

§1. Groupoids

A groupoid is a complicated structure and we will spend a little time in

giving a full definition and, in the process, introduce the notation to be used in

these notes.

Groups commonly arise as the structures natural to sets of automorphisms of

mathematical objects. In differential geometry one frequently encounters families

of mutually isomorphic objects, the basic example being the set of tangent spaces to

a manifold, and the way in which the members of such a family relate to each other

is captured by taking as the set of 'automorphisms', not merely the automorphisms of
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each individual object, but all isomorphisms between each pair of objects in the

family. The resulting system of isomorphisms has the structure of a groupoid. Of

course, like groups, groupoids also often arise in other ways, not related to

automorphisms.

To illustrate the concept of groupoid, we take as example the set, denoted

II(TB), of all linear isomorphisms between the various tangent spaces to a manifold

B. Each such isomorphism 5: T(B) •• T(B) has associated with it two points of B,

namely the points x and y which label the tangent spaces which are its domain and

range; we denote x by a(5) and y by 3(5) and call a, 3: II(TB) ->• B the source and

target projections of II(TB); the isomorphism 5 can be composed with an isomorphism

TI: T(B) f ->• T(B) iff yf = y, that is, iff a(n) = 3(5). Thus composition is a

partial multiplication on II(TB) with domain the set n(TB)*II(TB) =

{(n,5) £ n(TB) x n(TB)|a(n) = 3(5)}. Note that when the composition n5 is defined,

we have ot(n5) = ct(5) and 3(TI5) = 3(n). This partial multiplication has properties

which resemble the properties of a group multiplication as closely as is possible:

each point x e B has associated with it the identity isomorphism id . . , here
x

denoted x, and the elements x,x e B, act as unities for every multiplication in

which they can take part; each isomorphism 5: T(B) •• T(B) has an inverse
-1 -1 -1 x y ^ " -*-—

isomorphism £ : T(B) -• T(B) and 55 and 5 5 are the unities 3(5) and a(5)
y x

respectively. These properties are abstracted into the following definition.

Definition 1.1. A groupoid consists of two sets ft and B, called respectively the

groupoid and the base, together with two maps a and 3 from ft to B, called

respectively the source and target projections, a map E: X H-• x, B •• ft called the

object inclusion map, and a partial multiplication (ri,5) H> n5 in ft defined on the

set ft*ft = {(n,e) E ft x ft|a(n) = 3(5)}, all subject to the following conditions:

(i) a(n5) = a(5) and 3(n5) = 3(n) for all (n,5) £ ft*ft;

(ii) C(n5) = (Cn)C for all C,n,C e ft such that a(c) = 3(n) and a(n)

(iii) a(x) = 3(x) = x for all x e B;

(iv) 5o?T) - 5 and 3O)5 = C for all 5 e ft;

(v) each £ e ft has a (two-sided) inverse £~ such that ot(£~ ) = 3(C),

3(C"S - o(C) and flt = S(T), ^ r 1 = 3(T). //

Elements of B may be called objects of the groupoid ft and elements of ft may

be called arrows. The arrow x corresponding to an object x e B may also be called

the unity or identity corresponding to x. To justify this terminology and to prove



that the inverse in (v) is unique, we have the following proposition.

Proposition 1.2. Let ft be a groupoid with base B, and consider £ e ft with ct(£) = x

and 0(O - y.

(i) If n e ft has a(ri) = y and n£ = £, then J] = y.

If C e ft has 8(O = x and £C = 5, then C = x.

(ii) If n e ft has ct(n) = y and n£ = x, then n = £~ .

If £ e ft has B(C) = x and £C = y, then c = S"1.

Proof. Exercise. //

In place of the phrase "a groupoid with base B", we will often write "a

groupoid on B". For a groupoid ft on B and x,y e B we will write ft for a (x),

fty for 8 (y) and fty for ft f\ fty. To avoid cumbersome suffices we will sometimes
x x

denote "£ e ft^" by "£: x •*• y". The set ft is the ot-f ibre over x and ft is the

8-fibre over y. The set ftX, obviously a group under the restriction of the partial
x ^

multiplication in ft, is called the vertex group at x. Some writers call ft the
V x V

isotropy group at x. For any subsets U,Vc B we likewise write ft ft and ft for

a'^U), B ^ O O and ft r\ ftV, respectively.

Many authors denote ft by ft(x,y), call ft the star of ft at x and denote it
x x

by St^x, and call QJ the co-star of ft at y and denote it by Costly.

The following examples are of basic importance.

Example 1.3. Any set B may be regarded as a groupoid on itself with a = 3 = id
B

and every element a unity. Groupoids in which every element is a unity have been

given a variety of names; we will call them base groupoids. //

Example 1.4. Let B be a set and G a group. We give B x G x B the structure of a

groupoid on B in the following way: a is the projection onto the third factor of

B x G x B and 3 is the projection onto the first factor; the object inclusion map

is x h x = (x,l,x) and the partial multiplication is (z,h,yf)(y,g,x) = (z,hg,x),

defined iff yf = y. The inverse of (y,g,x) is (Xjg"1^). This is called the

trivial groupoid on B with group G.

In particular, any group may be considered to be a groupoid on any singleton

set, and any cartesian square B x B is a groupoid on B. //



CHAPTER I 4

Example 1.5. Let X be an equivalence relation on a set B. Then X <£ B x B is a

groupoid on B with respect to the restriction of the structure defined in 1.4.

Each a-fibre X , x e B, may be naturally identified with the equivalence class

containing x.

Groupoids ft such as this, in which each 0? is either empty or singleton, are

sometimes called principal groupoids (see Renault (1980)). We use this term with a

different meaning (see II 2.9). //

Example 1.6. Let G x B -• B he an action of a group G on a set B. Give G x B the

structure of a groupoid on B in the following way: a is the projection onto the

second factor of G x B and 3 is the action G x B + B itself; the object inclusion

map is x h-+ x = (x,l) and the partial multiplication is (g2»y)(g1»x) = (g2§i,x),

defined iff y = g^x. The inverse of (g,x) is (g~ ,gx). We propose to call G x B

the action groupoid of G x B •• B.

The a-fibre (G x B ) V is G x {x}, and the 3-fibre can also be identified with

i

group G

the group G. The vertex group (G x B) is naturally isomorphic to the isotropy

This construction can be generalized. See II 4.20. //

Example 1.7. Applying the construction of 1.6 to the action R x S •* S ,

(t,z) H> e z gives a groupoid structure on the cylinder R x S . The base may be

identified with the circle t = 0, the a-fibres are straight lines orthogonal to

t = 0, the 3-fibres are the helices which make an angle of 45° with the circles

t = constant, and the vertex groups are the Z x {z} for z e S .

The reader may construct similarly visualizable examples on the torus, using

the actions S x S •> S , (w,z) J-* w z, for given n e Z. However no truly typical

example of a groupoid of the type with which we shall be concerned in later chapters

can be visualized by means of an embedding in R . //

Example 1.8. Let B be a topological space. Then the set 7T(B) of homotopy classes

<c> rel endpoints of paths c: [0,1] •• B is a groupoid on B with respect to the

following structure: the source and target projections are ct(<c>) = c(0) and

3(<c>) = c(l), the object inclusion map is x f-> x = <K >, where K is the path

constant at x, and the partial multiplication is <c'Xc> = <c'c> where c'c is the

standard concatenation of c followed by c', namely (c'c)(t) = c(2t) for 0 < t < - ,

(c'c)(t) = c'(2t-l) for i < t < 1. The inverse of <c> is <c*> where c* is the



reverse of the path c, namely c (t) = c(l-t).

Note that many authors take c'c to be c' followed by c, defined iff

c'(l) = c(0). The groupoid /T(B) may also be defined using paths of variable length;

for this see, for example, Brown (1968).

is the fundamental groupoid of B; its vertex groups are the

fundamental groups ir (B,x), x e B, and if B is path-connected, locally path-

connected and semi-locally simply connected, then its a-fibres are the sets

underlying the universal covering spaces of B.

There are now a number of beginning texts on algebraic topology which

introduce the concept of fundamental group via that of the fundamental groupoid, but

most make little use of the groupoid structure. The first account of elementary

homotopy theory to make effective use of the algebraic structure of/T(B) was Brown

(1968). //

Example 1.9. Let p: M •• B be a surjective map. Let II(M) denote the set of all

bisections £: M -• M for x,y e B, where M = p-1(x), x £ B. Then II(M) is a

groupoid on B with respect to the following structure: for £: M + M , a(5) is x
x y

and 3(£) is y; the object inclusion map is x h—• x = idM , and the partial

multiplication is the composition of maps. The inverse of £ e II(M) is its inverse

as a map. II(M) is called the frame groupoid of (M,p,B).

Many variants of this fundamental example will be given in later chapters.

Example 1.10. Let P(B,G,TT) be a principal bundle. Let G act on P x p to the right

by (u2»u^)g = (u2g,u^g); denote the orbit of (u2>u^) by <U2»u^> and the set of
p x p P x P

orbits by — g — . Then — g — is a groupoid on B with respect to the following

structure: the source and target projections are a(<u ,u >) = TT(U ),

8(<u9,u >) = TT(U ); the object inclusion map is x h x = <u,u>, where u is any
L L -1

element of IT ( X ) ; and the partial multiplication is defined by

Here 6: P x p U is the map (ug,u) h> g (see A§1). The condition ot(<u3,u£>)

3(<uo,u.>) ensures that (u' uo) e P x p. Note that one can always choose

representatives so that u' = u and the multiplication is then simply
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< U 3 > U 2 > < U 2 > U 1 > = < U 3 > U 1 > #

The inverse of <u_,u,> is <u.,uo>. — ^ — is called the groupoid associated to
2 1 1 2 G

P(B,G,ir). //

Example 1.11. Applying 1.10 to the principal bundle SU(2) (S0(3) , Z2 ,TT) yields a

groupoid which, though it has dimension 6, is perhaps somewhat visually accessible.

Here the action of Z = {1,-1} £= SU(2) on SU(2) is by matrix multiplication and TT

is essentially the adjoint representation (see, for example, Miller (1972, p. 224)).

The groupoid S U ( 2 ) * SU(2) c a n b e n a t u r a l l y identified with S0(4): identifying

2
SU(2) with the unit sphere in the space of quaternions H, each pair

-1 4 4
(p,q) e SU(2) x SU(2) defines a map H •• H, x H pxq which, as a map R + R , is a

proper rotation. It is well-known that this map SU(2) x SU(2) •• S0(4) is an

epimorphism of Lie groups with kernel {(1,1), (-1,-1)} (see, for example, Greub

(1967, p. 329)).

Thus we obtain a groupoid structure on S0(4) with base RP , a- and 3-fibres

which are 3-spheres, and vertex groups which are Z2*s. However it seems that the

groupoid multiplication has no clear geometrical significance. //

We shall return to examples 1.4 to 1.10 in chapters II and III.

§2. Morphisms, subgroupoids and quotient groupoids

We treat the concepts listed in the title, and the related concepts of

kernel, normal subgroupoid, etc., and consider the factorization of a morphism into

a quotient projection, an isomorphism, and an inclusion. This factorization,

fundamental in the category of groups, is valid only for certain classes of groupoid

morphism, for example, those morphisms which are both piecewise-surjective and base-

surjective, and those which are base-injective. In particular, base-preserving

morphisms can be so factored. We mention in passing two factorizations of an

arbitrary groupoid morphism into a base-preserving morphism and a morphism of

another specified type.

The examples given here are tailored to those of later chapters but

otherwise the material of this section comes from Higgins (1971) and Brown (1968).
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Definition 2.1. Let ft and ft1 be groupoids on B and B1 respectively. A morphism

ft > ft1 is a pair of maps <J>: ft -• ft', <J> : B -• B1 such that ct'» <j> = <J) o a,

3'o<j> = (j> o 3 and 4>(n£) = $(Tl)$(5)» ¥(n,£) e ft*ft. We also say that <j> is a morphism
o

over <j> . If B = B' and <f> = id we say that <j> is a morphism over B, or that <\> is a

o o B
base-preserving morphism. //

Note that the conditions a'e <J> = <J> o a, 3'°<f> = <j> o 3 ensure that <J>(n)<J>( O is
o o

defined whenever n£ is. Morphisms preserve unities and inverses:

Proposition 2.2. Let <j>: ft -• ft1 , <\> : B + B' be a groupoid morphism. Then
o

(i) *(x) = 5T00 ¥ x e B ,

(ii) t(Cl) = KC)" 1 ¥ 5 £ ft .

Proof. Exercise. / /

y V y )

For x,y e B we denote the r e s t r i c t i o n s of <J> to ft •»• ft' . , ft7 ->• ft'
• (y) X <1>o(x)

and fty -• ft' ° N by <}) , 4>y and <j>y, respect ively,
x <J> (x) J x ' x

Definition 2 . 3 . A groupoid morphism <J>: ft •• ft' over <J> : B •»• B' i s piecewise-
___. o

surjective ( respect ively, piecewise-inject ive, piecewise-bijective) i f
y y V y )

y : ftJ -• ft' . i s s u r j e c t i v e ( r e s p e c t i v e l y , i n j e c t i v e , b i j e c t i v e ) ¥ x , y e B.
X X <J> \"X.)

o

<J> is base-surjective (respectively, base-injective, base-bijective)

if <\> : B •»• B' is surjective (respectively, injective, bijective).

<J) is an isomorphism if <J>: ft •*• ft' (and hence ()) : B > B') is bijective. //

o

We will not use the words 'epimorphism' or 'monomorphism' in the algebraic

It is trivial to prove that a surjective (injective) morphism is base-

surjective (base-injective); further, a morphism is injective iff it is base-

injective and piecewise-injective, and a morphism which is base-surjective and

piecewise-surjective is itself surjective. All these results are easy to prove. A

surjective morphism need not be piecewise-surjective; see example 2.8 below.
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Definition 2.4. Let SI be a groupoid on B. A subgroupoid of fl is a pair of subsets

SI'S ft, B'S B, such that a(ft')£ B1 , 0(ft')£ Bf, x e ft' ¥ x e B', and ft' is closed

under the partial multiplication and inversion in ft. A subgroupoid ft', B' of

ft, B is wide if B' = B and is full if ft'Y = ftY ¥ x,y e B1.

The base subgroupoid or identity subgroupoid of ft is the subgroupoid

B = {x|x £ B } . The inner subgroupoid of ft is the subgroupoid Gft = U ftx. //
xeB x

A morphism of groups may be factored into a surjective morphism (the

projection of the domain group onto its quotient over the kernel of the given

morphism), followed by an isomorphism, followed by an injective morphism (the

inclusion of the image of the given morphism into its range). For groupoid

morphisms the situation is more complicated. Firstly, the image of a groupoid

morphism need not be a subgroupoid; it may happen that a product <J>(TI)<|>( £) is

defined but the product n£ is not and that another pair n , £ with <j>(n,) = <J>(n),

<!>(£,) = <KO and n.S. defined cannot be found. This can occur even for morphisms of

trivial groupoids: Let B be an interval on the real line, bounded away from

infinity and zero, and G' the multiplicative group of positive reals and consider

B x B •>• G1 , (y,x) h-+ yx • (It is easy to prove, however, that the image of a base-

injective morphism is a subgroupoid.)

Secondly, the concept of kernel for groupoid morphisms does not adequately

measure injectivity. To demonstrate this failure and its consequences and describe

what factorizations are possible will occupy us until 2.13.

Definition 2.5. Let ft be a groupoid on B. A normal subgroupoid of ft is a wide

subgroupoid $ such that for any A £ G$ and any £ £ ft with a£ = aA = 3 A, we have

CAC"1 £ •. //

Note that whether or not a subgroupoid is normal depends only on those of

its elements which lie in its inner subgroupoid.

Definition 2.6. Let <t>: ft •• ft' , <f> : B •• B1 be a morphism of groupoids. Then the

kernel of <f> is the set {£ £ ft | <f>(£) = x, 3 x £ B1}. //

Clearly the kernel of a morphism is a normal subgroupoid. The following

construction of quotient groupoids shows that every normal subgroupoid is the kernel

of a morphism.



Proposition 2.7. Let $ be a normal subgroupoid of a groupoid SI on B, Define an

equivalence relation ~ on B by x ~ y <=> 9 ? e $: a? = x, 3? = y, and denote the

equivalence classes by [x],x e B, and the set of equivalence classes by B/$. Define

a second equivalence relation, also denoted ~, on ft by £ ~ n <=> 9 C,C' £ $: £nC' is

defined and equals £. Denote the equivalence classes by [£],£ e ft, and the set of

them by ft/$. (Note that, V'x,y £ B, x ~ y <=> x ~ y.)

Then the following defines the structure of a groupoid ft/$ with base B/$:

the source and target projections are a([£]) = [a(5)l, 3([£]) = [3(5)1, the object

inclusion map is [x] )--• [x] = [x] , and the product [n][£], where ct(n) ~ 3(£), is

defined as [TIC~ £] , where C is any element of $ with ct£ = an and 3C = 3£. The

inverse of [£] is U * 1 ] .

The projections h: ? H [£], ft •• ft/$, ̂7 : x J—• [x] , B + B/$ constitute a

L. °
groupoid morphism. The kernel of u is $.

Proof. Exercise for the reader. //

ft/$ is the quotient groupoid of ft over the normal subgroupoid $. The

notation 'W should be read as 'natural1, for 'natural projection'. Note the

extreme cases: ft/B is isomorphic to ft under o, ft/ft is a base groupoid (not

necessarily singleton), and ft/Gft is isomorphic to B.

It is easy to see that an injective morphism has the base subgroupoid of its

domain as kernel, and that a morphisra whose kernel is the base subgroupoid is

piecewise-injective. The following example is a surjective morphism whose kernel is

the base subgroupoid but which is not (always) an isomorphism.

Example 2.8. Let P(B,G,TT) be a principal bundle and consider the associated
p x p p x p

groupoid — g — constructed in 1.10. It is easy to see that the map P x p + g ,

(u_,u ) H+ <u ,u > is a morphism of groupoids over TT: P -• B, where P x p has the

trivial groupoid structure of 1.4. The kernel is the diagonal A of P, which is the

base subgroupoid of P x p. //

A surjective group morphism can be factored into the projection onto a

quotient group followed by an isomorphism. This example shows that the straight-

forward generalization to groupoids is not valid. Surjective groupoid morphisms are

not determined by their kernels: both the morphism in 2.8 and id are surjective
p x p

morphisms with kernel A_,. Notice that the contrasting notations ft/$ and — - — are

P x P
used to emphasize that there is no subgroupoid 'G' of P x p that makes — p — a
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quotient of groupoids.

For morphisms which are not only surjective, but are also piecewise-

surjective, such a straightforward factorization is possible:

Proposition 2.9. Let <j>: ft ->• ft' be a groupoid morphism over <|> : B + B' with
o

kernel $.

(i) If <j> is base-surjective and piecewise-surjective then <j>: ft/$ + ft1,

[£] h-• <J>(£) is an isomorphism of groupoids and <J> = (J>dP.

(ii) If there is an isomorphism of groupoids i|r. ft/<i> + ft' such that <j> = ^»D,

then <(> is base-surjective and piecewise-surjective.

Proof. (i) Clearly <j> is surjective, since <j> is. Suppose <}>([£]) = <K[n]), that

is, <K£) = <KTI). Then 8£ and 6n have the same image, say z, under <J> so, since

i j : fto^ •>• ft
|Z is surjective, there is an element £ e ftQ^ such that <|>(C) = z; such
z 8n an

an element must actually be in $/\ Similarly there is an element £' e $ !.. Now
-1 -1 8E ~ a

C nC'C is defined, is an element of ftOi-, and is mapped by <j> to z, so it is
8E -1

actually an element of $ ; denote it by X. Then £ = (C^) n£', which shows
that C ~ n; that is, [£] = [n].

(ii) bis base-surjective by construction. To prove thatfa^: ft^ ->• (ft/$)Ĵ i
is surjective, take [£] e ft/$ with $([£]) = [y] , a([Cl) = [x] . Then 6S ~ y, ot£ ~ x

3 -1 ^1 v

C,C' £ ^ such that £*• y •*• B£ and C! : x -> aC. Now £ ££' ~ ^ and £ SC1 e ft .

//

In the rest of these notes we will be mostly concerned with morphisras

<j>: ft -• ft1 for which B = B' and <j> = id^, or at any rate for which ^ is a
o B o

bijection. For morphisms <(> with <|> a bijection, surjectivity is equivalent to

piecewise-surjectivity so 2.9 shows that in this case we have a factorization of an

arbitrary morphism into a natural projection followed by an isomorphism followed by

an inclusion, exactly as for group morphisms. Two other simplifications are

possible in this case: (i) the kernel of a base-bijective morphism (indeed of a

base-injective one) is the union of its vertex groups, that is, in the terminology

of 3.1, it is a totally intransitive groupoid, and so there is no need to consider

the equivalence relation on the base when quotienting over such a kernel, (ii) when

quotienting a groupoid ft over a totally intransitive normal subgroupoid $, the

relation "£ ~ n <=>3 £>£' e $: CnC1 is defined and equals £" may be defined by

"£ ~ n <=> 3 A e $: r\\ is defined and equals £" (this is a simple consequence of

the facts that £, n, £' must now all belong to the same ft , and $ is a normal
x xx

subgroup of ft ). It is also true for base-bijective morphisms that a morphism is
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injective iff its kernel is the base subgroupoid.

A. straightforward factorization like that of a group morphism is also

possible for base-injective morphisms (Brown (1968, 8.3.2) or Higgins (1971)).

There are two ways in which an arbitrary groupoid morphism can be factored

into a base-preserving morphism, to which the factorization given above can be

applied, and a second morphism of a specified type. Firstly, one can use a

pullback:

Definition 2.10. Let <j>: ft + ft1 , <j) : B > B1 be a groupoid morphism. <j> is a pullback
o — — — — — —

if every groupoid_morphism i|>: $ •> ft1, also over ty = <\> : B •• B1, can be factored

uniquely into $ —•*•-*• ft —*• ft1 where if is a groupoid morphism over B. //

Definition 2.11. Let ft be a groupoid on B and f: Bf •• B a map. The inverse image

groupoid of ft over f is the set f*ft = {(y',5,xf) e B1 xftxB' | f (y' ) = 35, f(x') = <x£}

together with the groupoid structure consisting of projections ^'(y1,^^1) = x1,

3'(y',5,x') = y1, object inclusion map x' M> x1 = (x',f(x1),xf), and composition

(z!,n,yl)(yt,C,xf) = (z',nS,x'). The inversion is ( y ' ^ x ' ) " 1 = (xf,5"1,yl). The

inverse image morphism is the morphism f: f*ft •»• ft, (y',£,x') |—• 5, over f: Bf •• B.

Note that f is piecewise-bijective.

Proposition 2.12. A morphism of groupoids is a pullback iff it is piecewise-

bijective.

Proof. (<=) If <j>: ft -• ft' is piecewise-bijective and i|>: $ + ft' has * = $ : B +• Bf ,
o o

define ^y: $y + fty for each x,y £ B by ? = (*y)"oi|7.
X X X X X X

( = » Let <j>: ft •• ft' be a pullback. By (<=), X : <t»*̂ ' •• ̂ f is also a pullback

o o
so t h e r e i s a morphism ty,: ft ->• <j>*ft' o v e r B such t h a t <\> = <j> o ty . Because it) i s a

1 o o 1
p u l l b a c k , t h e r e i s a morphism > _ : <J>*ft' •• ft ove r B such t h a t ^ = <f>0ij>o. By t h e

2 o o 2

uniqueness requirement in 2.10, both of tyo ty and ij> o ̂  are identity morphisms,

so ty and ̂  are isomorphisms. Because <(» is piecewise-bijective it now follows

that <f> is. //

Hence an arbitrary groupoid morphism (J>: ft -»• ft' can be factored into the

inverse image morphism <J> : <j>*ft' •• ft' and a base-preserving morphism ft ->• <j>*ft' over B.
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Secondly, and in some sense dually, one can use the concept of universal

morphism of Higgins (1971, Chapter 12). A morphism <J>: ft + ft' is universal if for

all morphisras ip: ft + ft" such that ip = f»<j> for some f: Bf •»• B", there is a unique

morphism 8: ft1 > ft" such that i|> = 9<f> and 9 = f. It is a non-trivial fact (Higgins
o

(1971, Chapter 8) or Brown (1968, Chapter 8)) that given any groupoid ft on B and map

f: B + B' there is a groupoid U (ft) on B' and a universal morphism f*: ft > U (ft)

over f: B -»• B'. Now, given an arbitrary morphism <j>: ft ->• ft' one can factor <J> through

the universal morphism ft •• U A (ft) and obtain a morphism U A (ft) •»• ft' over B' which
yo yo

can be factored in the straightforward way we described above. Note that in the

category of groups a universal morphism is an isomorphism.

We close this section with some basic examples.

Example 2.13. A morphism of trivial groupoids <J>: B x G x B + B' x G' x B1 can be

written in the form

<Ky,g,x) = (<|)o(y),e(y)f(g)9(x)"
1,(j)o(x))

for a group morphism f: G •> G' and a map 9: B •> G'. The maps 9 and f are not

unique; for any point b e B, such maps are defined by

<Kx,l,b) = (4> (x),9(x),<j> (b)) and <Kb,g,b) = (<f> (b),f(g),<f> (b)). //
o o o o

Example 2.14. (Pradines (1966).) If G is a group the 'division map'

SCgo'Si) " ^9^1 i s a gro uPo id morphism G * G + G where the domain is the trivial

groupoid on the set G and the range is the group G itself.

More generally, for any groupoid ft on B, the set

ft x Q, = {(n,£) e ft x ft J aTj - a£j is a subgroupoid of the cartesian square groupoid

ft x ft on ft and 6: ft x Q + a (n,S) H+ n£ is a groupoid morphism over 3: ft ->• B.
a

Example 2.15. The subgroupoids of a cartesian square groupoid B x B may be

identified with the equivalence relations on the subsets of B. An equivalence

relation X on B itself constitutes a normal subgroupoid of B x B and (B x B)/X may

be identified with the trivial groupoid (B/X) x (B/X) under [(y,x)] }--• ([y],[x]).

Example 2.16. Let G and G' be groups acting on sets B and B', let <J>: G ->• G' be a

morphism and let f: B -• B' be a map equivariant with respect to $• Then

<j> x f: G x B ->• G' x B' is a morphism of the action groupoids. //
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Example 2.17. If F(f,<j>): P(B,G) + P'(B',G') is a morphism of principal bundles,

then <u ,u > h+ <F(u ),F(u )> is a morphism of the associated groupoids. //

Example 2.18. For any groupoid ft on base B, the map [3,a"h ft •• B x B,

£ h+ (3(O,<*(£)) is a morphism over B, which we propose to call the anchor of ft.

Its kernel is the inner subgroupoid Gft. //

These examples will be treated in more depth, and others introduced, in

Chapters II and III.

§3. Transitive and totally intransitive groupoids

A groupoid is transitive if any two points of its base can be joined by an

element of the groupoid. While the algebraic theory of transitive groupoids is

trivial (see 3.2), the main interest of later chapters will be with topological or

differentiable groupoids that are transitive, but not topologically trivializable.

A groupoid is totally intransitive if it is the union of its vertex groups.

Totally intransitive groupoids are important because a transitive groupoid can be

regarded as an extension of a cartesian square groupoid by a totally intransitive

one.

This section also treats the concepts of product over a fixed base and

abelianity, concepts which are largely meaningless for grouDoids which are neither

transitive nor totally intransitive.

Definition 3.1. Let ft be a groupoid on B. ft is transitive it its anchor

[3,a]: ft •> B x B is surjective. ft is totally intransitive if the image of [3,a] is

the base subgroupoid A of B * B.
D

In general, the image of [3,a] in B x B is an equivalence relation onB. The

nee class containing x e B i

component of ft containing x. //

equivalence class containing x e B is denoted M and called the transitivity

Transitive groupoids are sometimes called connected groupoids and totally

intransitive groupoids called totally disconnected groupoids. We shall not use this

terminology.
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M
Let ft be any groupoid on B. For x e B, M is clearly 8(ft ) and IT is a

x
transitive, full, subgroupoid of ft; clearly ft is the disjoint union of the

transitive subgroupoids ft , as M runs through the transitivity components of ft.

Now consider a transitive groupoid ft on B. The anchor is a surjective

morphism over B with kernel the inner subgroupoid Gft of ft so we may regard ft as an

exact sequence

Gft •> f ft ^ ' ° ^ » B x B

or, in some sense, as an extension of B x B by Gft. This extension is trivial (or

semi-direct) because any right-inverse a: B + ft, to 8, : ft •> B, for some chosen

b e B, defines a mor

to [8,ot], Further,

b e B, defines a morphism 9(y,x) = a(y)cr(x) , B x B -• ft, which is right-inverse

Proposition 3.2. Let ft be a transitive groupoid on B, let b be a point of B, and

let a: B • ft, be a right-inverse to 8. : ft, + B. Then

E r B x f t ^ x B + f t (y»*»x) M- a(y)Xa(x)~1

is an isomorphism of groupoids over B.

Proof. Exercise. //

So every groupoid is the disjoint sum of transitive subgroupoids and every

transitive groupoid is isomorphic, though not usually in any natural way, to a

trivial groupoid.

Examples 3.3. Trivial groupoids B x G x B are of course transitive. The groupoid
p x p

— - — associated to a principal bundle P(B,G,ir) is transitive, since IT is

surjective. The frame groupoid II(M) of a surjection (M,p,B) is transitive if all

the fibres M , x e B, have the same cardinality. The transitivity components of a

fundamental groupoid /|(B) are the path-components of B, and the transitivity

components of an action groupoid G x B are the orbits of the action. For an

equivalence relation X on B, the transitivity components are the equivalence

classes. Any inverse image of a transitive groupoid is transitive. //

Given groupoids ft and ft' on B and B' one can define a product groupoid

ft x fl» on B x B ' in an obvious way. However, in the rest of this book we will be

mainly concerned with categories of groupoids over a single base. Given groupoids
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ft and ft1 on B we require a product groupoid ft * ft' on B, not on B x B, and
BXB

although this construction can be given for arbitrary groupoids, it is largely

meaningless unless one of the factors is transitive.

Define $ = ft x ft' to be the pullback
BxB

[3,a]

[3',a']

B x B

— — y
and its anchor [$,ct]: $ -»• B x B to be either composite. Thus $ may be regarded as

fty x ft'y. Define the partial multiplication and inversion in $ componentwise in the

obvious fashion. Then it is easy to see that if c|>: ¥ ->• ft and <J>' : ¥ ->• ft' are

morphisms over B, then (J>: ¥ + $, ? H> (<KS), <!>' (£)) Is also a morphism over B, so $

is indeed the product groupoid of ft and ft' in the category of groupoids on B and

morphisms over B.

Another standard concept which is rather meaningless for general groupoids

but has an importance for transitive groupoids is that of abelianity.

Definition 3.4. Let ft be a transitive groupoid. ft is abelian if any one (and hence

all) of its vertex groups is abelian. //

Though the definition involves only the inner subgroupoid of ft, it has an

effect on the structure of the whole groupoid: For an arbitrary transitive

groupoid ft, all vertex groups are isomorphic for, given £ e fty, the "inner

automorphism" I • ftx -• fty, X I—• £A£~ , is an isomorphism of ftX onto fty (see 11 1.2
€ x y x v

 x y
for the formal definition). If ft is abelian, then ft and ft are naturally

x y v
isomorphic, for in this case I = I for all £, TI in the same ft"7. (Compare the

well-known fact that if a path-connected space has abelian fundamental groups, then

they are all naturally isomorphic.) Thus there is a well-defined map B x G •*• ft,

where G = ft, for some b e B, and an exact sequence

B x G ••—• ft —•-• B x B .

Here B x G may be regarded as the action groupoid corresponding to the trivial

action of G on B.
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It is well-known that despite the body of techniques and results common to

the theories of topological groups and Lie groups, the general theory of topological

groups scarcely resembles at all the theory of Lie groups. With topological

groupoids and differentiable groupoids the divergence is even more marked. This

will be particularly clear after III §1, for the central result III 1.4 is proved

by a foliation-theoretic method which has no analogue in the general topological

case. There is also no analogue of Sard's theorem. At a simpler level, if

f: M -> N is a smooth map between manifolds M, N which has the property that a
f g

composite M -• N > P is smooth iff g: N + P is smooth (where g is, a priori, not

necessarily even continuous), then f is a submersion and, in particular, is open.

In the case of topological spaces, the corresponding concept is that of

identification map, and such a map need not be open. As a final example, every

transitive smooth action of a Lie group on a manifold makes the manifold a

homogeneous space; the topological version of this result is false.

This chapter is chiefly concerned with those parts of the theory of

topological groupoids which mirror the theory of differentiable and Lie groupoids.

Some references to the general theory of topological groupoids are made in §1, §3,

§4 and §5 and for further information the reader can consult Brown and Hardy (197 6),

Brown et al (1976), and Renault (1980).

The point of separating out that part of the theory of differentiable

groupoids which is valid in the topological case, is not so much to make a

contribution to the theory of topological groupoids, as to demonstrate that these

results continue to hold for differentiable groupoids based on more general forms of

the manifold concept, such as Banach manifolds or non-paracompact manifolds. Such

groupoids may well have applications elsewhere.

There are two natural questions which are still unresolved: Given a

morphism <J>: ft -*• ft1 , where ft and ft1 are topological groupoids and <J> is continuous on

a neighbourhood of the base in ft, is it true that <J> is continuous everywhere?

If ft is a principal topological groupoid, this is easily established (1.21(ii)).

Secondly, is it always true that the a-identity component subgroupoid of a suitably

locally connected topological groupoid is (a-) open? For differentiable groupoids,

this is so (III 1.3), and for principal topological groupoids with connected bases

it is so (3.4). If these results turn out to be false in general, it may be that

the most general form of the concept of topological groupoid needs re-definition.
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We give a brief description of the individual sections. §1 briefly

considers the nature of quotient topological groupoids, and then gives the main

examples which are used throughout the rest of the text. §2 treats local

triviality, its use in reducing global problems to a local problem and a patching

problem, and the classification of locally trivial groupoids by cocycles. §3 is

concerned with the connected components of the spaces present in a topological

groupoid. §4 sets up the apparatus of representations of topological groupoids on

fibre bundles and gives the characterization of groupoids of the form ft * M, where ft

acts on M. §5 is concerned with the concept of left-translation for topological

groupoids; the apparatus developed here is needed for the exponential map and

adjoint formulas of Chapter III. §6 constructs the monodromy groupoid of a suitably

connected principal topological groupoid; this construction generalizes that of the

universal covering group of a topological group and of the fundamental groupoid of a

topological space. §7 is concerned with path lifting in topological groupoids, and

is an introduction to the connection theory of Chapter III.

§1. Basic definitions and examples.

The greater part of this section, from 1.9 to 1.17, consists of examples of

topological groupoids. The list is biased towards groupoids which are locally

trivial and which admit differentiable structures. It should be noted that the few

examples included here which do not meet these criteria are not Intended to give a

full picture of the range of variation possible in the general theory.

In 1.5 to 1.7 we consider the problems associated with quotient topological

groupoids, and in 1.18 to 1.20 we give the equivalence, due to Dakin and Seda

(1977), between principal topological groupoids and Cartan principal bundles. This

equivalence provides a neat formulation of the correspondence between locally

trivial groupoids and principal bundles and, at the same time, shows that a slightly

more general class of groupoids shares some of the important properties of locally

trivial groupoids.

Definition 1.1. A topological groupoid is a groupoid ft, B together with topologies

on ft and B such that the five maps which define the groupoid structure are

continuous, namely the projections a, 3: ft •• B, the object Inclusion map e: x I—• x,

B •»• ft, the inversion £ h-• £ , ft -• ft, and the partial multiplication ft*ft •• ft, where

ft*ft has the subspace topology from ft x ft.
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A morphism of topological groupoids, or, if emphasis is required, a

us morphism, is a morp

and <J) are continuous. //

continuous morphism, is a morphism of groupoids <j>: ft + ft1, $ : B ->• B1 such that
k 0

Clearly if one of the projections in a topologized groupoid is continuous,

and the inversion is continuous, then the other projection is continuous. In a

topological groupoid the inversion is clearly a homeomorphism and the projections

are identification maps, since they have the object inclusion map as a right-

inverse. Lastly, the object inclusion map is a homeoraorphism onto the base

subgroupoid B, for given U<~ B open the set U of unities corresponding to elements
U ~ U

of U is the intersection ftn B, and ft is certainly open in ft. If ft is Hausdorff

then B is closed in ft, being the image of the map £ h+ ot(£), ft -• ft, whose square is

itself.

In the definition of a continuous morphism, the requirement that <j) be
o

continuous is superfluous, since <j> is the composite of the object inclusion map of
o

its domain, <j>, and either projection of the range.

Definition 1.2. Let ft be a topological groupoid on B, and take £ e ft, a£ = x,

3S = y.

The left-translation (right-translation) corresponding to £ is the map

L : ft -• ft , n !--• £n (R • ft •• ft , r\ h+ n£)« The inner automorphism corresponding

to £ is the map I : ftX + fty, A |-+ Z\fl. //
t, x y

If its base B is Hausdorff (or merely T ), the a-fibres and 3-fibres of a

topological groupoid ft are closed subspaces of ft. Clearly a-fibres (3-fibres) of ft

which are labelled by points of B in a common transitivity component of ft are

homeomorphic under right- (left-) translations. Inner automorphisms (which, of

course, are not usually automorphisms at all) are isomorphisms of topological

groups.

In many cases the topological properties of the space ft of a topological

groupoid are less important than the properties of its a-fibres. This Is the case,

for example, with connectedness and simple-connectedness. For a topological

property P, therefore, we will say that a topological groupoid is a - P if each of

its a-fibres has P. (Each 3-fibre is of course homeomorphic to the corresponding

a-fibre under the inversion map.) This usage is from Pradines (1966). If P is

invariant under continuous maps and finite products then any transitive groupoid ft

which is a - p is itself P, for ftfe x ft^ -• ft, (n,S) I-+ n̂ ""1 (any b e B) is a
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continuous surjection.

It is easy to verify that any subgroupoid ft', B1 of a topological groupoid

ft, B is itself a topological groupoid with respect to the subspace topologies

on ft', B1 inherited from ft, B:

Definition 1.3. Let ft be a topological groupoid on B. A topological subgroupoid

of ft, B is a subgroupoid ft1, B' of ft, B equipped with the subspace topologies

inherited from ft, B. //

The problem of giving the factorization results of I§2 validity in the

category of topological groupoids is difficult and is not, to the knowledge of the

author, completely solved; we will briefly discuss the general situation here, but

the only case we will use later is that of base-preserving raorphisms of locally

trivial groupoids, for which see §2.

Brown and Hardy (1976) show that the universal groupoid construction

mentioned in I§2 has a topological validity. Precisely, given a topological

groupoid ft on B and a continuous map f: B + B1 the groupoid U-(ft) has a topology

which makes it a topological groupoid on the space B1 and makes f*: ft •• U (ft)

continuous; f* is now universal in the category of topological groupoids in the

sense that given any morphism of topological groupoids <j>: ft + ft" such that <J> = g»f

for some continuous g: B1 ->• B", there is a unique morphisra of topological groupoids

i|>: U.(ft) •»• ft" such that <J> = i|*«f* and ij> = g.
f o

Definition 1.4. Let <j>: ft ̂ ft' be a morphism of topological groupoids. Then ij> is a

pullback if for every morphism of topological groupoids ty: $ -• ft' such that

^ = <J> : B •• B', there is a unique raorphism ty: $ -• ft over B such that if; = <f>"ij). //

If ft is a topological groupoid on B and f: B' •• B is a continuous map then

f*ft with the subspace topology from B1 x ft x B' is a topological groupoid on B'

and f: f*ft •• ft is a continuous morphism and a pullback (in the sense of 1.4) still

called the inverse image of ft over f. As in the second half of the proof of I 2.12,

every pullback <j>: ft -• ft' is equivalent to the inverse image £ : <J>*ft' •»• ft' and, in

particular, is a piecewise homeomorphism. It seems unlikely, however, that every

piecewise homeomorphic morphism is a pullback but a counter-example is lacking. See

2.9 for the locally trivial case.

Whether one uses universal morphisms or pullbacks, it is sufficient, from a

strictly logical point of view, to restrict the problem of factorization to base-
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preserving morphisms of topological groupoids. (From a practical point of view

neither factorization helps very much to extend results for base-preserving

morphisms to general ones.) In particular we may restrict the construction of

quotient topological groupoids to the case of totally intransitive normal

subgroupoids. The general definition is as follows.

Definition 1.5. Let ft be a topological groupoid on B and $ a normal subgroupoid.

Then a topological groupoid V and a morphism v: ft -• ¥ are the topological quotient

groupoid ft/$ and its natural projection q: ft -• ft/$ if for every morphism of

topological groupoids <f>: ft -»• ft' such that <J>($) £= B* there is a unique morphism

"i: ¥ •• ft1 such that ^ v = <j>. //

If G is a topological group and H a normal subgroup it is trivial that

a: G •• G/H is open with respect to the identification topology on G/H and it is thus

easy to prove that G/H is the topological quotient group in this topology (see, for

example, Higgins (1974)). For groupoids, the natural projection h : ft •*• ft/$ need not

be open with respect to the identification topology on ft/$ - see example 1.10 below.

Even if Cj is open, it is not clear that ft/$, with the identification topology, need

be the topological quotient groupoid. However there is the following result.

Theorem 1.6. Let ft be a topological groupoid on B and let $ be a normal subgroupoid

such that fa : ft •>• ft/$ is open, with respect to the identification topology on ft/$,

and such that the anchor [3',af]: $ ->• imfB1,**'] is open into its image. Then ft/$,

with the identification topology, is the topological quotient groupoid.

Proof. Only the continuity of multiplication in ft/$ requires proof. Let D denote

the set (tj xtj)"1(«/#*ft/$) = {(n,5) e f t x a j g C e $ . nc"1^ is defined}. Then

because D is saturated, the restriction tj xH\Ti'- D -• ft/$*ft/$ is open.

Denote im[3l,al]S B x B by M1. Note that D is also the set

~1(M')2 ft x ft.

Then D is the pullback

(a x 3)~1(M')2 ft x ft. Let D denote the set {(n,C,O e ft x $ x ftfnc"1^ is defined}.

I I-
[3',a']
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Because [B',ot']: $ •• M1 is open, the pullback map p: D -• D, (n,C,O I—• ( n , O is

open.

Now the following diagram commutes

D

P

D

> /
0/»»n/# -dtlplleatlon ) fl/,

and since fa xfa |D and p are both open, it follows that the multiplication is

continuous. //

This result may be related to a theorem on differentiable quotient groupoids

stated by Pradines (1966).

Brown and Hardy (1976) prove the following criterion.

Theorem 1.7. Let ft be a locally compact, Hausdorff topological groupoid on B and

let $ be a compact normal subgroupoid. (In particular, B must be compact.) Then

ft/$, with the identification topology, is the topological quotient groupoid. //

A third criterion is given in 2.18.

It is proved by Brown and Hardy (1976), that topological quotient groupoids

always exist, although 1.10 below shows that the topology on ft/$ need not be the

Identification topology. One would like to know, in general, to what extent the

topology on a topological quotient groupoid ft/$ inherits the topological properties

of ft.

Definition 1.8. Let ft,ft' be topological groupoids on B,B'. An isomorphism of

topological groupoids ft -»• ft' is a morphism of topological groupoids <j>: ft + ft',

<|> : B + B' such that <|> (and hence <j> ) is a homeomorphism. //
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We will not use the terms "epimorphism" or "monomorphism". We now give some

basic examples.

Example 1.9. If G is a topological group and B a space, the trivial groupoid

B x G x B is a topological groupoid in the product topology, called the trivial

groupoid, on B with group G. The description of morphisms of trivial groupoids in

I 2.13 remains valid for continuous morphisms. //

Example 1.10. Let X be an equivalence relation on a space B, considered as a normal

subgroupoid of B * B. In I 2.15 we identified the (algebraic) groupoid (B x B)/X

with the product groupoid (B/X) x (B/X) and the natural projection

fcj: B x B -• (B x B)/X with p x p : B X B + (B/X) x (B x X).

We now prove that (B/X) x (B/X), with the cartesian square of the

identification topology from p, is the topological quotient groupoid, despite the

fact that p x p need not be an identification. Let <j>: B x B •*• ft' be a continuous

morphism over <j> : B + B1 such that <J>0OS B1 . Choose b e B and define a: B -• ft'
o *

by a(x) - <Kx,b). Then (J>(y,x) = a(y)a(x)~ , V x , y e B. Now let a: B/X + ft1 be

a([x]) = a(x); then a is of course continuous, and so <f: (B/X) X (B/X) -• ft',

([yl,[x]) M- *(y,x) = ^([ylMfx])"1 is continuous.

Note that fa = p x p : B x B •> (B x B)/X may be an identification without
' 2

being open: let B consist of the two axes in R and let X collapse the y-axis to

the origin; p is then the projection onto the x-axis, B -• R. Since B and R are

locally compact, fa = p x p is an identification; since p is not open, a cannot be.

Any equivalence relation X on any space B is a topological groupoid on B

with the subspace topology from B x B. Note that the projections X -• B are not

always open maps. //

Example 1.11. Let G x B •• B be a continuous action of a topological group G on a

space B. Then the action groupoid G x B, with the product topology, is a

topological groupoid on B. //

Example 1.12. Let P(B,G,TT) be a Cartan principal bundle (see A 1.1 for
P X P P X P

definition) . Then — - — with the identification topology from P x p -• — - — f

(u ,u ) V—• <u ,u > (see I 1.10) is a topological groupoid on B.
p x p

We prove that the groupoid multiplication is continuous. Denote — - —
G

by ft and (u ,u ) H+ <u ,u > by p. Now p is open, for if ufip x p is any subset, we
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have p (p(U)) = -̂f, Ug (with respect to the action of G on P x p) and so
^ 2 2 l

is open if U is. Hence p x p : p x p •> ft x ft is open. Now (p x p) (ft*fi
= p x (p x p) x p and

r , (u ,u ,u ,u ) !-+ (u ,u 5(u ,u ))
P x (p x pj x p Z—£—t i 1—Z i 1 1 • p x p

p x p | p

groupoid multiplication

commutes. Since an open map restricted to a saturated set, in this case

(p x p) (ft*ft), is open, it follows that the groupoid multiplication is continuous.

P x p
That local triviality of P(B,G,TT) is not necessary for — - — to be a

\J

topological groupoid, was first pointed out by Dakin and Seda (1977).

If F(f,<J>): P(B,G) •• Pf(B',G') is a morphism of Cartan principal bundles,

then <v,u> H* <F(v),F(u)> is a continuous morphism of topological groupoids over f.

Consider the special case G(G/H,H), where G is a topological group and H is
G x G

a subgroup. Then — g — is isomorphic as a topological groupoid to the action

groupoid G x (G/H) (where G acts on G/H to the left in the standard way) under

<g2,g1> *-+ (g2g~ ,g1H).

Returning to general principal bundles, if P(B,G) is locally trivial then

the inner subgroupoid G(—:r~""") is a topological group bundle (see A 1.12 for
p x G

definition) and is naturally isomorphic to the inner group bundle of A§1.
G

The isomorphism is defined by the map

P x G P x p
— — + — — , <u,g> h+ <ug,u> .

p x G
Note that if G is abelian then — - — is naturally isomorphic to B x G under

<u,g> h+ (Tr(u),g). //

Example 1.13. A fibre bundle is a continuous surjection p: M -• B with the local

triviality property with respect to some fibre type F, where to avoid unnecessary

complications we assume that F is locally compact, locally connected and Hausdorff

(see A 1.6 for precise definition). By n(M) we from now on understand the groupoid

of all homeomorphisms M •• M , x,y e B. We use the local triviality of p: M + B

to place a topology on n(M) with respect to which it will be a topological groupoid.
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Let {^.: Uj x F -> My } be an atlas for M. Let Homeom(F) denote the group of

all homeomorphisms f: F -• F with the compact-open topology; it is known that

Homeom(F) is a topological group (Arens (1946, §5)), that the evaluation map

Horaeom(F) x F •• F is continuous and that a map X •• Homeom(F) from any space X is

continuous iff the associated map X x F •> F is continuous (for example, Dugundji

(1966, Chapter XII)).

For each i and j, define

-1 U1 - 1
r : U x Homeom(F) x n + H(M) J by (y , f , x ) h+ 1> o fo* .

1 j J- u ^ j > y : L > x

-1 - * - 1 -i
Clearly each ijr is a bijection and any (it ) o i|H which has a nonvoid domain is a

i K. i _ i

homeomorphism. Hence there is a well-defined topology on n(M) for which each ijr

is a horaeomorphism.

That II(M) is now a topological groupoid is straightforward: one works

locally and the details are similar to those for a trivial groupoid.

For a TGB (M,p,B) (see A 1.12 for definition) with locally compact, locally

connected and Hausdorff fibres we will always understand by II(M) the topological

subgroupoid of topological group isomorphisms; for a vector bundle (E,p,B) of

finite rank we will always understand by n(E) the topological subgroupoid of vector

space isomorphisms.

For a fibre bundle with fibres which are not locally compact (for example

the CVBfs of Mackenzie (1978)) or not locally connected, this construction can

sometimes be carried through, but we will not need that generality. On the other

hand, if p: M •* B is merely a continuous surjection, one can presumably adapt the

modified compact-open topology of Booth and Brown (1978) to make inversion

II(M) + II(M) , ? K £; continuous and thus, under some suitable local compactness

condition on M, make II(M) into a topological groupoid, even when M ->• B has no local

triviality properties. This is the more interesting of the two generalizations, but

we have no specific need for it.

See also Seda (1980, §4). //

Example 1.14. The following example is from Brown and Danesh-Naruie (1975).
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Let B be a path-connected, locally path-connected and semi-locally simply

connected space. The first condition ensures that the fundamental groupoid /[(B) is

transitive; the last two that the topology of B has a basis of open, path-connected

sets U such that the inclusion U £ B maps each fundamental group TT (U, , X ) , x e U

to the trivial subgroup of TT (B,x). Such sets may be called canonical.

Let N be a normal, totally intransitive subgroupoid of 7T(B). We define a

topology in 7f(B)/N with respect to which it is a topological groupoid on B, and a

topological quotient groupoid of 7T(B). TO reduce the notation, denote /f(B)/N

by ft.

For each canonical U and x e U choose a function 9 which to y e U

assigns a path in U from x to y. By the conditions on U , the map y •-•>• <0 (y)>,
°h"/ i i ,x

U ^ 71 (B) depends only on U and x, not on the representative paths chosen.

Let U denote the image of U under the composition of this map with the
i,x . & i

projection fa: )\ (B) + ft.

It is easy to prove that the sets U. [<c>]U , as U. and U range through
3»y i »x J i

the basis of canonical sets, y ranges through U. and x through U., and [<c>] ranges

through fty, form a basis for a topology in ft, and that with this topology ft is a

topological groupoid on B. We verify the continuity of the groupoid multiplication:

take [<cf>] e ftZ, [<c>] e fty and write c" for c'c. Consider a basic open neighbour-

hood U [<c">]U of [<c">]. Choose any U. which contains y; it is immediate to

verify that

which shows that the multiplication in ft is continuous.

Clearly h: /t(B) + ft maps basic open sets to basic open sets, so y is open

and ft is therefore the topological quotient groupoid of /T(B) over N.

The vertex groups ftX = TT (B,X)/N inherit from ft the discrete topology, for

if [<X>] e ftX and U 9 x, then U [<^>]u71 n ftX = {[<*>]}. It is also clear that

the cc-fibres ft , x £ B, inherit from ft the standard topology which makes 3 : ft •*• B
X XX

the covering of B determined by N < TT ( B , X ) , and that the right action
x x 1

ft x ft •> Q, by groupoid multiplication is the deck-transformation action of
TT (B,x)/N on the covering determined by N (see, for example, Hu (1959, III§16)).

It is trivial to check that, given a normal subgroup H < IT (B,b) for some

chosen b £ B, there is a unique totally intransitive normal subgroupoid N of 7l(B)
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such that N = H. Thus the groupoid formulation efficiently encapsulates the
b

phenomena of the theory of regular covering spaces. It does not, however, adapt

well to the general, non-regular case - any collection whatever of subgroups

H < TT (B,x), x e B, constitutes a totally intransitive subgroupoid of /C(B).

The topology on 71 (B) is the identification topology from the compact-open

topology on the space of continuous paths in B. This is clear from the

constructions in §6.

Returning to the original situation, note that the anchor

[3,a]: 7C(B)/N ->- B x B is itself a covering: it is easy to see that, given U. and

U , the open sets U. [<c>]U , as y and x range through U. and U respectively,
i j»y v >x ^

and [<c>] through (7C(B)/N) , are either disjoint or equal; they are therefore the
x _i

components of their union, which is [3,a] (U. x U ), and it is easy to see that
each [3,a]: U. [<c>]U •• U. x U is a homeomorphism. Brown and Danesh-Naruie

3 »y i»x J i 0w
prove the non-trivial result that the fundamental group of /( (B)/N at a unity

[<K >] is isomorphic to the subgroup {(a,b) e TT (B,x) * TT (B,x)|a~ b e N }; this

subgroup, of course, need not be normal.

Lastly, it is easy to see that if B1 is a second path-connected, locally

path-connected and semi-locally simply-connected space, N1 a normal totally

intransitive subgroupoid of ?f (Bf) and f: B -»• B1 a continuous map such that

f*:7t(B) ^7T(Bf) maps N into Nf , then the induced morphism 7T(B)/N "•?T(BI)/Nf

is continuous. //

Example 1.15. Let B be a topological space and T a pseudogroup of local

horaeomorphisms <j>: U + V of B (that is, F contains the identity id_, and is closed
A

under restriction, inversion and composition). Let J (F) denote the set of germs

g, i> (or "local jets") of elements of F, with the obvious groupoid structure:

a(gx4>) « x, 3(gx4>) = 4>(x), x - gx(idB), ( g ^ ) " 1 = g ^ C x ) ^ " ^ a n d

= g x^
o <^' T h e n j X^r) i s c a l l e d t h e germ groupoid of T. The pseudo-

group r is transitive if ¥. x,y e B there is an element <)> e T such that <J>(x) = y

(for example, Xobayashi (1972)); clearly JX(O is transitive iff T is.

For <f> e T, define N = {g <\> I x e dom <J>}. The sets N , <\> e T, form a basis

for a topology in J (T), called the sheaf topology, and it is easy to see that

J (T) with this topology is a topological groupoid on B, which we will denote by

J . (F). The importance of this topology is well-established (see, for example,

Lawson (1977) or the survey by Stasheff (1978)). However for our purposes it is

mainly of interest in providing a naturally occurring topological groupoid which is
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somewhat pathological: it is easy to see, for example, that each J (T) is

discrete and that B is open in J (T). In particular, there are sets U £ B for

which each JX (T)U, x e B, is open, but for which neither J* (T)U nor U itself is
sh x sh

open. Note also that a and $ are etale.

If B is locally compact and Hausdorff one can define a compact-open topology

in J (T) as follows (Abd-Allah and Brown (1980)): in T itself define subsets by

N(K,U) - {(J> e r | K £ dom(cj>), <J>(K) C u}

N'(U,K) = (<j) e r | U S dom(<j)), 4>(U) H K}

for K £ B compact and U Q. B open. Take the topology in V generated by these sets as

subbasis, and give J (T) the identification topology with respect to (x,<{>) I—• g <J>

defined on B*r = {(x, cf>) e B x r | x e dom( cj>)}. It is straightforward to show that,

with this topology, J (T) is a topological groupoid, denoted J (O; the details

are similar to those in Arens (1946). This structure may be more appropriate in

groupoid theory itself - see 5.9. //

Example 1.16. Let U be a transitive algebraic groupoid on a space B. Give ft the

coarsest topology for which the anchor [3,a]: ft •• B x B is continuous; that is, ft

has the sets ft ', U,V>£ B open, as a basis. It is easy to verify that ft is a

topological groupoid on the space B, clearly the coarsest topology on ft for which

this is so. Note that each vertex group has the indiscrete topology. //

Example 1.17. Any TGB (topological group bundle - see A 1.12 for definition) is a

totally intransitive topological groupoid. //

The notes by Renault (1980) contain further examples of topological

groupoids; most are equivalence relation groupoids (as in I 1.5) but with

topologies finer than the subspace topology from the cartesian square of the base,

and all share with J (T) the property that the unities form an open subset. From

our point of view such examples are pathological.

p x p
Topological groupoids of the form — ^ — constructed in 1.12 admit an

intrinsic characterization. The following definition and Proposition 1.19 are due

to Dakin and Seda (1977).

Definition 1.18. Let ft be a topological groupoid on B. Then ft is principal if it

is transitive and if for any one, and hence every, x e B, the maps 3 : ft •• B and
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6 : ft x ft -• ft, (n,£) \—• r\£ , are identifications. //

If <5 is an identification then it is in fact open, for the saturation of

any basic open set V x u £ ft x ft is U V X x UX, which is itself open. Similarly
x X XeftX

if 3 is an identification, then it is open.

P x p
If P(B,G,TT) is a Cartan principal bundle, then the groupoid — - — of 1.12

G
is easily seen to be principal. Conversely, if ft is a principal topological

groupoid then, for any x e B , ft (B,ft ,3 ) is a Cartan principal bundle, and for any
v x x x

other y e B and C e ft , the maps R : ft ->• ft and I : ft -• ft
y form an isomorphism

x -1 x y £ x y

of Cartan principal bundles over B. These correspondences are mutually inverse,

though the necessity of choosing reference points complicates the precise

formulation:

Proposition 1.19. (i) Let P(B,G,TT) be a Cartan principal bundle. Choose

u e P and write x = TT(U ) . Then the map
o oo v

P x , u h+ <u,u
o

is a homeomorphism, the map

, g H- <uog,uo>

is an isomorphism of topological groups and together they form an isomorphism of

Cartan principal bundles over B.

Let F(f ,<|>): P(B,G) •• P'(B',G') be a morphism of Cartan principal bundles,
p v p T> ' X "P

the induced morphism of groupoids, and
choose u e P, uf e P1 such that u1 = F(u ) . Write x = ir(u ) , x' = ir'(uf). Then

oo o o o o o o

p x p
G x

T
commutes, where the vertical maps are the isomorphisms corresponding to u and uf.
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(ii) Let ft be a principal topological groupold on B, and choose x £ B. Then

the map

C

is an isomorphism of topological groupoids over B.

Let <J>: ft + ft1 be a morphism of principal topological groupoids over

<i> : B •• Bf and choose x e B, x1 e B1 such that xf = <b (x). Then
o o

ft x ft <J>* ft' x ft'
X X X X X

X

I
-» ft1

commutes.

Proof. In both cases the algebraic asser t ions are eas i ly ve r i f i ed . To prove the

continuity of the inverse of P •»•—^— in ( i ) , wri te i t as
G I

where the oblique arrow is (u,uQg) I—• ug"
1. This map is continuous since

6: P x p > G is continuous, and the vertical map is an identification since it is

the restriction of an identification to a saturated subset. In (ii) we have

ft x ft
X XI
ft x ft
X X

and the bottom arrow is an identification map since the other two maps are; since

it is also a bijection it is a homeomorphism. //
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For a principal topological groupoid ft, the bundle ft (B,ft ,3 ) is called the

vertex bundle at x.

The choice of different reference points in 1.19(i) leads to automorphisms

of P(B,G) of a specific form:

Proposition 1,20. With the notation of 1.19(1), let u'o be a second reference point

in 7T (x ) say u' = u h where h e G. Then the composite automorphism
o o o

I
l p x P o ^ „

(uo) I <»;> (uo> ' («;)

is u H uh, g H h gh.

Proof Computation. //

In particular, G acts as a group of automorphisms of the bundle P(B,G)

by h e G acting as u (-->• uh , g h* hgh or, briefly, as R _-̂  (id^I^). Whenever a

phenomenon in principal bundle theory is dependent on a reference point, one may be

sure that changing the reference point within its fibre will map the phenomenon

under an automorphism of this type; one may also be sure that if the phenomenon is

formulated in groupoid terms then it will be an intrinsic concept, independent of

reference points. The clearest example of this is the replacement of the various

mutually conjugate holonomy groups and isomorphic holonomy bundles arising from a

connection, by a single holonomy groupoid. See II 7.14 for this.

It is easy to verify that a transitive topological groupoid whose groupoid

space is compact and Hausdorff, is principal. On the other hand, unless B is a

discrete space, J (T) cannot be principal, since the ot-fibres J (F) are

discrete. Similarly an action groupoid G x B in which the evaluation

maps G •• B, g \—> gx are not open cannot be principal.

1.19 allows problems for principal groupoids to be reduced to problems for

the vertex bundles and this technique can be extremely useful:

Proposition 1.21 Let ft be a principal topological groupoid on B, let ft1 be any

topological groupoid on B1 and let <J>: ft •> ft1 be a morphism in the algebraic sense.

(i) If any one <J> : ft •• ft1 is continuous, then <J> is continuous,
b b <p (b)

° 0/
(ii) If <j> is continuous on a neighbourhood U/ of B in ft, then it is
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continuous everywhere on ft.

Proof; (i) follows directly from 1.19. (ii) Choose b E B. NOW for every

£ z ft , <(> is continuous in a neighbourhood of 8£ and R • ftor + ft, maps 8£ to £.
b p£ s P^ o

Since 6, O R = R oik it follows that 6, is continuous at £. Now apply (i). //
b £ <KO 3£ b

Although 1.21 (i) is easily seen to be false for arbitrary topological

groupoids, it is not clear whether 1.21 (ii) is true in general.

The main examples of principal topological groupoids are locally trivial

groupoids, which we treat next. In fact the main value of the concept of principal

topological groupoid is that it expresses much of the force of the concept of local

triviality, without using localization techniques; it also explains why all action

groupoids G * (G/H) for homogeneous spaces G/H, not merely those which are locally

trivial, are well-behaved and do not provide good examples of the pathology possible

in the general theory. In the differentiable theory, the two concepts coincide.

§2. Local triviality.

A topological groupoid ft is locally trivial if it is transitive and there is

an open cover {u } of the base such that each ft is isomorphic to a trivial

groupoid (see 2.2). For such groupoids a problem may be reduced to a local problem

concerning trivial groupoids, and a globalization problem; this technique however,

although it is almost universally used in principal bundle theory, is not always the

most instructive, and is of course incapable of generalization to arbitrary

topological groupoids. In the remainder of this book we will give intrinsic

proofs, rather than use the localization-globalization technique, whenever it can be

done without a great increase in length.

Locally trivial groupoids are equivalent to principal bundles under the

correspondence 1.19 for principal groupoids and Cartan principal bundles. Much of

the theory of principal bundles is simplified by reformulating it in groupoid terms,

on account of the clearer algebraic structure of a groupoid, and because groupoid

theory has a natural conceptual framework inherited from group theory. This will be

especially evident in the Lie theory and connection theory of Chapter III.

In this section, after the definition and reformulations of the concept of

local triviality, we examine morphisms of locally trivial groupoids in some detail,
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and sharpen some of the results of §1. These are chiefly technical results needed

in later sections; little has been published on the algebraic analysis of morphisms

of principal bundles. The section concludes with a brief account of the

classification of locally trivial groupoids by cocycles; this material, well-known

in the theory of principal bundles, is included here because we wish to emphasize a

point about the extent to which base-preserving morphisms of locally trivial

groupoids are determined by their restriction to vertex groups - this is important

in the cohomology theory of locally trivial groupoids and transitive Lie algebroids,

in understanding the maps^W2(ft,M) -• rH2(Gft,M)BXB and# 2(A,E) + rH2(L,E)TB (see

Chapter IV.). This classification by cocycles is one part of the theory which fits

more naturally into the principal bundle formulation.

The concept of local triviality is due to Ehresmann (1959), as is the

equivalence between locally trivial groupoids and principal bundles. The material

from 2.17 to the end of the section is a reformulation of material standard in

principal bundle theory. The remaining unsourced material in this section may be

regarded as folklore.

Definition 2.1. Let ft be a topological groupoid on B. Then ft is locally trivial if

there exists a point b £ B, an open cover {U } of B, and continuous maps

a : U -• ftv such that 8»a = id t for all i.
lib b i U.

The maps a will be called local sections of ft, or local decomposing

sections when it is necessary to distinguish them from the local admissible sections

of §5.

The family {a : U •• ft } will be called a section-atlas for ft.

If there is a global section a: B -»• ft of ft then ft is called globally
D — — — — — —

trivial or trivializable. //

A locally trivial groupoid is clearly transitive, and given any x £ B there

is a section-atlas {a1: U ->• ft } taking values in ft . The significance of the

concept of local triviality is shown by the following proposition, whose proof is

clear.

Proposition 2.2. Let ft be a topological groupoid on B, and let U be an open subset

of B.

If a: U * ft is a continuous right-inverse to $ , for some b £ B, then the
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topological subgroupoid ft is isomorphic to the trivial groupoid U x ft, x U under

Z: (y,X,x) H+ a(y)Xa(x)"1.

Conversely, if G is a topological group and Z: U * G * U -• ft is an

isomorphism of topological groupoids over U then, choosing any b e U, the map

a: U •• fto x H- £(x,l,b) is right-inverse to 3.. //
V b

Thus locally trivial groupoids are "locally isoraorphic" to trivial

groupoids. The converse is not quite true, since a groupoid may be locally

isomorphic to trivial groupoids without being transitive. Use of 2.2 leads to the

following concept.

Definition 2.3. Let ft be a topological groupoid on B. Then ft is weakly locally

trivial if there is an open cover {U } of B, points b e B, and continuous maps————— i x
a : U •• 8. such that 3 o a = id for all i.
i i bt b1 i Ut

The set (a : U -• ft } is still called a section-atlas for ft. //
i i b.

This is the concept which Ehresmann (1959) originally defined to be local

triviality. It is clear that the points b may be assumed to lie in the

corresponding sets U . We have chosen to include transitivity in the concept of

local triviality, and to use the simpler definition 2.1 available in that case,

because the transitivity components of a weakly locally trivial groupoid are easily

seen to be both open and closed, and so the groupoid is topologically, as well as

algebraically, the disjoint union of transitive - and locally trivial - topological

subgroupoids.

Proposition 2.4. A topological groupoid which is both weakly locally trivial and

transitive is locally trivial.

Proof. Trivial. //

For the last reformulation of the concept of local triviality we need the

following definition from Brown et al (1976).

Definition 2.5. Let f: X •»• Y be a continuous map. Then f is a (topological)

submersion if V x e X there is an open neighbourhood V. of f(x ) in Y and a right-

inverse a: V •• X to f such that a(f(x )) = x . //
o o
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Note that this is stronger than the mere existence of a local right-inverse

in some neighbourhood of any given point of Y: a map satisfying 2.5 is open, but a

continuous map with a global right-inverse need not be open (project the union of

the two axes in R onto one of them).

Proposition 2.6. Let ft be a topological groupoid on B. The following conditions

are equivalent:

(i) ft is locally trivial;

(ii) 3 : ft •• B is a surjective submersion for one, and hence for all

x e B;

(iii) [3,a]: ft + B x B is a surjective submersion;

(iv) 3: ft + B is a submersion and 6 : ft x ft + ft is a surjective

submersion for one, and hence for all, x e B.

Proof, (i) => (iii). Let {a : U ->• ft} be a section-atlas for ft and take ^ e ft.

Choose i, j such that ot£ e U , 3£ e U. and define 6: U x u •> ft by

0(y,x) = a(y)a (BO"15° (a?)o (x)"1. Clearly [3,a]o0 = id and 0(3S,a£) = £. The

other parts are similar, though (iv) => (ii) is most easily proved from the diagram

6
ft x ft - y ft
x x

//

In particular, a locally trivial groupoid ft is principal, and all the vertex

bundles ft (B,ftX,3 ) and the bundles ft x ft (ft ftx 6 ) are principal bundles,
x^ ' x* xJ x x^ * x* xJ F y

Examples 2.7. Obviously trivial groupoids are locally trivial. A transitive action

G x B .+ B gives a locally trivial groupoid iff the evaluation maps G •*• B, g h* gx ,

are submersions; this is always the case for a smooth (transitive) action of a Lie

group (see, for example, Dieudonne (1972, 16.10.8(i))). For the standard action on a

homogeneous space G/H, the action groupoid is locally trivial iff G > G/H admits

local sections.

P x p
The groupoid — g — associated to a Cartan principal bundle is locally

trivial iff the bundle P(B,G,ir) is locally trivial: if a: U + P is a local section
P x p i

of the bundle, then x V-+ <a(x),u >, U -• — - — | is a local section of
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p x p
— - — . If H is a subgroup of a topological group G for which G -• G/H is not a

G x G
submersion, then — - — is principal but not locally trivial.

H

That the frame groupoid II(M) of a fibre bundle M is locally trivial is clear

from the way in which we defined the topology in II(M) (see 1.13). The same remark

applies to the fundamental groupoid 7T(B) of a path-connected, locally path-

connected and semi-locally simply-connected space B; the maps y J—• <6 (y)> form a

section-atlas of the type defined in 2.3.

A. transitive topological groupoid on a discrete space is locally trivial, in

fact globally trivial, and so also is a transitive groupoid with the coarsest

groupoid topology (see 1.16).

If B is a Hausdorff topological manifold and F°(B) is the full pseudogroup

on B, then J (F°(B)) is locally trivial - see 5.9 for a more general result.

Lastly, any inverse image of a locally trivial groupoid is locally trivial.

The topology of a topological group may be defined by means of a system of

symmetric neighbourhoods of the identity. A neighbourhood it of the base A of the

square topological groupoid B x B contains a neighbourhood of the form U (U x U ),

where {U.} is an open cover of B, and one may loosely identify open neighbourhoods

of the base with open covers of it. For a general locally trivial groupoid ft on a

paracompact, second countable, Hausdorff topological manifold B, dimension theory

shows that there is a finite section-atlas and it therefore follows that an open

neighbourhood oC of B in ft contains an open neighbourhood constructed locally from

neighbourhoods of the form U * N x U., where N is a neighbourhood of the identity
b

in a single vertex group ft, . Evidently then, the topology of ft could be

reconstructed from the system of such neighbourhoods, but this observation will not

be used (compare the proof of 1.21(11), where such methods are avoided).

We now analyze morphisms of locally trivial groupoids.

Lemma 2.8. Let (f>: ft ->• ft' be a morphism in the algebraic sense of locally trivial

groupoids, and let {a : U. •• ft, } and {x.: V. •• ft' } be section-atlases for ft and ft'
l i b j j b' , . ,

with b' = <J> (b). For any V. and any U, with U . C <j> (V J define 0, .: U, •• ft' , by
o 2 i i o j i j i b

8.,(x) = x.(<J> (x))~ <K<^(x)). Then in terms of the isomorphisms U x jr x u +ft
lj j o i i D i u

V. U V.

and V. x ft' x y. -»• ft'.^ induced by a and x., the morphism <J>: & •• ft' J is
J J j 1 J i j
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represented by (y,X,x) |— (^(y) , 6± j(y)^(X)6i ̂ x ) " 1 ,<J>Q(X) ).

Proof. Exercise. //

In particular if <f> and <J>, are continuous and one can find section-atlases
o b

with respect to which the 8 are continuous, then <j) is continuous.

The proof of the following proposition is given in full because it is a

typical example of working locally with morphisms of locally trivial groupoids.

Proposition 2.9. Let ft and ft1 be locally trivial groupoids on B and B',

respectively, and let <|>: ft + ft' be a piecewise homeomorphic morphism. Then <|> is a

pullback for the category of locally trivial groupoids .

Proof. The assertion is, that if $ is a locally trivial groupoid on B and

i|>: $ > ft1 is a mor

such that ip = <\>OT\>.

i|>: $ > ft1 is a morphism over <j> , then there is a unique morphism 1|>: $ •• ft over B

~ty must be defined by ijjr = (<by) © Ur for x,y e B. Let {x, : U, + $. } be a
* x VTxy x >:y i i b

section-atlas for $ and {a'.: V. •• ft' } a section-atlas for ft', with b' = <|) (b).
3 3 b _i o

Write W. = <J>~X(V.) and define a.: W. -• ft^ by a.(x) = (<£) (a'.(<|> (x))). We prove

3 O 3 3 3 D J b j o
tha t a . i s continuous.

Take a continuous sect ion v • A + fl of 3, with A C W . As in 2 . 8 , the
A V ^ A

map <J>,: ft, •• ft1.? can be wri t ten in terms of the homeomorphisms A, x ft, -»• ft, ,

(y,X) t-+ v (y)X and V x fi'^' -• W J t ( y , X) l-> a'.(y)X as A, x $ -• v . x ft«^f
K. J * ^ O j K . D J D

(y,X) M- (<|)0(y),ekj(y)<()^(X)) where 0 ^ (y) = o\ (<(>o(y) )"1(()(vk(y)) . The r e s t r i c t i o n

of a. to Ak -» ftb
k i s mapped under ftb

k ^ A ^ f i J t o y H (y, (cj^)"1 ( 0 ^ (y)" 1 ) ) and

i s thus continuous.

Thus {a.: W. •> ft, } i s a s ec t i on -a t l a s for ft. Now with respect to the
3 3 b u w ^

isomorphisms U. x $ x u. •»- $TT and W. x ft x w. •*• ftTT
J induced by x. and a, (where

i b I U . j b j W . i j

we can assume U = W., by r e s t r i c t i n g x and a, to t he i r in te r sec t ion) the algebraic

morphism 4) i s

-1 -b b ~ 1 -1

where 9' : U. •• ft' , i s y h + ^f.(<j> (y)) ^(^..(y))* Since a l l the maps appearing In
Ij I b 30 i
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this local representation are continuous it follows that ip is continuous. //

The following result is given by Brown et al (1976).

Proposition 2.10. Let ft be a locally trivial groupoid on B, let ft' be a topological

groupoid on B1 and let <J>: ft

then ft1 is locally trivial.

groupoid on B1 and let <J>: ft ->• ftf be a raorphism. If <J> is a surjective submersion
o

Proof. Take b e B and write bf = <j> (b). Take x1 e B' , say x1 = <f> (x ). Take a
o o o o o

local right-inverse T: V •»• B to <j> with V an open neighbourhood of xf and
-i ° °

T ( x f ) = x . Now <\> (V) i s an open ne ighbourhood of x ; t a k e a : U •• ft, w i t h
o o | o i o b

x e U C f ( V ) . Def ine a 1 : T" (U) -• ft/ by a1 ( x f ) = < K a ( T ( x f ) ) ) . Then a1 i s a
o o b
continuous section of 3': ftf + B1. //

b b

We will mainly apply 2.10 in cases where 4> is an identity map. For the
o

remainder of this section we restrict attention to base-preserving morphisms.

Lemma 2.11. Let <j>: ft * ft1 be a morphisra of locally trivial groupoids over B.

Let {a : U. ->• ft, } be a s ec t i on -a t l a s for ft and define a' = <f>*a . Then, with respect
l i b i i

to the U. x ft£ x \]± + Sly] and U. x ^ ^ ! ]] and U. x fi1^ x \j± + Q
1 ̂ induced by a., o± and a!, a]_,

Ui ,Uj b

the morphisms a: ti^ x f2 is locally represented by idrj #
 x § x idrj t .

Proof. Exercise. //

It follows from 2.11 that base-preserving morphisms of locally trivial

groupoids inherit many properties from their restrictions to vertex groups:

Definition 2.12. A continuous map f: X -• Y is an embedding if it is injective and

if f: X ->• f(X) is a homeomorphism with respect to the subspace topology on f(X) .

Proposition 2.13. Let <j>: ft + ft' be a morphism of locally trivial groupoids over B.

Choose b £ B. Then

(i) <J> is open iff <J>, is open;
b

(ii) <j> is a surjective submersion iff <J> is a surjective submersion;

(iii) $ is an embedding iff <t», is an embedding.
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Proof, (i) (=>) ft, = <J>~ (ftT ) and the restriction of an open map to a saturated
" D v D ••

subset is open. (<=) <j> open implies that each id x A x id is open.
D D

(ii) is similar to (i) and (iii) follows from (i) since im <j> is a

topological groupoid in its own right and is locally trivial by 2.10. //

Notation 2.14. Let <|>: ft + ft* be a morphisra of locally trivial groupoids over B.

Then <J>: ft —»••> ft1 denotes that <j> is a surjective submersion, and <J>: ft -•—* ftf that

4 is an embedding. //

Theorem 2.15. Let ft be a locally trivial groupoid on a T space B and let N be a

totally intransitive normal subgroupoid of ft. Then ft/N, with the identification

topology from tj: ft + ft/N, is the topological quotient groupoid, and a is open.

Proof. Give the algebraic groupoid ft/N the identification topology; we show that

it is a topological groupoid, by showing that the bijections

U.
Uj * (ft/N)£ x U± - (ft/N)u

J

(1)

where {a : U •• ft } is a section-atlas for ft, and af = b»a , are horaeomorphisms.
i i b i i i

Recall that if f: X + Y is an identification, and A &. Y is either open or closed,

then the restriction f: f (A) -»• A is an identification.

First take f = tj and A to be the closed subset (ft/N)b = [3,a]~ (b,b). It

follows that tj : ft •• (ft/N), is an identification and so, since it is a quotient-

group projection, it is open. Hence id xO x id is open, in particular an
u j 7 b ui

identification, and it follows that (1) is continuous.

u. u. u

Second, take f - fa and A to be the open subset (ft/N) K Then fe: ft ̂  +

is an identification and so the inverse bijection to (1) is continuous.

By working locally it is easy to show that ft/N is a topological groupoid,

obviously locally trivial. That hj is open follows from the construction, or from

2.13. //

That N is totally intransitive is crucial to the above proof; if it were

not, (^/N)rbj would receive from ft/N the identification topology not from ft , but

II x /
from X£jb-i ftx« Even if h: B * B/N is assumed to be a surjective submersion, it
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seems unlikely that the topological quotient groupoid ft/N always receives the

identification topology from ft.

Note that in 2.15 kj need not be a surjective submersion - this already

occurs for topological groups.

The following trivial result will be needed later.

Proposition 2.16. Let ft be a locally trivial groupoid and N a totally intransitive

normal subgroupoid. Let {a : U ->• ft } be a section-atlas for ft. Then the set of
U l i b

all U x N£ •• N * (x,X) I—• 1^ , x(*) = a (x)Xa (x)"1 forms an atlas for N as a

TGB. // i ± X

In particular, the kernel of a base-preserving morphism ft •*• ft' of locally

trivial groupoids is a sub TGB of Gft.

* * * * * * *

We now wish to show that, given a locally trivial groupoid ft on B and a

group morphism f: ft •• H for some b, there is a locally trivial groupoid ftf on B

with ft1 = H and a morphism $: ft ->• ft1 over B with <j>, = f. For this we need the

concept of cocycle and the construction of locally trivial groupoids from cocycles.

The treatment will be brief, since the corresponding construction for principal

bundles is well-known.

Definition 2.17. Let B be a space and let G be a topological group. A cocycle on B

with values in G consists of an open cover {U } of B and maps s : U = U n U. •• G

such that whenever U = U n U r\ U £ 0 we have

(2) .l j(x).k J(x)-\1(x) = 1 V x e U l j k .

Two cocycles {s : U -• G} and {sT : V •• G} on B are equivalent if there
ij ij kx.kx,

is a common refinement {W } of {U, } and {V, } and maps r : W •• G such that
. m i k mm

s1 (x) = r (x) s (x)r (x) V x e W and ¥ m,n. (Here s denotes the restriction
mn m mn n mn mn
of an s, to W C U .) //

ij mn ij

Equation (2) is called the cocycle equation; clearly it implies that each

s is constant at 1 (set i = j = k) and that s (x) = s (x)~ ¥ x e U (set

j = k). The elements s o f a cocycle may be called transition functions.



CHAPTER II 40

Proposition 2.18. Let ft be a locally trivial groupoid on B and let {a : U •* ft }
lib

be a section-atlas for ft. Then the maps s •. U. . + ft,, x H+ a (x) a.(x) form a

cocycle. If {a': V •• ft } is another section-atlas then the associated cocycle

{sk£: Vk£ * ^b} i S e ( l u i v a l e n t t o i*±.}'

Proof. Trivial. //

If s' above took values in some ft, f then, taking any C e ft, and defining

T : x Ir* aJ(x)C, the cocycles {t = C~ s' r,} and {s } would be equivalent; that

is, {sf } and {s }, which take values in different groups, would be equivalent to
k£ i j

within an isomorphism. The reader may work out the details of how this additional

generality affects the following results.

Theorem 2.19. Let B be a space, G a topological group and {s. .: U. . •»• G} a cocycle.

For each i,j write XJ = {j} x n x G x U x {i} and write X for the union of
i J

all the X.. Define an equivalence relation ~ in X by

(J,Y,g,x,i) ~ (jf,yf,g',x',i') <=> y = y', x = x' and g' = sjtj(y)gslll(x).

Denote equivalence classes by [j,y,g,x,i] and X/~ by ft. Then the following defines

in ft the structure of a groupoid on B: the source and target projections are

a([j,y,g,x,i]) = x, 3([j,y,g,x,i]) = y, the object inclusion map

is e: x I—• x = [i,x,l,x,i] (any i such that x e U ), and the multiplication is

[^,z,^,y,J2l[J1,y,g,x,i] = [k,z,hS

The inversion is [j,y,g,x,i] = [i,x,g ,y,j].

j ^

U

Let l\ be the map Xj > ft j, (j,y,g,x,i) h+ [j,y,g,x,i]. Then each Lj is a
1 Ui j Uj

bijection and transferring the product topologies from the X~̂  to the ft gives a

well-defined topology in ft with respect to which it is a locally trivial topological

groupoid on B.

Choose b e B and i such that b e U and define a : U + ft by
o

x H [i,x,l,b,iQ]. Then {a } is a section-atlas for ft and the associated cocycle

is ( x h [lo,b,s (x),b,iQ]}.

Proof. The verification of the algebraic properties is an instructive exercise;

the verification of the topological properties follows as in 1.13. //
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Thus ft in 2.19 is a locally trivial groupoid with a collection of

distinguished section-atlases whose associated cocycles are mapped to {s } under
b J

the corresponding isomorphisms [i ,b,g,b,i ] h* g, ft, + G. One could make this
o o b

correspondence 'natural' by defining a pointed cocycle to be a cocycle {s .}
together with a point b e B and index i such that b e U ; or, alternatively, to

o i
be a cocycle {s ,} together with a point b e B such that s. .(b) = 1 whenever
b e U . (one may always choose a section-atlas {a : U •• ft, } in such a way that

ij ~ lib
a (b) = b whenever b e U ). The reader may work out the details.

Proposition 2.20. Let {s : U •• G} and {sf : U + G} be cocycles on a space B

with values in a topological group G, defined with respect to the same open cover

{U^} and equivalent under a set of maps {r : U. •• G}. Let ft and ft' be the groupoids

constructed from {s } and {s' } in 2.19, and define a map <)>: ft -• ft' by

Then <J> is well-defined and is an isomorphism of topological groupoids over B.

Proof. Exercise. //

The condition that the two cocycles are defined on the same open cover is of

course not necessary - one can always take the common refinement of the covers and

all the restrictions of the elements of the cocycles.

To make the correspondence of 2.18 and 2.19 precise one must define two

pointed cocycles {s <,b,iQ} and {s' ;b',iQ> to be equivalent if b = V , i = 1^

and there is an equivalence {r } with r (b) = 1.
o

2.18 and 2.20 show that there is a bijective correspondence between

equivalence classes of cocycles on B with values in G and suitable isomorphism

classes of locally trivial groupoids on B with vertex groups isomorphic to G,

providing one defines the notions of equivalence and isomorphism with suitable

care. For our purposes the results given are sufficient; we do not need a precise

correspondence. Alternatively one may consider cocycles with values in TGB's and

construct a locally trivial ft from B * B and a TGB M which will be the inner

subgroupoid of ft; the cocycle must satisfy a compatibility condition with a cocycle

for M, for not all TGB's are inner subgroupoids of locally trivial groupoids.

Proposition 2.21. Let ft be a locally trivial groupoid on B, let b be a point B, and

let f: ft ^ H be a morphism of topological groups. Then there is a locally trivial
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groupoid 4 on B together with an isomorphism 0: H •• 4 and a morphism <f>: ft •* 4 over
b

B such that 0of = <j>°
D

If 4' ,6' ,<{>' are a second set of data satisfying these conditions then there

is an isomorphism 0: $ •> $' over B such that 0, ©0 = 0f and 0©<J> = <J>* .
D

Proof* Let {a : U. -• ft.} be a section-atlas for ft and, for convenience, arrange
/N/i i "

that a (b) = b whenever b e U . Denote the corresponding cocycle by {s }, and

construct 4 from the cocycle {f* s : U •• H} as in 2.19. Define <j>: ft •> 4 by

<KO - [j,e5,f(* (85)"15a1(oO),a5,l] where a£ e U±, 8£ e U , and 0: H + 4^ by

0(h) = [i,b,h,b,i] (any i with b £ U ). It is straightforward to check that 4, <j>

and 0 have the required properies.

Given 4' ,0' ,<J>! define o\ = $f«cr : UJ > 4' and denote the associated cocyclei l i b
by {s!.}; then s] - 0'ofos . Define 0: 4 + 4f by 0([j,y,h,x,i]) =

•̂J — 1 ^ ^
a'(y)0f(h)a|(x) . It is straightforward to check that 0 is well-defined and that

» e » //

Definition 2.22. In the situation of 2.21, 4 is called the produced groupoid of ft

along f and <\> the produced morphism. //

The corresponding concept for principal bundles is usually called an

'extension* or 'prolongation'. Both terms have other meanings within bundle or

groupoid theory.

Proposition 2.23. Let <J>: ft •»• ft' be a morphism of locally trivial groupoids over B.

Choose b e B. Then ft' and <(> are (isomorphic to) the produced groupoid and produced

morphism of ft along <j>, .
D

Proof. Follows from 2.21. //

We remind the reader that these results do not imply that an algebraic

morphism of locally trivial groupoids over B is continuous if its restriction to any

single vertex group is continuous (consider B X B + B X G ' X B ,

(y,x) h+ (y,0(y)0(x)"1,x) for suitable 0: B •• G'); and they do not imply that

if <J>,<j>': ft + 4 are raorphisras of locally trivial groupoids over B and <J> = <J>' for

some (or all) b, then 4» = <(»' (for a counterexample, in the special case of

inclusions, see III 1.20 to III 1.21). These results merely reflect the fact that a

locally trivial groupoid is determined by its base, a vertex group, and a cocycle:
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It follows from 2.10 that if ft is locally trivial and <j>: ft + ft1 is a base-preserving

morphism then ft1 is locally trivial and, what is more, any open cover {U } which is

the domain of a cocycle for ft will also be the domain of a cocycle for ft*. Loosely

speaking, ft* can be no more twisted than ft is (and this is so even though <J> need not

be onto; indeed <j> need not even be a morphism - one needs only that afo<j) = a and

B'o<j) = 3). Put differently, one cannot (with preservation of the base) map a

locally trivial groupoid into a groupoid which is more twisted than itself (or that

is not locally trivial at all). Given ft and f: ft, •> H, the base, a vertex group and

a cocycle for the codoraain groupoid ft1 are all determined and so ft1 is determined to

within isomorphism.

For the benefit of a reader meeting this material for the first time, we

append an example.

Example 2.24. Consider the locally trivial groupoids — ^ \Ul) a n d

S ° corresponding to the principal bundles SU(2) (S2,U(1) ,TT) and

S0(3)(ST ,S0(2) ,TT' ). For the first bundle, denote a typical element of SU(2),

L | | with |a)2 + |3j2 = 1, by (a,3), regard U(l) as a subgroup of SU(2) by

z H+ (z,0), and let IT be

(a,3) I-+ (-2 Re(a3), -2 Im(a3), 1 - 2|3|2).

For the second bundle, regard S0(2) as a subgroup of S0(3) by A I—• I Q ^ and

let TT1 be A I—• Ae~ , where {e- ,e2,e»j} is the usual basis of R .

Define a section-atlas for the first bundle by

UN = S
2\{(0,0,l)}, aN(x,y,z) = (-

 x * iy , /^^J ,

Us - S
2V(0,0,-l)}, as(x,y,z) - (- / ^ I ,

S S \ y l
as(
S

and a section-atlas for the second bundle as follows: for i = 1,2 let
e-

u ' - - • - * •

which maps e , e , e to y, x x v> x. Calculate cocycles for the two bundles.

2\ x x e
U. - S Vie.,} and for x e U , let y = and let a, (x) be the element of S0(3)
i \ i i llx x e. II i
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Each A e SU(2) defines Its adjoint Ad(A): X t-+ AXA*1, $2t (2)

Identify ̂ ^(2) with R by mapping ( x ^ x ^ x ^ to

r ix3 -x2 + i X l i ^

LX2 + i x l "i x3 J

then the corresponding map R ->• R is an element of S0(3) (see, for example, Miller

(1972, p. 224)). Then <A',A> H-• <AdAf,AdA> is a morphism of topological groupoids

JT: S U ( 2 ) ; f (2> -» S O ( ^ J 2 f
( 3 ) over ̂ . Identify the vertex group of

o v e r (0»°»1^ w i t h U^1^ u s i n § the identity matrix in SU(2) as

reference point, do likewise with the second groupoid, and calculate the restriction

of Ad to U(l) •• S0(2). Deduce the kernel of Ad and also deduce another cocycle for

a n d r e l a t e it t o the one already found. //

§3. Components in topological groupoids.

We return to the study of arbitrary topological groupoids, and generalize

two elementary facts about topological groups: the component of the identity is a

subgroup and that subgroup is generated by any neighbourhood of the identity.

We begin however by considering the relationship between transitivity

components and connectedness components. For arbitrary topological groupoids there

is no relationship - any partition of any space B is the set of transitivity

components for some topological groupoid on B, for example the equivalence relation

corresponding to the partition itself is such a groupoid. However there is the

following result:

Proposition 3.1. Let B be a locally connected space and let 12 be a topological

groupoid on B for which each 3 : ft -• B, x e B, is open. Then for each connectivity_ xx
component C of B, ft is transitive.

C

Q
Proof. C is open so each 3 : ft > C, x e C, is an open map. Hence the transitivity
"~"""——— _ XX
components of ft are open, and therefore closed, subsets of C. Since C is connected,

C
there can be only one such transitivity component. //

As has already been noted, 3 will be open providing it is an identification.

3.1 shows that for such a topological groupoid on such a space, the
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transitivity components of ft are unions of connectedness components of B. In

particular each transitivity component M is open and therefore closed in B, and

so ft is algebraically and topologically the disjoint union of its transitive full

subgroupoids ft1 .
M

Now consider a transitive groupoid ft satisfying the conditions of 3.1, and

let C denote the connectedness components of B. If ft is locally trivial, it can

be reconstructed from the ft ; we will not, however, need the details of this
Ci

result. In general it seems unlikely that such a reconstruction is possible and so

to restrict oneself in general to transitive groupoids on connected bases is some

loss of generality. We will however often make this restriction in the locally

trivial case.

Proposition 3.2. Let ft be a topological groupoid on B. Let * denote the

connectedness component of x in ft , x e B. Then V = \J Y is a wide subgr
x' xeB x

of ft, called the ct-identity-component subgroupoid of ft.

Proof. By definition ¥ contains each x,x e B, so it is certainly wide. Take

£ £ *r and T) e ¥ and consider n£ = R̂ C1"!) £ ft • Because R_: ft -• ft is a
x y V x £ y z

homeomorphism, it maps components to components; since £ = R>-(y) £ Rp(^ ) we have

* x n RE(4/ ) ^ ^ a n d t l i e r e f o r e ¥ = M ¥ )• Hence n£ e V . So f is closed under

multiplication. Taking ? e ^y again, we have y e R (Y )fl ¥ soR ,(T ) • !
x j-1 x y ~1 x y

-1 ~ -1
and hence £ = x£ e f , which proves that Y is closed under inversion. //

¥ need not be normal; see 3.7 below. It is implicit in the proof that the

8-fibres ¥y are the identity components of the 3-fibres fty of ft, and that, for

C £ ft^, the component of ft containing £ is V % and the component of ft containing

5 is £t . Clearly the various components of any one o-fibre need not be

horaeomorphic.

If B is connected, then ? = (U f )U B is connected, since each ¥ (\ B is

nonvoid. Conversely, if ¥ is connected then B = $(¥) is connected.

If ¥ is transitive, then it is a connected space, since the map ¥ x ¥ + ¥,

(TI,£) !--• nC is surjective. Thus if B is not connected then ¥ cannot be

transitive. However a transitive ft on a connected B may have Y = B; consider the

germ groupoid J (T) for r a transitive pseudogroup and B a connected space.
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Proposition 3.3. Let ft be an a-locally connected topological groupoid on a

connected base B for which each $ : ft ->• B is open. (By 3.1, ft is transitive.)

Then V is transitive.

Proof. Similar to 3.1. //

Proposition 3.4. Let ft be an a-locally connected principal topological groupoid on

a connected base B. Then f is a principal subgroupoid of ft and is an open subset

of ft.

Proof. By 3.3, Y is transitive. Hence ftx x ftx ->• ft, (n,S) h+ n£~ maps ^ x ^

onto ¥. This map is open, since ft is principal, and since ¥ is open in ft , it

follows that ¥ is open in ft, and the restriction ¥ x ¥ •*- ¥ is open. //

If ft is a differentiable groupoid (not necessarily transitive and with base

not necessarily connected) then ¥ is open (see III 1.3). It would be interesting to

know if, for any topological groupoid ft on a connected base B, ¥ is the component

of ft containing B.

Proposition 3.5. Let ft be a weakly locally trivial groupoid on a locally connected

space B. Then ¥ is weakly locally trivial.

Proof. Let {o^: U + ft } be a section-atlas for ft. Since B is locally connected

we can assume the U are connected, and in this case each a (U ) lies in a single
-1

component C. of ft, ; choose any E e C and define x : U + Y by x \-+ o.(x)£. .
i b i i i i p£, i i

Then {x } is a section-atlas for V. II

Together with 3.3 this yields

Corollary 3.6. Let ft be an a-locally connected, locally trivial groupoid on a

connected base B. Then ¥ is locally trivial. //

Of course if V! (or any subgroupoid of ft) is locally trivial, then ft itself

is.

Example 3.7. Let P be the space R x z and let G be the discrete space Z x z with

the group structure



Let G act on P to the right by

(x,p)(m,n) - (x + m, (-1) p + n)

=* S1 be

principal bundle.

and let IT: P ->• B - S be ir(x,p) = e It is easy to verify that P(B,G,ir) is a

p x P
Let ft denote the associated groupoid — = — on B, let u = (0,0) e P and

let xo = TT(U0) = 1 + 0i e S . Then under the identifications of P with ftx and G
o

with ft ° given in 2.8(i), ftY ° £= ftv corresponds to the natural inclusion G £T p.x
o
 xo xo

Therefore YY = X. x {0} and Y ° = Z x {0}. It is easy to verify that Z x {0} isxo xo

not normal in G, so ¥ is not a normal subgroupoid of ft,
x -

The vertex bundle Y (B, f ) is of course the familiar example R(S ,Z) and
o o 2

the bundle P(B,G) is the pullback of the universal cover R (K,G) of the Klein bottle

K along the map S1 = R/Z -• K = R2/G induced by R + R , x H (x,0). //

Let ft be an ct-locally connected principal topological groupoid on a

connected base B, and assume that the vertex groups of ft have abelian component

groups. (By component group of a topological group G is meant the quotient group

G/G where G is the component of the identity.) Then ¥ is normal. To see this,

note first that since V is transitive, it suffices to show that one V is normal
b

in ft . Let P(B,G) denote the vertex bundle of ft at some b e B, and let Q denote the

component ^ £
of G; denote it by H. Hence H is a union of cosets of G in G and so H is normal

in G iff H/G is normal in G/G . When G/G is abelian, this is always the case,
o o o

of b in P. Then ̂  = {g e G | R (Q)S Q}; clearly Y£ is an open subgroup

This argument shows that for locally trivial groupoids on connected bases

whose vertex groups are nondiscrete Lie groups of the type encountered in many

applications, the a-identity-component subgroupoid is normal.

Proposition 3.8. Let ft be a topological groupoid on B. Let Cc be a symmetric set

(that is, % 2 B and ?£~ = W ) such that each tl is open in ft . Then the subgroupoid

$ generated by tC has $ open in ft for all x e B.

Proof. Since U» is symmetric, $ is merely the set of all possible products of

elements from cl . Choose x e B. The set of all n-fold products £ • • • ̂  from LL
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with a£ = x is the union of all Cl ? £ ft where £ is an (n-l)-fold product from U .

Since R : ft -• ft is a homeoraorphism the set of all n-fold products from cC which
C PC x

lie in ft , is open in ft . Hence $ is open in ft . //
x* v x x x

As with 3.4, if ft is principal and $ is transitive, then $ will itself be

principal and will be an open subset of ft. A set 66 satisfying the conditions in

3.8 will be called a symmetric a-neighbourhood of B (or, of the base) in ft.

Proposition 3.9. Let ft be a topological groupoid on a connected space B for which

each 3 : ft * B is open, and let (A/ be a symmetric a-neighbourhood of B in ft. Then

the subgroupoid $ generated by 66 is transitive.

Proof. Each 3 ({/) is open in B; denote it by U . Given x,y e B there is a finite

chain U ,... ,U with z = x, z = y and U r\ U ^ 0 ¥ 0 < i < n - l ; this
zo> zn o n z± z1 + 1

follows from the connectivity of B. Now it is clear that there is an element

5 e »y. //

Proposition 3.10. Let ft be a topological groupoid on B, and let $ be a wide

subgroupoid of ft. Then, if each * is open in ft , x e B, each $ is also closed

in ft , x e B.

Proof. The complement ft\$ is the union of all *ftr5 as £ ranges over ft \$ .

Since $ is open in ft it follows that $. £ is open in ft . //
p£ P£ 3£ x

The following result is now immediate.

Proposition 3.11. Let ft be a topological groupoid on B, and let uL be a symmetric

a-neighbourhood of B in ft. Then %C generates the a-identity-component subgroupoid

Y of ft. //

Proposition 3.12. Let ft be an a-locally connected, locally trivial groupoid on a

connected base B, and let uL be a symmetric a-neighbourhood of B in ft. Then the

subgroupoid $ of ft generated by 66 is locally trivial.

Proof. Apply 3.6 and 3.11. //
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§4. Representations of topological groupoids.

This section gives the basic definitions and examples of the concept of

representation (or action) of a topological groupoid, and related concepts such as

isotropy subgroupoid and invariant section. The basic material is due to Ehresmann

(1959, and elsewhere); see also Ngo (1967). We also give the equivalence between

the concepts of action of a groupoid and covering of a groupoid; this is due to

Higgins (1971) in the algebraic case and to Brown et al (1976) in the topological

case.

Some deeper results for isotropy subgroupoids and the classification of

locally trivial subgroupoids are given in III§1; the simplicity of their

formulation there depends on the facts that all transitive smooth actions of Lie

groups are homogeneous, and all closed subgroups of Lie groups admit local sections.

A general topological formulation of these results would be cumbersome.

Definition 4.1. Let ft be a topological groupoid on B* and let p: M ->• B be a

continuous map. Let ft * M denote the subspace {(£,u) £ ft * M | a£ = p(u)} of

ft x M. An action of ft on (M,p,B) is a continuous map ft * M > M, (£,u) l~> £u such

that

(i) p(5u) = 35, ¥ (5,u) £ ft * M ;

(ii) TI(£U) = (n5)u, ¥ (n,O £ ft * ft, (5,u) £ ft * M ;

(iii) p(u)u = u, ¥ u £ M .

For u £ M, the subset ft[u] = {?u I 5 e ft } i s the o rb i t of u under ft.
p(.u)

This definition goes back to Ehresmann (1959). We will be mainly concerned

with two cases: (i) when (M,p,B) is a TGB and each u h+ £u, M •> Mg is an

isomorphism of topological groups; we will then say that ft acts on M by topological

group isomorphims, (ii) when (M,p,B) is a vector bundle and each ut—• £u,

M + Mg , is a vector space isomorphism; in this case we say that ft acts linearly

on M.

A concept of groupoid action on a groupoid is given in Brown (1972).

Definition 4.2. Let ft be a topological groupoid on B, and let ft * M •• M and

ft * M •• M be actions of ft on continuous maps (M ,p ,B), i = 1,2. Then a
1 2 2 1

continuous map i|>: M + M such that p o | = p is ft-equivariant if ^(^u) = KHn)
¥ (C,u) £ ft * M .
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Let ft' be a second topological groupoid with base B', let (M,p,B) and

(M',p',Bf) be continuous maps, let ft * M ->• M and ft1 * M' •»• Mf be actions, let

<j>: ft + ft' be a morphism of topological groupoids, and let T|J: M •• Mf be a continuous

map such that p'o^ = <j> ° p. Then ip is (}>-equivariant if KSu) = < K O K u ) ,

¥ (£,u) £ ft * M. //

Definition 4,3. Let ft be a topological groupoid on B and let (M,p,B) be a fibre

bundle with locally compact, locally connected and Hausdorff fibres. Then a

representation of ft in (M,p,B) is a morphism p: ft ->• II(M) of topological groupoids

over B. //

For our interpretation of the term 'fibre bundle', see A§1. If (M,p,B) is a

TGB we interpret II(M) as the groupoid of topological group isomorphisms and call p a

representation by topological group isomorphisms; if (E,p,B) is a vector bundle we

interpret n(E) as the groupoid of vector space isomorphisms and call p a linear

representation.

Proposition 4.4. Let ft be a locally trivial groupoid on B and let (M,p,B) be a

fibre bundle whose fibres are locally compact, locally connected and Hausdorff.

If ft * M ->• M is an action of ft on M then the associated map ft -• II(M) ,

? H ( u H £u) is a representation; if p: ft -»• II(M) is a representation then

(£,u) H• p(£)(u) is an action.

Proof. If ft * M ->• M is an action, let {a.: IT + ft, } be a section-atlas and define
lib ^

charts i|>.: U x M ->- M for M by i|; (x,a) = a (x)a. Then ft J * M^ •»• M becomes

u i i i j
(U. x o x u ) * (U x M.) + U. x M ((y,X,x), (x,a)) *-• (y,Aa) and the result is

clear. The converse is similar. //

It is not clear whether this result holds for general topological groupoids

ft and whether, using the methods of Booth and Brown (1978) a similar result can be

proved without local triviality conditions on (M,p,B) or ft.

The following examples are basic.

Example 4.5. Let ft be a topological groupoid on B and let B x F be a trivial fibre

bundle. Then £(ct£,a) = (8£,a), £ e ft, a e F, is an action of ft on B x F^ called the

trivial action. The associated representation is the trivial representation. //
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Example 4.6. Let (M,p,B) be a fibre bundle whose fibres are locally compact,

locally connected and Hausdorff. Then II(M) * M -»• M, (£,u) h+ £(u) is an action.

Example 4.7. Any topological groupoid ft acts on its own 3-projection through the

multiplication map ft * ft + ft. //

Example 4.8. Let P(B,G,TT) be a principal bundle, and let M = — - — be an
b

associated fibre bundle with respect to a representation G + Horaeom(F). Then

(<v,u>, <u,a>) h+ <v,a>

is an action. //

In fact all actions of locally trivial groupoids are of this type:

Theorem 4.9. Let ft be a locally trivial groupoid on B, and let ft * M •»• M be an

action of ft on a continuous surjection (M,p,B) whose fibres are locally compact,

locally connected, and Hausdorff. Then (M,p,B) is a fibre bundle and, for any

choice of b e B and writing P = ft, , G = ft, , F = M, , the map — - — •• M, <£,a> h+ £a
D CD D 'J

is a homeomorphism of continuous surjections over B and is equivariant with respect
P x p P x F

to the isomorphism — g — -> ft of 1.19 (ii). (—Q— is constructed with respect to
the representation of G on F corresponding to the restriction ft x M -»• M .)

Proof. Take a section-atlas {a : U •> ft } and use it to define charts
i i b

^i: Ui X F "*" ̂ U * (x>a) '""*" a4(x)a> a s *n 4.4. This proves that (M,p,B) is a fibre

bundle. Define P x F -• M by (£,a) «—• £a. In terms of the charts i\> for M and

(x,g) h+ a, (x)g for ft this is U x G x F + U. x F, (x,g,a) J--• (x,ga), which is
1 P x F b i x

open. Hence — - — -• M, <^,a> H> B,a is a homeomorphisra. The other statements are
G

easily proved. //

This result should be compared with Kobayashi and Nomizu (1963, 1.5.4 and

subsequent discussion).

Proposition 4.10. Let P(B,G) be a principal bundle and let M and Mf be two

associated fibre bundles corresponding to actions G x F •»• F and G x F' •*• Ff of G on

locally compact, locally connected and Hausdorff spaces F and Ff.

(i) If f: F + F1 is a G-equivariant map then f: M •> M1 defined by
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<u,a> h+ <u,f(a)> is a well-defined morphism of fibre bundles over B, and is
P x p
— ~ — -equivariant.

G
P x p

(ii) If <f>: M •• M' is a — equivariant raorphism of fibre-bundles over

B, then <j> = f for some G-equivariant map f.

Proof: (i) is easy to verify. For (ii), observe that a map f: P x F -> F' can be

defined by the condition that

<K<u,a>) = <u,f(u,a)> for u e P, a e F.

p x p
Now it is easy to see that equivariance with respect to — - — forces f(u,a) to

depend only on a. So we have f: F •• F' and f must clearly be G-equivariant. //

One can formulate this result as a statement about adjoint functors (see

Mackenzie (1978, 7.1)).

Example 4.11. Let ft be a topological groupoid on B. Then the inner automorphism

action is the map ft * Gft •• Gft, (£,A) I-+ I (A) = £A£~ .

If ft is locally trivial and its vertex groups are locally compact, locally

connected and Hausdorff then I is a representation ft -• II(Gft). If K. is a normal

totally intransitive subgroupoid of ft, whose fibres satisfy the same topological

conditions, then the 'restriction' ft -*• II(T<) is also a representation.

Returning to Gft itself, 4.9 shows that Gft is equivariantly isomorphic (as a

TGB) to — p — with respect to the inner automorphism representation of G on
P x G

itself. In the physics literature, — - — is often called the gauge bundle
Gr

associated to P(B,G). We shall call it the inner group bundle. //

The following definition introduces the last example.

Definition 4.12. Let ft be a locally trivial groupoid on B and let (M,p,B) be a TGB

with locally compact, locally connected, Hausdorff fibres. An extension of ft by M

is a sequence

in which $ is a locally trivial groupoid on B, i and IT are groupoid morphisras over

B, i is an embedding, TT is a surjective submersion, and im(i) = ker(7r). //
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It is easy to see that the condition that $ be locally trivial is

superfluous.

Example 4.13. Let M •>—• $ -•»••»• ft be an extension as in 4.12 with M an abelian TGB.

For ? £ (I7, x,y e B choose V e $y with TT(£') = £ and define p(£): M + M as
x__i x x y

X f-+ C'XC1 , the restriction of I . It is clear that p(O is well-defined. Now

I: * •»• II(M) is continuous (by 4.11) and IT is an identification so p: ft ̂  II(M) is

continuous. P is the representation associated to the extension M +- + $ —••• ft.

These examples are straightforward; see the discussion following III 4.14

for a representation which is not well-known in the context of principal bundles.

We now give some simple definitions and results about isotropy subgroupoids

and invariant sections.

Definition 4.14. Let ft * M + M be an action of a transitive topological groupoid ft

on a continuous surjection (M,p,B). Then a section p e FM is ft-invariant if

5y(ct0 = y(BO, V S e ft. The set of ft-invariant sections of M is denoted (IM) .

If ft * E -• E is a linear action on a vector bundle, then (FE) is an

ft-vector space with respect to pointwise operations, but not usually a module over

the ring of continuous functions on B. A general fibre bundle need not of course

admit any (global) sections. In the case of a vector bundle and a linear action,

(TE) may consist of the zero section alone (see 4.16 below).

Proposition 4.15. Let ft be a principal topological groupoid on B and let ft * E •*• E

be an action of ft on a vector bundle (E,p,B). Choose b e B, and write V. for E, and
b

G for ft . Then the evaluation map
b

(rE)" •> VG, y >-• y(b)

is an isomorphism of R-vector spaces.

Proof. Obviously the map is injective. Given v e V , define y by y(x) = £v where

5 is any element of ftfe. Clearly y(x) is well-defined; y is continuous because

3 : ft + B is an identification. //
D b

A different view of this result is given in Mackenzie (1978, §4).
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Example 4.16. Consider the principal bundle SO(2)(S ,Z ,p), where Z is embedded in

S0(2) as {1,-1} and p is z /—• z . Let ft be the associated groupoid and E the vector

bundle —*-£ , where Z acts on R by multiplication.
Z2 2

zero space. (E is, of course, the Mobius band.) //

7
or\ / o \ x 1J O 9

bundle —*-£ , where Z acts on R by multiplication. Then (TE) = R is the
Z2 2

Proposition 4.17. Let ft * E -*• E be an action of a locally trivial topological

groupoid ft on a vector bundle E. For each x e B, define E | to be
x ^

{ | Xu = u, V X e ftX}. Then E is a subvector bundle of E.

Proof. Let {a : U + ft } be a section-atlas for ft, and write V = E, , G = ft .

Define ^ U^ x v •> E | by (x,v) *—• ai(x)(v). Then ^ x maps V isomorphically

onto E G \ . //

Proposition 4.18. With the above notation, there is a natural trivialization

B x VG * EG".

Proof. For x e B and any two £,£' e ftx, the maps VG •• EGJ2|x> v I--*- Cv and v I-* £
fv,

are identical. //

Compare Greub et al (1973, p. 384, proposition III). This result is mainly

of interest because the corresponding construction for actions of transitive Lie

algebroids yields sub vector bundles which are flat but not necessarily trivializable.

Definition 4.19. Let ft * M ^ M be an action of a transitive topological groupoid ft

on a continuous surjection (M,p,B). Then p e W is ft-deformable if for all x,y e B

there exists B, e fty such that £y(x) = y(y).

If y £ FM is ft-deformable, then the isotropy subgroupoid of ft at y is

$(y) = {£ e ft | gy(aO = y(3O}. //

The term "ft-deformable" is adapted from Greub et al (1973, 8.2). A section

y is ft-deformable iff its values lie in a single orbit; the condition ensures that

the isotropy subgroupoid is transitive. Note that $(y) is closed in ft providing M

is Hausdorff. If ft is locally trivial, $(y) need not be locally trivial; however

for a smooth action of a locally trivial differentiable groupoid the isotropy

subgroupoid at a deformable section is always locally trivial (see III 1.20).
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Also in 1II§1 we will use the correspondence between deformable sections and

their isotropy subgroupoids to give a classification of those locally trivial

subgroupoids of ft which have a preassigned vertex group at a given poLnt b e B.

The construction of an action groupoid in I 1.6 may be generalized: let ft

be a topological groupoid on B and ft * M ->• M an action of ft on a continuous map

p: M •* B. Give ft * M the structure of a groupoid on M as follows: the projections

are a(£,u) = u, l3(£,u) = £u, the object inclusion map is u \-+ (pu,u), the

multiplication is (TI,V)(£,U) = (ii£,u), defined when v = £u, the inversion is

(S»u) = (£ ,£u). Then, with the subspace topology from ft x M, ft * M is a

topological groupoid on M, and ft * M •*• ft, (£,u) !--• £, is a continuous morphism over

p: M -• B.

Definition 4.20. With the structure described above, ft * M is the action groupoid

associated to the action of ft on M. //

Remarkably, action groupoids and the morphisms associated with them can be

characterized intrinsically. The following discussion, including 4.21 to 4.23, is

taken directly from Brown et al (1976).

Definition 4.21. Let <f>: ftf •> ft be a morphism of topological groupoids over

<f> : B1 •*• B. Then <f> is a covering morphism if the pullback space

ft * Bf = {(S,x') e ft x B T j a(£) = <j> (x')} is homeomorphic to the space ft1 under the

map [<j>,af]: ft1 + ft * B', £' t-+ (<KSf ) ,a' (£')). We also say that <f>: ftf •• ft is a

covering of ft.

Let <|> : ft' ^ ft and cj> : ft" •* ft be covering morphisms with the same

codomain ft. Then a morphism of coverings i|>: <f> * <f> over ft i s a raorphism of
1 2

topological groupoids ij>: ft' •»• ft" such that <f) • ̂  = <!>-. //

Obviously each action groupoid ft * M and its morphism ft * M •*• M form a

1 2
covering ft. It is also easy to see that if <|>: M + M is an ft-equivariant map of

two actions ft * M > M and ft * M -• M , then J: ft * M •• ft * M , (C,u) *-• (£,<Ku))

is a morphism of coverings over ft.

Theorem 4.22. Let <j>: ft' •• ft be a covering morphism, and let s: ft * B' + ft' denote

the inverse of [4>,a']. Then 3'© s: ft * B' •• B' is an action of ft on <j> : B' •»• B.
o
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Let ty: <J> + i be a tnorphisra of coverings over ft. Then ip : Bf + B" is ft-
1 2 o

equivariant with respect to the actions induced by the coverings.

Proof. We will show that n(£xf) = (nOxf for (n,O e ft * ft and x' e B1 with

a£ = <j> (xf); the other conditions are clear. First note that each
o

<j> f : ft'f •*• ft (x) is a homeomorphisra - it is easy to see that [<J>,a!] maps ft',

o
onto ft. . ,v x {x1}. Thus s(£,x') is the unique element of ft', which is mapped

by <J> onto £. Write y' = (3'os)(£,xf) and note that 4> (y' ) = 6£ = an.
o

So s(n,y') is defined and is the unique element of ft', which is mapped by <j> onto n.

Since af(s(n,y')) = y' = 8'(s(5,x')), the product s(n,yf)s(5,x') is defined.

Obviously it belongs to ft', and is mapped by <J> onto n£; it is therefore equal

to s(n£,x'). That n(£x') = (n^)x' now follows.

The second statement of the theorem follows from noting that

[4>2»
aIi]°* = (id**o)«[<l>,a

l]> and hence Ks^C.x')) = s 2 U , M x ' )),

¥ (£,x' ) e ft * B1. //

These two constructions are indeed mutual inverses:

Theorem 4.23. (i) Let <f>: ft' + ft be a covering morphism, and let ft * B' •• B' be the

associated action. Then, giving ft * B' its structure as an action groupoid,

[<j),a']: ft' -»• ft * B1 is an isomorphism of topological groupoids over B' and is an

isomorphism of coverings of ft.

(ii) Let ft * M + M be an action of a topological groupoid on a continuous

map p: M •• B, and let fr • ft * M + ft be the associated covering. Then the action

of ft on M induced by IT is the original action.

Proof. Straightforward exercise. //

One may express 4.23 by saying that the category of covering morphisms over

a topological groupoid ft is equivalent to the category of actions of ft and

ft-equivariant maps. One should note too that Brown et al (1976) also prove that if

<j> *. ft' + ft" is a covering morphism and <j>.: ft ̂  ft' any morphism of topological

groupoids, then <f> ° <}> is a covering morphism iff <f> is.

If X, Y are path-connected, locally path-connected and semi-locally simply-

connected spaces, and p: X •*• Y is a covering map, then p^:7f (X) •»•/f (Y) is a

covering morphism of topological groupoids (Brown and Danesh-Naruie (197 5)). The
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abstract theory of covering morphisms of topological groupoids in fact models the

familiar features of the theory of covering spaces: a covering <j>: ft' -»• ft may be

4> (x')
called regular if <t>xf(ft'

x
t) < ft ° , ¥. x' e B'; if ft is a transitive topological

x x 9 \ ̂  /

groupoid on a Hausdorff base B, x e B, and H < ft' , then there is a covering

<{>: ft' -• ft of ft with ft' transitive and <j>X(ft'X,) = H for some x' e <f>~ (x) , which is

universal in a natural sense; in particular, there is a universal covering groupoid

of ft, which is in fact the action groupoid for the action ft * ft + ft , (£,n) h+ £n

of ft on a chosen a-fibre ft . For these results see Brown et al (1976, Theorems 6
x

and 13). (Presumably there is also a version of these results in which one works

with subgroupoids of ft rather than with subgroups of a particular vertex group.)

Proposition 4.24. Let ft * M ^ M be an action of a topological groupoid ft on a

continuous map p: M -> B.

(i) ft * M is transitive iff fi>.,..{ is a transitive groupoid on p ( M ) ^ B
b P(M)

and ft x M ->• M is a transitive action for some b e B;

(ii) ft * M is locally trivial iff ft + M, £ H+ £u, is a surjective

submersion for some b e B and u e M .
b

Proof. (i) is straightforward and (ii) is merely a reformulation of the definition.

For actions of groups, G x B •• B, the action groupoid is principal iff the

action is transitive and the evaluation maps g I--*- gx, x e B, are open. No such

simple criterion seems to exist in the general case.

The concept of "homogeneous space" for a topological groupoid, and its

relationship to transitive actions of groupoids, is a complicated and unsatisfactory

matter and it is fortunate that we do not need to consider it here. Some results

may be found in the same paper of Brown et al (1976).

§5. Admissible sections.

On a group G, the left-translations L : x H+ gx form a group which is

isomorphic to G itself under g h L , and the right-translations R : x h+ xg
g 8

likewise form a group with g h* R now an anti-isomorphism. For a topological
8

groupoid ft one calls a homeomorphism ft -*• ft a left-translation if it is the union of

left-translations L_: ft > ft ; such a left-translation is not characterized by a
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single element of ft, but by an admissible section. These admissible sections may be

regarded as generalized elements of the groupoid, since in the generalizations of

the adjoint and exponential formulas for Lie groups, they play a role which, in the

case of groups, is taken by the group elements themselves.

The material in this section is based on Kumpera and Spencer (1972,

Appendix).

Definition 5.1. Let ft be a topological groupoid on B.

A left-translation on ft is a pair of homeomorphisms <{>: ft -• ft, <j> : B -• B,

x x V X ) ° V X )

such t h a t 3«<j> = <$>£ 3 , a*c}> = a , and each <|> : ft •• ft i s L f o r some £ e ftx

An admissible section of ft is a continuous cr: B + ft which is right-inverse

to a: ft > B and is such that 3° a: B + B is a homeomorphism. The set of admissible

sections of ft is denoted by Tft. //

Given an admissible section a, define a map L : ft •> ft by £ h+ a(S£)£» Then

L and 3°cr: B •• B constitute a left-translation on ft (the inverse of L is

° -1 -1 °
n I—• a((3°a) (3n)) ri). Conversely, let <j>, <J> constitute a left-translation on ft.

x —1
For x £ B choose £ e ft and define a(x) = $(£)£ . If n is another element

of ft then n = ££ for some C e ft. Now <f>(£) = 9£ for some 6 e ft and 4>(£O = 9?C

with the same 6. Thus <K£O = <K£K and so a(x) is well-defined. The map a is

continuous since 3: ft + B is an identification. Clearly o is an admissible section

and <j> = L , <J> = 3°a. We call L (with 3«»CJ understood) the left-translation

corresponding to a.

Clearly the set of left-translations is a group under composition. We

transfer its group structure to Tft:

Proposition 5.2. Let ft be a topological groupoid on B. Then Tft is a group with

respect to the multiplication * defined by

(a*i)(x) = a((3*x)(x))T(x), x e B ,

with identity the object inclusion map x I—• x, denoted in this context by id, and

inversion

a-1(x) = a((3«»a)"1(x)) , x e B ,

and a t-+ L is a group isomorphism, that is L = L a L .
a a*T a x
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Proof. Straightforward. //

Note that ah-)- 3* a is a group morphism from TQ to the group of

homeomorphisms of B.

Example 5.3. Consider a trivial topological groupoid B x G x B. The set

T(B x G x B) can be identified with the set of pairs (<J>,6), where <j>: B •• B is a

homeomorphism and 0: B •* G is any map, by identifying (<f>,6) with

x I—• (<J>(x) ,9(x) ,x) . The multiplication is then

(4>2,e2) * ( V V
 = (*2°\

9 ( V W

with inversion (<|>,0) = (<j> ,0 o<f> ); here 0 refers to the pointwise inverse of

a group-valued map and <J> to the composition-inverse of a homeomorphism. //

Example 5.4. Consider a vector bundle (E,p,B) or, more generally, a fibre bundle

whose fibres are locally compact, locally connected, and Hausdorff.

Given a e ril(E), define a vector bundle raorphism, also denoted by a, over 3<*a, by

u I—• a(pu)u. Then a * x = aox and id = id , and so each a: E •• E is an isomorphism

of vector bundles. Conversely, given an isomorphism of vector bundles <J>: E + E,
4> (x)

<j» : B •• B, the map a: x H ^ e II(E) is an admissible section of II(E)

(continuity is proved by using the local triviality of E) and a = (f>.

We will use these vector bundle isomorphisms less than the maps of sections

which they induce. An admissible section a: E •*• E, $<>a: B •*• B induces a

map a: TE ->• TE by

O(M)(X) = a((6<»a)"1(x))M((3*»a)"1(x)), x e B

and a map a: C(B) •»• C(B), f I—• f*»(3°a) (see A§1) and these maps satisfy

o*"x(y) = a

a(fy) = a(f)a(y) ,

as can be easily checked. For future use, we also note that

Example 5.5. Consider an action groupoid Q * M where ft is a topological groupoid
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and p: M •• B is a continuous map. If <j>: M •• M is a homeomorphism then an admissible

section a of ft * M with 3©a = <|> may be identified with a map f: M •• ft such that

otof = p and f(u)u = <j>(u), V u e M. Consider in particular a discrete group G,

let B be the set G with the indiscrete topology and let G * B •• B be the group

multiplication. If <J>: B •• B is a permutation, but not a left-translation g I—• xg,

then there is no (continuous) admissible section a of G x B with 8*a = cj>. For each

left-translation B •• B there is exactly one such admissible section. //

Example 5.6. Consider a principal topological groupoid ft on B, and a left-

translation L : ft -*• ft over 3*cr: B •*• B. For each x e B, L restricts to ft ->• ft

L | (3<>a,id): ft (B,ft ) •• ft (B,ftX) is an isomorphism of Cartan principal bundles.

Conversely, let P(B,G,TT) be a Cartan principal bundle and let <\>(<\> ,id) be an
o

isomorphism P(B,G) •• P(B,G). (That is, TTO<J> = <J> * TT and <j>(ug) = <Ku)g, V. u e P,

g e G.) For x e B choose u e i" (x) and write a(x) = <(f>(u),u>; this is clearly
well-defined and a is continuous since IT is an identification, a is an admissible

p x p
section of — - — and L is <v,u> h+ <<t>(v),u>, which, in terras of the isomorphism
of 1.19(i), corresponds to cf>: P + P.

Automorphisms of principal bundles of the form <f>(<}> ,id) might thus

legitimately be called left-translations. Those for which <J> = id are called gauge
o B

transformations in the physics literature (for example, Atiyah et al (1978, §2));

they correspond to thos
bundle LJL£ . //

G

p x p
they correspond to those admissible sections of — « — which take values in the

The question of the existence of admissible sections is an extremely obscure

one. Even if ft is locally trivial and the horaeomorphism group of B is transitive,

it is not clear that a h+ 3°a, Tft •• Homeom(B), is surjective. In future however we

will only be concerned with local admissible sections:

Definition 5.7. Let ft be a topological groupoid on B. For U g B open, a local

admissible section of ft on U is a map a: U > ft which is right-inverse to a and for

which $°a: U •»• (3©a)(U) is a homeomorphism from U to the open set (3«cr)(U) in B.

The set of local admissible sections of ft on U is denoted r ft.

For a e T ft with V = (8»a)(U), the local left-translation induced by a is

LQ: ft
U > ftV, 5 h+ a(0O5- //

The set of all L for a e T ft and U S B open is not a pseudogroup on ft

since it is not closed under restriction. The following result, which will be
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needed in I I I§4 , shows that t h i s i s unimportant.

Proposit ion 5.8. Let ft be a topological groupoid on B, for which 3: ft •*• B i s an

open map. Let <J>: % •• V be a homeomorphism from (JtSft open to KfSL ft open, and l e t

<J) : U •• V be a horaeomorphism from U = B(fif) S B to V = 8(1 )̂ S B , such t ha t ao<J> = a,

0*<j> = <j> © 6 and <j>(£n) = <KOn whenever (£,n) e ft*ft, £ e 2£ and £n e tl. Then (J> i s the
0 o/ U V

r e s t r i c t i o n to / t of a unique loca l l e f t - t r a n s l a t i o n L : ft •• ft where a e r ft.
a U

Proof. For x e U choose £ e V? and define a(x) = (KOS*
1; clearly a(x) is well-

defined. Since the restriction 8: 2t •• u is open, a is continuous and is therefore a

local admissible section on U with 3<>a = <f> . That L (£) - <j>(O for £ e U is clear,

as is the uniqueness. //

Thus, at least for groupoids whose projections are open maps, any local

horaeomorphism (/,+ V which commutes with the R : fto + ft in the sense of 5.8 is the
TI Bn an

restriction of a local left-translation L : ft •• ft .
a

In any case, for a general topological groupoid ft we will regard the set of

local admissible sections as being in some sense a pseudogroup on B with law of

composition *: if o e r II with (8«a)(U) = V and x e r tfl with (8eT)(V
f) = W, then

T * a is the local admissible section in (3*cr)~ (V')0 V defined by

(T*a)(x) = T((0«a)(x))a(x), providing (Btfo)"1^')^ V is not void. We will refer to

the set of all local admissible sections, together with this composition, as the

pseudogroup of local admissible sections of ft, and will denote it by r (ft).

Let J (ft) denote the set of all germs of local admissible sections of ft.

Then J (ft) has a natural groupoid structure: the source and target projections are

a(g a) = x, 3(g a) = (8«>a)(x); the object inclusion map is x I—• x = g id; the

multiplication, denoted *, is (g x) * (g a) = g (x*a), and the inversion is

(g cO"1 - «/«.„>/ xCtf"1) where a l is y I-+ a(( 8«>a)"1(y) )~l, defined on (B°a)(U).
x ^ppoj \*-) ^

With this structure, J (ft) is called the local prolongation groupoid of ft.

One can give J (ft) a sheaf-type topology defined by taking as basis the sets

N = {g cr | x e dom a} for a e r
 0Cft. With this topology J (ft) is a topological

X
groupoid, denoted J h(^)« Whether this is an interesting topology is rather

uncertain; for a topological group G, J (G) is naturally isomorphic as a groupoid

to the group G, but J (G) has the discrete topology. It is thus a rather coarse

invariant.

If ft is locally compact and Hausdorff, the set of germs gJL.a, x e U, of
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U V
local left-translations L : ft -• ft can be given the compact-open topology of Abd-

o XX
Allah and Brown (1980) (see 1.15) and this topology transferred to J (ft); J (ft) is

then a topological groupoid on B, and is denoted J (ft). For any locally compact

and Hausdorff topological group G, J (G) is naturally isomorphic to G as a
CO

topological group. Further,

Proposition 5.9. Let ft be a locally trivial groupoid on a topological manifold B.

Then JX (ft) is locally trivial and the map j\ft) •• j\r°(B)) = JX(B X B) ,
CO

g a n g (3*a) is surjective.

Proof. Let {a : U •* ft, ) be a section-atlas for ft; assume each U. is the domain of
i i b i

a chart R = U for B. Choose some II which contains b and denote it by U. Choose

any U. and find a continuous r\> : U x U •• U such that each ty (-,x): U •• U is a

homeomorphism and <k(b,-) is the identity. Define a : U > J (ft) by

^ (x) ~ 8h(y I"*"
 a. (̂ . (y,x))a(y)" ). It is straightforward to check that a is

continuous.

The second assertion is proved in a similar way. //

This result is taken from Virsik (1969, 1.4). It is the only existence

result for local admissible sections that we need.

Definition 5.10. Let ft be a topological groupoid on B, and take o e Y Ocft with

domain U and (3°a)(U) = V.

The local right-translation defined by a is R : ft •»• ft , £ !-•»• £,o(($*o) (a£))

U V —1
The local inner automorphism defined by a is I : ft •• ft^ , %, I—• a( 3£)£a(a£)

Clearly R . = R «R and I . = I ol wherever the products are defined.
° T _i T ° ° T ° T

Also, R ̂ ( O = £a(a£)~ and IQ = L ^ R ^ = R _f^0-
 N o t e that T-o'- ^ ^ ̂ v

 is

a o o

an isomorphism of topological groupoids over $°o: U •*• V. (Local) right-translations

can be characterized intrinsically as in 5.1. Since the Lie algebroid of a

differentiable groupoid will be defined using right-invariant vector fields and the

flows of such fields are local left-translations, we will not use local right-

translations very extensively.
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Definition 5.11. Let <J>: ft ->• ft1 be a morphism of topological groupoids over B. Then

the maps rft -• rft1 , a I--)- <j>oa, r °Cft -• r OCft', a n * <j>oa, and j\ft) -»• j\ft'),

g O K g (cfjocr), are all denoted by <j> and called induced morphisms (of groups,

"pseudogroups" and groupoids, respectively). //

It is easy to see that <j>: J (ft) + J (ft1) is continuous with respect to

either (consistent) choice of topology.

In the case of a representation p: ft •* II(E) and a local admissible section

a e Tyft, the map p(cr): r E > r E will be denoted more simply by p(a).

§6. The monodromy groupoid of a principal topological groupoid

Given an a-connected and principal topological groupoid ft, whose topology is

locally well-behaved, we construct a principal topological groupoid Mft whose a-fibres

are the universal covering spaces of the a-fibres of ft and which is locally

isomorphic to ft under a canonical morphism tyz Mft + ft which on each a-f ibre is the

standard covering projection. Mft is called the monodromy groupoid of ft and

generalizes both the construction of the universal covering group of a topological

group and that of the fundamental groupoid of a topological space.

The algebraic structure of Mft is easily defined for an arbitrary a-connected

toplogical groupoid; we considerably simplify the problem of defining the topology

on Mft by restricting ourselves to the case where ft is principal and then working in

terms of the vertex bundles. In fact we show that if P(B, G) is a principal bundle

with P connected then the universal cover P is a principal bundle over B with

respect to a group H which is locally isomorphic to G, and that the covering

projection P + P is a principal bundle morphism over B. The corresponding result

for principal groupoids then follows immediately.

For ft a differentiable and not necessarily locally trivial groupoid, Almeida

(1980), following the announcement of Pradines (1966, Theoreme 2), has shown the

existence of a differentiable groupoid structure on Mft such that the covering

projection Mft -»• ft is smooth and etale. The proof proceeds by lifting the

differentiable structure of ft back to a generating subset of Mft and then showing

that the resulting microdifferentiable structure on Mft (see III 6.3 for definition)

globalizes. This construction is vastly more complicated than the one given here,

and we believe it worthwhile to have set down the simple proof available in the case

of principal topological groupoids and locally trivial differentiable groupoids.
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It should be noted that Almeida's construction deduces a topology on Mft only

a posteriori; it would be interesting to have a purely topological construction of

the holonomy groupoid of a microtopological groupoid.

The proof given here can be reformulated to avoid use of the correspondence

1.19 between principal groupoids and Cartan principal bundles: if ft is locally

trivial and locally simple (see 6.9 for definition) 6.2 generalizes to show

that P (ft) •*• Mft is open and the continuity of the multiplication in Mft then follows

from that of the multiplication in P (ft). However it seems unlikely that

P (ft) ->• Mft is open in general,
o

A different approach to the construction of the universal covering principal

bundle P(B, H) of P(B, G) is given by Kamber and Tondeur (1971, 6.3).

In 6.14 we show that a local morphism of topological groupoids, defined on

an a-simply connected and principal domain groupoid, globalizes. In 6.11 we show

that the covering projection ty: Mft + ft has a local right-inverse morphism; for this

we need to assume that ft is locally trivial.

To avoid tedious repetition we use the following terminology.

Definition 6.1 A topological space is admissible if it is Hausdorff, locally

connected, locally compact and semi-locally simply connected. //

Local compactness is included here because it is used in the proof below

that C x CT + C is continuous

Let ft be an a-connected and transitive topological groupoid on B,

with ft admissible. The monodromy groupoid Mft of ft is defined as follows.

Let Pa = pa(ft) be the set of paths y: I •• ft (where I = [0, 1]) for

which otey: I + B is constant; elements of P are called a-paths in ft . Let

P = P (ft) be the subset of a-paths which commence at an identity of

ft; every y e pa is of the form R « y' where y1 e p a and £ = y(0). Define

Y, 6 e P to be q-homotopic, written y ^ 6, if y(0) = 6(0), y(l) = <$(1), a n d there

is a continuous H: I x I •*• ft such that H(0, -) = Y, H( 1, -) = 6, H(s, 0) and H(s, 1)

are constant with respect to s e l , and H(s, -) £ P , Vs e I. Such a map H is

called an ot-homotopy from y to 6. The ot-homotopy class containing y e P is

written <Y>.

Define Mft to be the set {<Y>|Y e P } with the following groupoid structure:
' o
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the projections a, 3: Mft •• B are a(<y>) = ay(0) and 3(<y>) = 8y(l); consequently

if a(<6>) = 3(<Y>), then 6(0)y(l) is defined and so is the standard concatenation

(R , ,°6)y; we define <6><y> to be <(R / I N 0 6 ) ^ * X t is straightforward to verify

that this product is well-defined and makes Mft into a groupoid on B, The identities
~ + -1 +

are x = <<„> and the inverse of <y> is <R * Y > where £ = y(l) and y is the

x £

reverse of y. Since ft is a-connected and transitive, it follows that Mft is

transitive. It is clear that ip: Mft ->• ft, <y> i-+ y(l) is a surjective morphism of

groupoids over B; ^ is called the covering projection.
Clearly each a-fibre Mftl is the set underlying the universal covering space

of ft , constructed from paths starting at x. This, together with the fact that
x

M(B x B) =7T(B) is a topological groupoid with respect to the quotient of the

compact-open topology on C(I, B) = P (B x B), suggests that Mft should be a

topological groupoid with respect to the quotient of the compact-open topology

on P (ft). However, this writer has not been able to give a general proof that, with
o

this topology, the groupoid multiplication is continuous. On the one hand one may

try to calculate TT (Mft) and TT (Mft * Mft), with the aim of lifting Mft * Mft -»• Mft -• ft

across Mft + ft; this, however, appears intractable unless Mft has associated with it

a fibre bundle structure, such as Mft = -Q * Q where Q = Mftl , H = Mft|x. On the other
n 'x i xhand, one may try to imitate the case of /\(K) (see 1.14), but although C(I, B)

•»• 7T(B) is an open map (see 6.2) it seems unlikely that P (ft) ->• Mft is open in

general.

These problems can be avoided when ft is principal, by working with a single

vertex bundle of ft, and this case will suffice for our purposes. Therefore

let ft now be a principal and a-connected admissible topological groupoid on B.

Choose b e B and write P = ft, , G = ft, , TT = 3, . Then Mftl = p, the universal cover

of P based at b. Write H = TT" (G) = MftP C p and give H the subspace topology

from p. Denote 3 • P •»• B by TT; note that H is <y> B- TT(Y(1)).

We claim that p(B, H, TT) is a Cartan principal bundle. The algebraic

properties follow from the groupoid stucture of Mft, and it only remains to prove

that the action P x H + P and the inversion H •• H are continuous. The following

result is needed.

Proposition 6.2 Let X be a connected, locally connected and semi-locally simply

connected Hausdorff space. Then the identification map

p: C(I,X) >7T(X), Yf~» <y>,
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where C(I, X) has the compact-open topology, is open.
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Proof; The topology on C(I, X) has as sub-basis sets of the form

N(a, b, U) = (y e C(I, X)|y([a, b])S U}, where 0 < a < b < 1 and U S X is open.
n

Let N = D N([a., b.], U.) be a basic open set, and choose y e N. Write
i=l i l l

a = min{a } and b = max{b.}. There are now four cases.

Case 0 < a, b < 1. We will show that every element of the form

<6'><Y><6>, where 6', 6 are arbitary paths with 6'(0) = Y(l), 6(1) = y(0), is in

p(N). (This in fact shows that p(N) = 7T(X).) For convenience, regard £ = 6'Y6 a

being

e(t) r

(1)

6(3t)

T(3t - 1)

6'(3t - 2)

0 < t < -

t < I.

Define e' by the formula

ef(t)

(2)

(2 - b)t + (1 - 2b)
3(1 - b)

0 < t < a

a < t < b

b < t < 1.

a + 1

Then for all i we have ef(a.) = e( -=-x— ) = y(a.) and similarly e'(b ) = y(b.),

and e'([a,, b.])£ y([a., b. ]) £ U.. So e' eN. That e' ~ e should be clear; a

specific homotopy is

Hs(t) =
(r - a)s + a + 1

e( t ) for 0 < t < (•= - a)s + a
3(i - a)s + 3a Z

e( — 3 — ) for (- - a)s + a < t < (- - b)s + b

(2 - (i - b)s - b)t + (1 - 2(i - b)s - 2b)

3(1 - (i - b)s - b)

for (- - b)s + b < t < 1.
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Case a = 0, b < 1. Set a+ = min{a |a > 0} and U =f\ {U | a = 0}; U is an

open neighbourhood of Y ( 0 ) . We will show that every element ofTT(X) of the

form <6'><Y><6> where 6' is arbitary with 6'(0) = y(D and 6 is in any path in U

with 6(1) = Y ( 0 ) , lies in p(N). Clearly the set of all such products is open (see

1.14). With e as in (1), define ef by (2) except that a is replaced by a+.

Then ef ~ e as before and e'([a., b. ] ) £ U. whenever a. > 0. It remains to show

that e'([0, b ] ) C U when a = 0. Consider first the sub-case where b < a .

Then e'([0, b,]) = e([0, 1 * a b.]). If * + % b. < i, then

+ 3a 3a +

e[0, 1 + a b. ] £ 6([0, l ] ) s u g u . . And if k = l + a b. > \, then
3a 1 , , 1 3a+ i J

e[0, k] = e[0, -] U e[~, k] = 6([0, 1]) U Y[0, 3k - 1], Now 3k - 1 < b., since
+ j J l

b < a , so Y[0, 3k - 1] C Y[a , b ] S U. as required.

Secondly, consider the sub-case where a < b . Here

ef[0, b±] = e'[0, a
+]U e» [a+, b±]

+ + 1 + b.
= e[ 0, X I a ] U e[ l I a , — r — i ] (since b. < b)

C 6[0, 1] U Y[0, a+] U Yta+, b±]

Q U UY[0, b i ] ^ Ulf as required.

The case a > 0, b = 1 is similar. In the case a = 0, b = 1, define

a+ = min{ai|ai > 0}, b" = m a x ^ ^ < 1} and U =f){U |a = 0}, V =D{V |b. = 1},

and consider products <6'><Y><6> with 6' in V and 6 in U and e' defined using

a+ and b". //

Returning to P(B, H, TT), let C denote the space of paths y in C(I, P) for
TT P

which Y(0) = b, and C the space of paths y in C for which Y ( D e G. Let p be the

projection C(I, P) ->-7((P). From 6.2 it follows that p: C + P is open, hence that
TT p TT ^j

p : C •> H i s o p e n , a n d h e n c e t h a t p x p : c x c - > P x H i s o p e n . I t t h e r e f o r e

s u f f i c e s t o s h o w t h a t

CP, (6,
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P P
is continuous. Now C x G •> C , (6, g)K R 0 6 is continuous, since the action of G

on P is continuous and P is locally compact; and concatention in path spaces is

continuous (see, for example, Dugundji (1966, XII.2 and XIX.1, respectively)). This

completes the proof that P(B, H, 1) is a Cartan principal bundle, the universal

covering bundle of P(B, G, TT).

Since P(B, H) is algebraically the vertex^bundle at b of Mft, the topology on

P can be transferred to Mft via the bisection P ^ P ->• Mft, <<Y'>,<Y>>^ <Y'><T>"1 and,

by 1.19, Mft becomes a principal topological groupoid on B with P(B, H) now the

topological vertex bundle.

Definition 6.3 Let ft be a principal and ct-connected topological groupoid on B,

with ft admissible. The topological groupoid Mft constructed above is the monodromy

groupoid of ft and the morphism ij>: Mft -• ft, <Y>H- Y ( 1 ) , is the covering

projection. //

Proposition 6.4 Let ft be a locally trivial oc-connected, topological groupoid on B,

with ft admissible. Then Mft is locally trivial and i|r. Mft •• ft is etale.

Proof: Decomposing sections U •• Mft = p for Mft can be constructed as the

compositions of decomposing sections U. •* P for ft and local sections of p -• p.

Using decomposing sections a : U. •• P for Mft and i(joa : U •* P for ft,

define charts P x v± -• MftL and P x 1^ -• fty by (<Y>, X ) K <y>o±(x)~ and

- \ • * • ~

(£, x)h-»- ?^(a (x) ). Then ty is locally p x id, where p: P + P is the covering

projection of P. //

Examples 6.5 Clearly M(B x B ) =7f(B) for B a connected, admissible space. For G a

connected admissible topological group and H a closed subgroup, let K = ip (H) where

i|>: G + G is the covering projection. Then K is a closed subgroup of G, the

spaces G/K and G/H are equivariantly homeomorphic, and G(G/K, K) is the universal

covering bundle of G(G/H, H).

2
In particular, the universal covering bundle of SO(3)(S , S0(2)) is

SU(2)(S2, U(l)) (see 2.24). Let the universal covering $: SU(2) x SU(2) -• S0(4)

be realized as the map (p, q) *--»• (h f-* phq ) mentioned in I 1.11 and let

A £ S0(3) act on S0(4) as L ; then the universal covering bundle of

SO(4)(S3, S0(3)) is SU(2) x SU(2)(S3, SU(2)), where SU(2) acts as the diagonal

subgroup. Thus both bundles are trivializable.



69

More interestingly, consider S0(4)(S0(4)/T , T ) where T is the maximal

i9 B e S0(2)} in S0(4). The homogeneous space SO(4)/T2 is the

4 - 1 2
Grassmannian G, of oriented 2-planes in R y and a calculation shows that <j> (T )

* -ffi ifi' i

is the maximal torus K = {((e , 0), (e , 0))|9, 9' e R} where the notation for
elements of SU(2) is as in 2.24.

Now the action of K on SU(2) x SU(2) is the cartesian square of the action

in 2.24 of U(l) on SU(2), so the universal covering bundle of SO(4)(G. o, T ) is
2 2 »

SU(2) x SU(2)(S x s , U(l) x U(l)). Note that the restriction of
<j>: SU(2) x SU(2) + S0(4) to K -• T2 is

i0 i9'
((e , 0), (e , 0))

Re-e'

0 R
e+ef

where R is the rotation matrix . . //[cos a -sin a~1
sin a cos a

Proposition 6.6 Let P(B, G) be a principal bundle with P connected and admissible,

and let P(B, H) be the universal covering bundle. Then

(i) the sequence * P •»•—• H —••> G is exact;

(ii) TTQH = TT|B under the boundary morphism of the long exact homotopy sequence

of P(B, H);

(iii) T^H = ker(ir G •»• T ^ P ) .

Proof; (i) is immediate from the definition of H and (ii) and (iii) follow from the

diagram

— • 7T B —> TT H —> 0 — • TT B — • TT H — • 0

2 1 1 o

I I i II I
—• TT B — • TT G — • TT P — • TT B — • IT G — • 0

I 1 1 1 o

where the rows are the long exact homotopy sequences for P(B, H) and P(B, G) (see,

for example, Hu (1959)). //

We now treat the problem of globalizing a local morphism of topological

groupoids.
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Definition 6.7 Let ft and ft' be topological groupoids on bases B and B'

respectively. A local morphism of topological groupotds, denoted 4>: ft ~* ft' ,

consists of a continuous map §'. IL + ft' defined on an open neighbourhood 1L of the

base of ft, together with a continuous map $ : B + B', such that afp<|> = <j> o a,
o o

6 f o <J> = ^ 0 3 , <j>t»e = e f o< j> 9 a n d s u c h t h a t
o o

(i) <Kn£) = K^HCO whenever an = B£ and each of £, n, n£ is in#; and

(ii) KS"1) = KS)"1 whenever both of £ and s"1 are in II.

Two local morphisms <j), ij>: ft ~* ft' are germ-equivalent if the maps <j> and if>

are equal on an open neighbourhood of the base of ft.

A local morphism (j>: ft ~* ft' , <j> : B + B' is a local isomorphism if there
o

e x i s t s a l o c a l morphism cf>' : ft' ~> ft' such tha t <t>0<J>! and <J>'° <J> are germ-equivalent

to idf t f and id^ . / /

Example 6.8 Suppose that ft is a locally trivial topological groupoid with

a section-atlas {o±: Ui •* ftb> which has the property that each transition function

s••: U.• + G = ftn is constant. Let IL be the open neighbourhood y(U^ x U^) of the

base in B x B and define 0: % + ft by 6(y,x) = o±(y)o±(x)~
l whenever

(y,x) e Ui x Ui. It is easy to see that because the transition functions {s^} are

constant, 0 is well-defined, and so gives a local morphism B x B + ft over B.

Conversely, let ft be a transitive topological groupoid on a space B and

suppose there exists a local morphism 6: B x B ~+ ft over B. Choose b e B and an

open cover {U.} of B such that(J(u^ x u\) is contained in the domain of 0. In

1 Xi
each U choose an x. and for each i choose £ e f t . Define a.: U. + ft, by

a.(x) = 0(x, x,)£.. Then the transition functions for {a } are constant, and the

local morphism induced by {cr.} is 0. //

6.8 applies in particular to the groupoids 7T(B) = M(B x B ) of 1.14,

providing that B has a cover by canonical open sets U. such that each nonvoid

intersection U. o U. is path-connected. This is the case, for example, if B is a

smooth paracompact manifold, for B then possesses an open cover {U.} such that

each U. and each nonvoid multiple intersection U-f r\ ... H U-; is contractible
1 Xl n

(reference in 6.10 below). Such a cover is called simple.

In general one expects that the covering projection i|;: Mft > ft will admit a

local right-inverse and in order to obtain this, one needs the following
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corresponding concept.

Definition 6.9 Let P(B, G) be a principal bundle. A G-simple cover of P is a

simple cover {U.} of P such that given i and given g e G there is a j such

that R (U^CZ u.. We say that P(B, G) is locally simple if it admits a G-simple

cover and P is admissible.

A locally trivial topological groupoid is locally simple if any one of its

vertex bundles is locally simple. //

Proposition 6.10 Let P(B, G) be a smooth principal bundle. Then P(B, G) is locally

simple.

Proof: By A 4.20, P admits a G-invariant Riemannian metric. Let {U.} be the set of

all open subsets of P such that any two points lying in U, can be joined by exactly

one geodesic in U.. By Helgason (1978, pp 34-36), {U.} covers P and since the

metric is invariant under the right action of G, it follows that {U.} is stable

under G in the sense of 6.9. By construction, {U.} is simple. //

Theorem 6.11 Let ft be a locally trivial and locally simple a-connected

topological groupoid. Then ij>: Mft + ft has a local right-inverse.

Proof: Choose b e B and write P = ft, , G = ftj\ Q = Mftl = P, H = Mftlb. Let {U }
b b ' b ' b^ l

be a G-simple cover of P. For each i choose £ e U., a path y from b to ?,

within P and (as in 1.14) a function 6# which to £ e U assigns a path in u.

from £ to £. Define a : U ^ Q by a.(£) = <9 (£)Y >, the homotopy class of the

concatenation of y followed by 9 (£). W e will show that
U x U. i

A . _J^_—L + 0. * Q b y <^t> o ,__> <cr. (£f), c.(C)> is a well-defined local
1 I* H. 1 1P X p Q X Q
morphism — g — ~* x „ x .

Consider a (̂ g) where £ e U , g e G and R (U ) ^ U . Let
1 i g i j

X is a path in P from b to g and thus defines an element <X> of H. Clearly

tf.(£g) = ai(^)<X>. Let X1 denote the ele

that <X!> = <X>, it suffices to show that

.(£g) = ai(^)<X>. Let X1 denote the element obtained similarly from £'. To show
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where both sides are paths from £# to 5 g, as

OjU'g)

in the diagram. Since R (U ) S U. , it follows that all four paths in the diagram

lie in U and so the deformation can be carried out.

Considering the a as local sections of the bundle Q(P, TT P), it is clear

that their transition functions are constant, and the remainder of the proof follows

as in 6.8. //

Corollary 6.12 Let ft be a locally trivial and locally simple a-connected

topological groupoid. Then Mft is locally isomorphic to ft under the covering

projection i|>.

Proof: Let <j>: ft ~+ Mft be the local right-inverse to ty constructed in 6.11.

Then $otyo$ = <|> and so <|>0^ is equal to the identity on the image of <J>, which is

clearly open. //

We now prove that a local morphism of topological groupoids can be

globalized if the domain groupoid is a-simply connected and principal. This result

was proved in Mackenzie (1979) and although there it is restricted to the case of



73

local morphisms over a fixed base, it is easy to see that the same proof applies in

general. The proof given here, however, is taken directly from Almeida (1980, 4.1)

and shows that the only use made of the hypothesis of principality for the domain

groupoid, need be to deduce continuity of an algebraic morphism from its continuity

in a neighbourhood of the base (see 1.21(ii)). It should be noted that Almeida's

proof is for differentiable groupoids and that it includes a demonstration that an

algebraic morphism of differentiable groupoids is smooth if it is smooth in a

neighbourhood of the base; Almeida's result thus needs no hypothesis of principality

or local triviality for the domain groupoid.

First recall the monodromy theorem of Chevalley (1946).

Theorem 6.13 Let P be a simply-connected and connected admissible space, and let U

be an open connected neighbourhood of the diagonal A i n P x p. Suppose that for

all £ e P there is a (not necessarily topologized) non-empty set E and to

each (n, O £ U a bisection f : E •• E such that f of = f whenever all three

pairs U , n), (n, £), (C, C) are in U.

Then there exists a map ip: P ->• \J E such that i|>(£) e E , V£ e P, and such

that iKn) = f ..(KO) whenever (n, £) z U. Further, ty is uniquely determined by

these properties and its value at any chosen £ e P. //
o

(This result may itself be expressed in terms of topological groupoids.)

Theorem 6.14 Let ft be an ct-connected and a-simply connected principal topological

groupoid on B with ft admissible, and let ft' be an arbitrary topological groupoid

on B'. Let <j>: ft ~* ft' , <{> : B -• B' be a local morphism with a-connected domain U.

Then there is a unique extension of <f> to a global morphism i|>: ft -• ft' of

algebraic groupoids over <j> , and it is continuous.

Proof: Let D = &~l (ft) C ft * ft and, for any x e B, denote D n (ft x ft ) by D .
a » J x x J x

Clearly D is an open neighbourhood of the diagonal in ft x ft . Now it is easy to
X XX

prove that

D - U

and since each R^(u. ) x {̂ } is connected and intersects the diagonal of ft x ft
£ 3£ x x J

which also is connected, it follows that D is connected.
x
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• (35)
Write x1 = <f>Q(x) and for £ e ^ , let E_ be the set ^ , ° . For

(n, £) e D let f : E •• E be left-translation L -1 • by 6.13 there is now a
x n£ £ n <f>(n£ ) '

unique map i{> : ft -• ft' , not necessarily continuous, such that
x x x1

3 ' o i J ; = <j> o $ , ijj ( x ) = x 1 , a n d ty ( n ) = <f>(n£ ) ^ ( £ ) w h e n e v e r ( T I , £ ) e D .
X O /N̂  X X X -j . X

Putting £ = x in this last equation shows that i\> (n) = <|)(TI) for n z U .

We now show that i|> = [)ty is a morphisra of algebraic groupoids. First

take n e 66 and any £ e ft such that n£ is defined. Then (nC, ^) e D and
-1 °^

K n O = <Kn€5 )<KS) = <Kn)KS). Next if n = n ^ ... nn with all n1 e U,
and E, is arbitrary with n£ defined, then

Taking 5 = arf.in this gives ^(n) = K O ... K n ) and therefore
1 I n

Since ft is a-connected, UL generates ft and this shows that ip is an algebraic

raorphism. Since ip(n) = <f>(n) for n e U9 ty is continuous on a neighbourhood of the

base of ft and since ft is principal, 1.21(ii) applies, and ty is continuous.

The uniqueness of ip follows from the fact that It generates ft. //

Corollary 6.15 Let <j>: ft ~+ ft1 , <f> : B •• Bf be a local morphism of topological

groupoids with ft a-connected, locally trivial and locally simple. Then there is a

unique continuous morphism <j>: Mft •»• ft' over <f> such that <$> = <J>«i|u //
o

As in the case of topological groups, it follows that two a-connected,

locally trivial and locally simple topological groupoids are locally isomorphic iff

their monodromy groupoids are isomorphic.

§7. Path connections in topological groupoids

Path connection is the abstraction of the differential-geometric concept of

parallel translation. It differs from the concept of path lifting studied in the

theory of fibrations (for example, Hu (1959, III§12), Spanier (1966, 2§7)), in that

the differential geometric concept embodies a requirement of invariance under

reparametrization, and most of the geometric interest follows from this condition.

This section contains some basic definitions and results which are needed in

the account of C -path connections in Lie groupoids given in III§7, but which are of

a purely topological nature. In 7.3 we prove that a path connection induces a
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lifting of 1-parameter groups of homeomorphisms; this is a consequence of

invariance under reparatnetrization and may be regarded as a continuity condition.

We do not need to assume that the path connection is itself a continuous map.

Continuity in this latter sense appears to be necessary only in order to deduce that

the holonomy subgroupoid is locally trivial (7.7) but this is only a curiosity since
00

in the case of C -path connections, the local triviality of the holonomy subgroupoid

is not necessarily with respect to the relative topology.

The main body of this section, from 7.4 on, treats the formal aspects of the

concept of holonomy subgroupoid and its equivalence to the concept of holonomy

bundle.

Until 7.8 we consider a single topological groupoid ft on a base B; we

assume B to be a connected C -manifold and ft to be admissible (as defined in 6.1)

and to have projections a,3: ft + B which are open. We use the notations

P = P (ft) and P = P (ft) of §6, although we do not assume that ft is a-connected.

Definition 7.1. A C°-path connection in ft is a map T: C(I,B) + pa(ft), usually

written c \-+ c, satisfying the following conditions:

(i) c(0) = cTo) and 3°c = c;

(ii) If <j>: [0,1] -• [a,b]£ [0,1] is a home omor phi sm then

~* = R _i° (ce<j>).

c(K0))

r is a continuous C -path connection if T is continuous with respect to the

compact-open topologies on C(I,B) and P C£ C(I,ft). //

The definition of a path connection with reparametrization in a groupoid

first appeared in Virsik (1971).

From (i) it follows that c is a path in & /Qx with c(t) e fi!°^ for all t,

often called the r-lift of c.

(ii) is called the repararaetrization condition. It is geometrically natural

inasmuch as it guarantees that the images of paths in B can be meaningfully lifted

to the images of a-paths in ft. It also allows the definition of c to be extended to

open paths of the form c: (-e,e) + B, or c: R * B, and so to lift local 1-parameter
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groups of local transformations on B. This will be important in III§7. For

simplicity of notation we work with the global case.

Lemma 7.2. Let V be a C -path connection in ft and let c: R •• B be continuous.

Then there is a unique continuous c: R + ft, with a(c(t)) = c(0) for all t,

3«c = c, c(0) = c(0) and such that for every closed interval [a,b]& R, the

restriction c| r ,, is R- °r(c|, bi)> both restrictions being reparametrized by

the same homeomorphism [0,1] •• [a,b].

If T is a continuous C -path connection, then the induced map
o

C(R,B) •»• C(R,ft) is continuous with respect to the C topologies.

Proof: c is most conveniently defined by lifting a suitably reparametrized

c|r ., for each n e Z, and right-translating the results, so that the relevant

endpoints match. The uniqueness result is then easy to see. The continuity of the

associated map C(R,B) x R •• ft is a local matter, and follows directly. //

We refer to c, for c: R •• B or c: (-e,e) ->• B, as the F-llft of c.

Proposition 7.3. Let T be a C°-path connection in ft and let f: R x B > B be a

global 1-parameter group of transformations of B. For each x e B, let r(<j>,x)

denote the lift of t I—• <t>(x) constructed in 7.2. Then $: R x ft •> ft defined by

<J> (5) = r(<j>,3£)(t)5 is a global 1-parameter group of transformations on ft and

3o<j) = <j> o 3 for all t £ R.

• (35)
Proof: Clearly "j> (̂ ) e ft , and this establishes the last equation,

t a£
Since <j> • B ->• B is continuous, and 3 is open, it follows that <J> is continuous;

once we have established the group property, it will follow that <j> is a

homeomorphism. Likewise, to prove that <j>: R x ft -• & is continuous, observe that

R x

id x 3

R x

I I
commutes.

It remains to prove the group property. Given £ e ft and s,t e R, consider

the curves t h+ "it+s(£) and t H+ <£t($s(S)). Clearly both project under 3 to the
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curve t i-> •t+gC?) = <J>t(<J>s(S)) in B and both have value <1>S(S) at t = 0. It is

easily checked that both are F-lifts (in the sense of 7.2) of the corresponding

curve in B. So, by 7.2, ?t+s(5) = \GS(O). //

The reparametrization condition also guarantees that T preserves the

algebraic operations on the sets of paths. The numbering of the following three

results continues the numbering in 7.1.

Proposition 7.4. Let T be a C -path connection in ft. Then

(iii) K = K (where K , as in I 1.8, denotes the path constant at p).
X x p

(iv) c * = R (c)* (where c* denotes the reversal,
c(l)"1

c (t) = c(l - t), of c).

(v) c'c = (R , . * P C ' ) C (where juxtaposition denotes the usual concatenation

of paths).

Proof: These all follow from 7.1(ii). For (iii), take t e (0,1] and

define p : [0,1] •• [0,t] by s I--*- st. Then K (t) = (K "P )(i) =

(RZ ,nN°(K °PJ)(D = < o p. (1) < (0) and since K (0) = x and K «p = K , this is
K \ U / X u X U X X X S X

just K (1). So K (1) = K (t) for all t > 0, and since K is continuous, it follows

that K (1) = K (0) also.

For (iv), use (ii) with (j>(t) = 1 - t. The proof of (v) is similar. //

Corollary 7.5. Let V be a C -path connection in ft. For c e C(I,B) let c denote

c(l). Then

( i i i ) ' K = x

(iv)f
 c * = (c)"1

A . .
(v) ' c'c = c 'c . / /

Definition 7.6. Let T be a C -path connection in ft. Then



CHAPTER II 78

is the holonomy subgroupoid of F. The vertex group T at x e B is the holonomy
x

group of r at x. //

From 7.5 it is clear that f is a wide subgroupoid of ft; since B is path-

connected, ¥ is transitive. The terminology will be justified in 7.14 below.

Proposition 7.7. Let F be a continuous C -path connection in ft. Then ¥ is locally

trivial, as a topological subgroupoid of ft.

Proof: Let U be an open ball in B and let 6: U + C(I,B) be a continuous map with

8(x)(0) = x , fixed in U, and 0(x)(l) = x for all x e U. Denote the composition

where the last map is evaluation at 1, by a; then a(x) e V for all x e U.

Therefore ¥ is weakly locally trivial and, since it is transitive, it follows from

2.4 that it is locally trivial. //

If ¥ is locally trivial, then ft must be so; thus a topological groupoid

which admits a continuous C -path connection must be locally trivial. The converse

is also true: a locally trivial admissible topological groupoid on a connected

C manifold admits a continuous C -path connection. This result can be proved by a

modification of the usual local patching argument (Spanier (1966, 2.7.12)).

Proposition 7.8. Let F be a C°-path connection in ft. Then for each c e C(I,B),

the F-lift c lies entirely in ¥ and, in particular, ¥ is ot-connected.

Proof: For each t e (0,1] consider c = c°p where p is s i—• st as in the proof of

7.4(iii). Then c = c(t) and this establishes c(t) e Y. //

7.8 is also, of course, true for any open path c: (-e,e) •»• 3 or c: R •»• B.

Example 7.9. The cartesian square groupoid B x B admits a single C -path

connection, namely F(c)(t) = (c(t),c(0)).

Slightly less trivially, the fundamental groupoid 7T(B) admits a single

C -path connection, namely F(c)(t) = <c«p >, where p : [0,1] •• [0,t] is the

reparametrization of 7.4 and 7.8. The easiest way to see the continuity of c is by

regarding the topology on 7T(B) as the quotient topology from C(I,B).
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Both connections are continuous and in both cases the holonomy subgroupoid

is the whole groupoid. //

Definition 7.10. Let ft and ft' be admissible topological groupoids on B with open

projections a,3: ft + B, a',3': ft' + B. Let 4>: ft •• ft' be a morphism of topological

groupoids over B, and let T be a C°-path connection in ft.

Then <\>oT denotes the map c H> <J>er(c), easily seen to be a C -path

connection in ft', and is called the produced (C -path) connection in ft'• //

The terminology "produced" is an extension of the usage proposed after

II 2.22.

Example 7.11. Let ft be a principal, a-connected, admissible topological groupoid o

B, and let T be a C -path connection in ft. Then there is a unique C°-path

connection T in the monodromy groupoid Mft such that the covering projection

ip: Mft •• ft maps r to r,

Namely, given c e C(I,B), define c = ?(c) by c(t) = <c»Pt> = <cTpT>

where, again, p^ is [0,1] -»• [0,t], s H+ st. Again, f is continuous iff r is.

The uniqueness of V follows from the uniqueness of lifts across the

universal covering projections Mft| ^ ft . //

Proposition 7.12. Let <j>: ft ̂ ft' be a morphism of topological groupoids over B,

with ft and ft' as in 7.10. Let T be a C°-path connection in ft and T' = <j>°r the

produced connection. Then <K¥) = **" , where ¥ and H" are the holonomy subgroupoids

for r and r'.

Proof: Immediate. //

Remark: If ft and ft' satisfy the conditions of 6.15 and <j>: ft ~+ ft' is a local

morphism of topological groupoids, then a C°-path connection r in ft induces

a C -path connection T in Mft (by 7.11) and Y then induces a C -path connection

I1' = $(?) in ft1, by 6.15. In this case (frCOSV1, but, as 7.9 shows, equality need

not hold. //

Example 7.13. Let (E,p,B) be a C vector bundle on a connected C manifold B, and

let T be a C°-path connection in II(E). Then, for c e C(I,B) and t e I, c(t) is an

isomorphism E C (Q) "*"
 Ec(t)» generally known as parallel translation along c. //
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p x p
Example 7.14. Let P(B,G,TT) be a principal bundle and let ft = — - — be the

associated groupoid. Let r be a C°-path connection in ft. For any given

c e C(I,B), c starts at the identity c(0) which can be written as <u,u> for any

u e TT~ (c(0)). Fix such a u. Since ac(t) = c(0) for all t, each c(t) can be

written as <c*(t),u> with c*(t) uniquely determined by c(t) and u. From

3c(t) = c(t), it follows that Tr(c*(t)) = c(t). Clearly c*(0) = u. We call

c* e C(I,P) the F-lift of c starting at u, and will denote it by F(c;u) when it is

necessary to indicate the dependence of c* on u. This F is a map ev*P + C(I,P),

where ev*P is the pullback bundle of P(B,G) over ev : C(I,B) ->• B, c K c(0).
o o

If instead of u £ u (c(0)) a second choice u' e TI ( C ( 0 ) ) is made then

u1 = ug for some g e G and from <c*(t),u> = <c*(t)g,ug> it follows that

F(c;ug) = Rg«F(c;u).

Suppose that F is a continuous C -path connection in ft, and choose a

reference point b e B and u e IT (b) , as in 1.19(1). Then <c*(t),u > =

<c*(t),u><u,u > = (R ocl(t). It is easy to verify the continuity of
' ' o v <u,u > J

o

ev*P •• C(I,ftv), (c,u) I-+ R. ,oc

since P *• ft , V H <V,U > is a homeomorphism by 1,19(1) it follows thatand

T: ev*P •• C(I,P) is continuous,
o

This proves one half of the following: There is a bijective correspondence

between continuous maps T; C(I,B) -• P (ft) which satisfy (i) of 7.1 and continuous

maps T: ev*P -• C(I,P) which satisfy TT<>r(c;u) = c, T(c;u)(0) = u and
o

F(c;ug) = R»F(c;u). The other half may be proved similarly. The reparametrization
g

condition (ii) of 7.1 becomes, in principal bundle terms,

r(c<xf>; r(c;u)(<fr(0))) = r(c;u)o<J>

where c and <{> are as in 7.1(ii) and TT(U) = c(0). Compare Kobayashi and Nomizu

(1963, II.3).

p x p
Returning to P(B,G,TT) and ft = — - — , let ¥ be the holonomy groupoid of T.

x G

The holonomy group ¥ at x e B consists of he set of all I where £ is a loop in B at
-1 x

x. Choose u e TT (x) as reference point for all I at x; then 1(0) = <u,u> and

I =1(1) = <£*(l),u>, where I* = F(£;u). Since TTJI*(1) = £(1) = x there is a unique

g e. G such that £*(1) = ug and this g, which is the holonomy of I with reference

point u e TT (x) in the sense of Kobayashi and Nomizu (1963, II.4), corresponds
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to I e V* under the isomorphism of 1,19(1), using u as reference point. Similarly

it may be seen that ¥ corresponds, under the isomorphism of 1.19(1) with
-1 x

u e TT (x) as reference point, to the holonomy bundle of P(B,G) through u, in the

sense of Kobayashi and Nomizu (1963, 11.7). The variety of mutually conjugate forms

of "the" holonomy group of P(B,G) and the variety of mutually isomorphic holonomy

bundles, are now explained by 1.20. //
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The philosophy behind this chapter is that Lie groupoids and Lie algebroids

are much like Lie groups and Lie algebras, even with respect to those phenomena -

such as connection theory - which have no parallel in the case of Lie groups and Lie

algebras.

We begin therefore with an introductory section, §1, which treats the

differentiable versions of the theory of topological groupoids, as developed in

Chapter II, §§1-6. Note that a Lie groupoid is a differentiable groupoid which is

locally trivial. Most care has to be paid to the question of the submanifold

structure on the transitivity components, and on subgroupoids.

§2 introduces Lie algebroids, as briefly as is possible preparatory to the

construction in §3 of the Lie algebroid of a differentiable groupoid. The

construction given in §3 is presented so as to emphasize that it is a natural

generalization of the construction of the Lie algebra of a Lie group. One

difference that might appear arbitrary is that we use right-invariant vector fields

to define the Lie algebroid bracket, rather than the left-invariant fields which are

standard in Lie group theory. This is for compatibility with principal bundle

theory, where it is universal to take the group action to be a right action.

In §4 we construct the exponential map of a differentiable groupoid, and

give the groupoid version of the standard formulas relating the adjoint maps and the

exponential. The greater part of this section is concerned with the use of the

exponential map to calculate the Lie algebroid of the frame groupoid IT(E) of a

vector bundle E, and of the reductions of n(E) defined by geometric structures on E.

This calculation relies on the exponential map, in the same way as does the

corresponding calculation of the Lie algebra of the general linear group.

A Lie groupoid, as well as being a generalization of a Lie group, is an

alternative formulation of the concept of principal bundle, and there is therefore a

version of connection theory applicable to Lie groupoids. Moreover a very great

part of standard connection theory - those parts which do not refer to path-lifting

or holonomy - can be presented entirely within the setting of abstract Lie algebroid

theory and without reference to any groupoid. We refer to this as infinitesimal

connection theory, since the Lie algebroid of a Lie groupoid is a first-order

invariant. In the first part of §5 we present this infinitesimal connection theory

in the setting of abstract Lie algebroids. In the second part we introduce the

concept of transition form for a transitive Lie algebroid arising from a Lie
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groupoid. The transition forms are the right derivatives of the transition

functions of the groupoid and are, in the same way, a complete, invariant of the Lie

algebroid. Transition forms, may also be regarded as the overlap isomorphisms for a

system of local isomorphisms from the given Lie algebroid to a trivial one; they

thus allow problems for transitive Lie algebroids to be broken down into a local

problem and a globalization problem. We will prove in IV§4 that every abstract Lie

algebroid admits a classification by transition forms, and these results will then

be central to the study, in Chapter V, of the integrability of Lie algebroids.

In §6 we return to the generalization of the elementary theory of Lie groups

and Lie algebras and prove, firstly, that there is a bijective correspondence

between a-connected reductions of a Lie groupoid and transitive Lie subalgebroids

of its Lie algebroid and, secondly, that there is a bijective correspondence between

germs of local morphisms of Lie groupoids over a fixed base, and morphisms of their

Lie algebroids. Both results are in fact related to connection theory.

§7 treats the theory of path connections in Lie groupoids, that is, those

parts of connection theory which do use the concept of path-lifting and holonomy.

Here the point of view is that a path connection in a Lie groupoid is the integrated

version of the corresponding infinitesimal connection in its Lie algebroid; we thus

subsume connection theory under the generalization of the elementary theory of Lie

groups and Lie algebras. In particular, we see that the Ambrose-Singer theorem for

Lie groupoids and Lie algebroids is an immediate consequence of the correspondence

between Lie subalgebroids and Lie subgroupoids (together with the correspondence

between path connections and infinitesimal connections and the fact that the

holonomy groupoid is Lie). In the second part of the section we give a detailed

analysis of connections in vector bundles on which a Lie groupoid acts; these

results are central to Chapter TV.

§1. Differentiable groupoids and Lie groupoids.

A Lie groupoid is a differentiable groupoid which is locally trivial. This

usage differs from that of some authors, but has the advantage that the briefest

expression is used for the most frequently occurring case.

This section treats those parts of the theory of differentiable and Lie

groupoids which are refinements of the theory of topological groupoids as treated in

Chapter II,§§1-6.
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The concept of differentiable groupoid is due to Ehresraann; the definition

used here is from Pradines (1966). In 1.4 we prove a crucial result due to

Pradines, communicated to the author in 1979, that in a differentiable groupoid

ft the maps $ : ft •> B are subimmersions. This result sets the theory of

differentiable groupoids apart from the theory of general topological groupoids. In

1.8 we use 1.4 to prove that a differentiable groupoid is locally trivial over each

of its transitivity components; in particular, a transitive differentiable groupoid

is a Lie groupoid. The proof depends strongly on the fact that we assume manifolds

to be paracompact, Hausdorff, and of constant, and finite, dimension.

In 1.19 we apply 1.4 and 1.8 to actions of differentiable groupoids and

deduce, in particular, that each orbit is a submanifold and each evaluation map is

of constant rank. In 1.20 we prove that isotropy sub-groupoids for actions of Lie

groupoids are closed embedded reductions. This result was given by Ngo (1967), but

the proof given here appears to be the first to address the global problem. In 1.26

to 1.30 we apply 1.20 to various standard actions of frame groupoids n(E), where E

is a vector bundle, to deduce that the frame groupoids for geometric structures

defined by tensor fields are themselves Lie groupoids. This result, in terms of

principal bundles, is due essentially to Greub et al (197 3); the proof given here

is new, and slightly more general.

Definition 1.1. A differentiable groupoid is a groupoid ft on base B together with

differentiable structures on ft and B such that the projections a, 3: ft -• B are

surjective submersions, the object inclusion map e: x l~•• x, B •> ft is smooth, and the

partial multiplication ft * ft •> ft is smooth.

A morphism of differentiable groupoids, or a smooth morphism, is a morphism

of groupoids <j>: ft -• ft ', <|> : B -• B1 such that <J> and <J> are smooth. //

Here ft * ft = (a x 3) (A ) is an embedded submanifold of ft x ft, for since a

and 3 are submersions, a x 3 is transversal to A . The tangent bundle to ft * ft is

Tft * Tft = {Y • X e T(ft x n) j T(cx)(Y) = T(3)(X)}; the only formula for the tangent

to the multiplication which we need is the following special case.

Lemma 1.2. Let ft be a differentiable groupoid on B, and let K: ft * ft -• ft denote the

multiplication. Then for Y e T(fta ) , X e T(ft^S.,

T(K)(Y • X) = T(Rj (Y) + T(L ) (X). //
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Using this, we prove that the inversion in a differentiable groupoid ft is a

smooth map. Define 0: ft * ft > ft x ft by (n,O I"* (n,nS)« Then 6 is a bisection, by
3

the algebraic properties of ft. To see that 0 is an immersion, take

Y * X e T(ft * ft) ( . and suppose T(0)(Y H ) = 0 « 0, Since TT^© = TT^ it follows

that Y = 0. Hence'x e T(ft^) and 1.2 can be applied to show that X = 0. Since

a and 3 are both submersions, ft * ft and ft x ft have the same dimension and so 0 is
3

etale everywhere on ft * ft. Hence it is a diffeomorphism and the composite of

ft -• ft x ft, n I—> (n,3ri), followed by 8~ , followed by IT : ft * ft ->• ft, is smooth; this
3 2

is the inversion map. Inversion is its own inverse and is therefore a
diffeomorphism.

Note further that the object inclusion map e in a differentiable groupoid is

an immersion, since either projection is left-inverse to it, and is a homeomorphism

onto B by II§1. B is therefore a closed embedded submanifold of ft. The a-fibres

and 3-fibres are also (pure) closed embedded submanifolds of ft. Lastly, in the

definition of a smooth morphism, the condition that <j> be smooth is superfluous, as

in the topological case.

Definition 1.1 is taken from Pradines (1966). Ehresmann (1959) requires

only a differentiable structure on ft for which £ \—• a(£) and £ h+ 3(£) are

subimmersions and multiplication ft * ft •• ft is smooth; Kumpera and Spencer (197 2)

and ver Eecke (1981) require differentiable structures on ft and B such that the

projections and object inclusion map are smooth, ft * ft is an embedded submanifold

of ft x ft and multiplication is smooth. Ver Eecke (1981) gives a proof that even in

this more general case the smoothness of the inversion map follows from the other

conditions, though not so easily.

It must be admitted that the condition that a and 3 be submersions is a

strong one; 1.9 shows that a transitive differentiable groupoid is actually locally

trivial. Nonetheless, this author does not know of any example, much less a

substantial class of interesting examples, of an a-connected, transitive groupoid

which is differentiable in one of these more general senses, but for which the

projections are not submersions. None of the three works cited above develops in

any substantial way the theory of groupoids which are differentiable in a more

general sense; nor do they give examples of the more general concept. According to

Kumpera and Spencer (1972, p. 258) a simple argument shows that an a-connected

groupoid which is differentiable in their sense, actually satisfies 1.1. In the

absence of definite motivation for the more general concept, we accept the

substantial conveniences offered by 1.1.
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It may be asked why we do not carry this attitude further and restrict

ourselves from the outset to differentiable groupoids which are locally trivial.

Firstly, the elementary parts of the theory are not simplified by this assumption,

and it is valuable to see at what points local triviality is actually necessary.

Secondly, there is a substantial and important theory of microdifferentiable

groupoids (see Pradines (1966) and Almeida (1980); the definition is given in 6.3)

the value and interest of which lies almost entirely in the non locally trivial

case. For example any foliation defines a microdifferentiable groupoid which is non

locally trivial (providing the dimension and codimension are positive) - see the

discussion following 6.3. Though this book does not cover that theory, it will

serve as a better introduction to it if local triviality is only imposed when it is

actually needed.

Consider now a differentiable groupoid ft on B. The vertical subbundle

of Tft for a: ft -• B is denoted by T ft and called merely the vertical bundle for ft.

It is an involutive distribution on ft whose leaves are the components of the

a-fibres of ft.

Proposition 1.3. Let ft be a differentiable groupoid on B. Then the a-identity-

component subgroupoid ¥ is open in ft.

Proof. Let <j>: RP x Rq -• V. £ ft be a distinguished chart for the foliation induced

by Taft, where %(\ B ± 0 and <j>({0} x Rq) = W n B. Then clearly 2i£¥. Taking the

union of such ZC we obtain an open neighbourhood of B in ft which is contained in y.

Now V is the union of those leaves of the foliation which intersect the open

neighbourhood and so is itself open. //

Theorem 1.4. Let ft be a differentiable groupoid on B. For any x e B, 3 : ft + B is

a subimmersion.

Proof. Let $ denote the set of values taken by the local admissible sections of ft;

clearly $ is a wide subgroupoid of ft. We prove that each <f> is open in ft .

Let <j>: Rp x Rq -• 21 £r ft be a distinguished chart for the foliation induced

by T ft, with <J>(0,0) a point of $. Choose <f> so that U = a(2f) is the range of a

chart ijr. Rq -»• U; we identify a with the projection RP x Rq -• Rq and 3 with a

submersion RP x Rq -• Rq ( ~ 3(#)), also denoted 3. A local admissible section a

can now be identified with a map s: R ~->- R such that 3°(s x id): Rq ~+ Rq is a

diffeomorphism.
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By assumption there exists an s with s(0) = 0 and $«(s x id) £tale at 0 or,

equivalently, such that the graph of s in transverse (in the strong sense of a

direct sum) to the 3-foliation of RP x Rq at (0,0). Now one can see that there is a

neighbourhood N of 0 in RP such that ¥ t e N there is a local diffeomorphism

X*. RP+q ~+ RP+q near (0,0) which takes (0,0) to (t ,0), maps each a-fibre

RP x {u} into itself, and maps the graph of s to the graph of a new map s' which is

still (strongly) transverse to the 3-foliation at (t ,0). This proves that $ (for

x = K0)) is open in ft .

By II 3.11 it follows that $ contains ¥, the cx-identity-component subgroupoid

of ft. Fix x e B and take £, n in a common component of ft . Then £ = £n e Y and

so there is a local admissible section a e T ft with 3n e U and a(3n) = £. Now
U V

L : ft -• ft (where V = (3°a)(U)) maps n to 5 and 3 ° L = (3°a)°3 . Hence the ranks

of 3 at 5 and n are equal. //

1.4 and its proof were communicated to the author by Pradines in 1979.

Corollary 1.5. Let ft be a differentiable groupoid on B. Then for all x,y e B, ft^

is a (pure) closed embedded submanifold of ft , ft^ and ft. In particular, each vertex
x
 x

group ft is a Lie group.

Proof. Only the purity needs to be established and that follows from the fact that

for £,TI e ft , there is a dif feomorphism ft -• ft carrying £ to n, namely R , where
_ 1 X X X A

X - 5 n. //

Theorem 1.6. Let ft be a differentiable groupoid on B. Then V x e B, M = 3 (ft)

is a submanifold of B.

Proof. Denote ft by P and ft by G. Then, by 1.5, the restriction of the groupoid
• x x

multiplication to P x G •• P is a smooth action of a Lie group on a manifold. It is

easily seen to be proper: if K,L£~P are compact then {g e G | Kg A L £ 0} is the
image under P x p -• G, (n,£) *--• n"1^, of the closed subset K x L = (K x L) n (p x p)

6x Sx 3X

of the compact set K x L and is therefore compact. Since the action is also free,

it follows that {(€g,£) | Z, e P, g e G} is a closed embedded submanifold of P x P

and so there is a quotient manifold structure on P/G (see, for example, Dieudonne

(1972, 16.10.3)).

Define j: P/G •• B by j (£G) = 3 (£). Then j is smooth and injective. Since

P • P/G is a submersion, rk^G^J^
 = r k c ^ )> ¥ ^ e p> a n d so j is a subimmersion.
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Now an injective subiramersion is an immersion. //

Corollary 1.7. 3 : ft + B is of constant rank.1 x x

Proof. For rk (3 ) = dim (P/G) = dim P - dim G, //
c, x £G

\ -1
Since a is a submersion, it follows that ft^ = ft = a (M ) is a

x x X Mx
submanifold of ft. However it is not clear that the groupoid operations in ft are

M x
smooth, since it is not clear that ft* is a quasiregular submanifold of ft. One may

x
 x

define a distribution-with-singularities I on B by I = im T(3 _).,» for any £ e ft ,

and the components of the M are clearly the leaves of this distribution, but it is

not clear that the leaves of a distribution-with-singularities are necessarily

quasiregular. However this awkwardness can be circumvented:

Theorem 1.8. Let ft be a differentiable groupoid on B and let M be a transitivity

component of B. Then there is a manifold structure on ft with respect to which it

is a submanifold of ft and a differentiable groupoid on M. Further, ft is locally

trivial.

Proof. Choose x e M. From 1.6, 3 : ft •• M is a smooth surjective map. By Sard's

theorem, it must be a submersion somewhere, and therefore, by 1.7, it is a

submersion everywhere.

Now consider the division map 6 : ft x Q ->• ft. We claim it also is a
xx x

subimmersion. Take T) and n1 in a common component of ft and £ and £' likewise.

From the proof of 1.4 we know that there exist x z T ft, o z T ft such that L (n) = nf

and L (£) = £'. Now the following diagram commutes where V' = (3°x)(V), U1 = (3*a)(U)

L t x L a

and the right-hand map is £ H+ T( 3C)£cr( ot£) . Since both vertical maps are

diffeomorphisms, it follows that 6 has the same rank at (n,S) and (n',£')•

Now we proceed as in 1.6, using the diagram
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ft .

(The existence of the quotient manifold follows from the fact that $ : ft -• M is a

submersion.) The image of 6 is ft' and j 1 is, by the same argument as in 1.6, an

injective immersion.

Since 3 : ft •* M is a submersion, ft (M,ftX,B ) is a principal bundle. The
M x x x x x

proof that ft is a (locally trivial) differentiable groupoid on M is now reduced to
M P x p

showing that, for any principal bundle P ( M , G , T T ) , the associated groupoid — - — is
b

a locally trivial differentiable groupoid. This follows the same formal outline as

in the topological case (II 1.12 and II 2.7). //

Corollary 1.9. A transitive differentiable groupoid is locally trivial. //

Corollary 1.10. Let ft be a differentiable groupoid on B, and let x e B. Then

6 : ft x ft •• ft is of constant rank and ft is locally trivial iff 6 is a submersion,
x x x x

Proof. From 1.8, 6 is known to be a subimmersion; the same argument as in 1.7

shows that it is actually of constant rank. The second statement follows as in II

2.6 (and does not depend on 1.8). //

1.4 and 1.9 constitute a version of Theoreme 4 of Pradines (1966)

appropriate to the category of pure, paracompact, Hausdorff manifolds. See also

Pradines (1986).

Definition 1.11. A Lie groupoid is a locally trivial differentiable groupoid. //

It is clear from what has been said in the course of the preceding results,

that the equivalence II 1.19 and II 2.7 between locally trivial topological

groupoids and principal bundles remains valid for the case of Lie groupoids and

(C ) principal bundles. Since an open subimmersion is a submersion, there is no

place for a concept of "principal differentiable groupoid".

Clearly the examples of trivial groupoids (II 1.9), frame groupoids (II
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1.13), and group bundles (II 1.17) remain valid in the C case.

Example 1.12. Let B be a manifold and let X ^ B x B be an equivalence relation on B

which is a closed embedded submanifold of B x B. Then X, with its submanifold

structure, is a differentiable groupoid on B iff the projection ir_: X •*• B,

(y,x) M- x, is a submersion. By Godement's criterion (Serre (1965, LG 3.27)) this

is the case iff there is a quotient manifold structure on B/X. In this case X is

the foliation defined by the submersion B •• B/X, at least if it is a-connected. //

Example 1.13. If G x B •* B is a smooth action of a Lie group on a manifold then the

action groupoid G x B is a differentiable groupoid on B. 1.7 shows that each

evaluation map is a subimmersion of constant rank, 1.6 that the orbits are

submanifolds of B, and 1.9 that if G acts transitively, then B is equivariantly

diffeomorphic to a homogeneous space; 1.9 also includes the existence of local

cross-sections for closed subgroups of Lie groups.

In other words, these results are consequences of Pradines' result 1.4 and

Godement's criterion. The standard proof of these results is essentially the same

(see Dieudonne (1972, XVI.10)). //

Example 1.14. Let B be a connected manifold, and consider the fundamental groupoid

T(B) (see II 1.14). Since the anchor [3,a]: 7T(B) -> B x B is a covering, there is a

unique manifold structure on J[ (B) for which [3,a] is smooth and it is then etale

(see, for example, Dieudonne (1972, 16.8.2)). Because this manifold structure is
U.

defined locally, in terms of open sets 7f(B) J, it is easy to see that 7T(B) is a

differentiable groupoid on B with respect to this structure and is locally trivial.

Similarly, the monodromy groupoid Mft of an a-connected Lie groupoid ft has a

natural smooth structure with respect to which Mft is a Lie groupoid and the

projection ij>: Mft •*• ft is smooth and etale. See II 6.4. //

Example 1.15. Let ft be a differentiable groupoid on B and denote the multiplication

by K: ft * ft ̂  ft. Then Tft is a differentiable groupoid on TB with projections T(cc),

T(3) and multiplication T ( K ) : T(ft) * T(ft) •• T(ft). //

The sheaf topology on a germ groupoid J (ft) (see II 1.15 and II§5) is non-

Hausdorff and therefore will not admit a differentiable structure in our sense. For

the differentiable version of J ( O , see, for example, Kumpera (1975) or ver Eecke

(1981).
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Much of Chapter II remains valid for differentiable and Lie groupoids and we

have already used concepts such as local triviality and admissible section without

comment, taking as obvious the fact that these refer to C analogues of the cncepts

defined in Chapter II. Those parts of Chapter II which refer to subgroupoids and

quotient groupoids cannot be assumed to remain valid; these questions are briefly

treated below, as is also the theory of smooth actions and representations of Lie

groupoids. With these exceptions, and excluding also the examples with sheaf

topologies and example II 1.16, the material of §§1 - 6 of Chapter II is taken over

without comment. The C analogue of II§7 is treated in III§7.

It is clear from the example of the groupoids B x B that a differentiable

groupoid need not have a unique underlying analytic structure, and that a given

topological groupoid may have several non-diffeomorphic underlying structures of

differentiable groupoid. A continuous morphism of differentiable groupoids need not

be smooth, even if it is a base-preserving morphism of trivial differentiable

groupoids

9: B -• G.

groupoids - consider B x B + B x G x B , (y»x) '"* (y»e(y)Q(x)~ ,x) for suitable

Definition 1.16. Let ft be a differentiable groupoid on B. A differentiable

subgroupoid of ft is a differentiable groupoid ft' on B' together with a morphism

of dif ferentiable groupoids <j>: ft' •• ft which is an injective immersion. A

differentiable subgroupoid (ft',<}») of ft is an embedded dif ferentiable subgroupoid

if $ is an embedding. A differentiable subgroupoid (ft',<J>) is wide if B' = B and

•o • " B -

Let ft be a Lie groupoid on B. A reduction of ft, or a Lie subgroupoid of ft,

is a wide differentiable subgroupoid (ft',<j>) such that ft' is locally trivial. //

The obvious concept of equivalence for differentiable subgroupoids will be

used without comment.

To generalize to differentiable or Lie groupoids the well-known results for

the existence and uniqueness of Lie subgroup structures on subgroups of Lie groups

seems to be difficult, and we will not treat these questions. In view of the

examples B' x B'C: B x B, an immediate restriction must be that the subgroupoids are

wide. Conjectures can be manufactured almost indefinitely, as the choice of

hypotheses varies; if one is only interested in reductions of Lie groupoids, the

nature of the problems is of course much changed. Some small results will appear in

the course of subsequent sections; for example, 1.21 shows that a closed reduction

of a Lie groupoid is an embedded submanifold. Together with 1.9, this implies that
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if a closed, wide, transitive subgroupoid of a Lie groupoid has a structure of

differentiable subgroupoid, then it is an embedded and locally trivial

differentiable subgroupoid. This observation may help attack the existence problem,

perhaps by using a closed graph theorem and approximating a continuous classifying

map by a smooth one.

Proposition 1.17. Let ft be a differentiable groupoid on B. Then Gft is a closed

embedded submanifold of ft and is a differentiable subgroupoid of ft.

Proof. As in 1.4, represent a: U •• U = a(c£) locally by TT: RP X Rq •* Rq, for some

open VSs. ft which intersects Gft, and represent 3 by a submersion 3: R x Rq -• Rq.

Then Gft nU is {(t,u) e RP x Rq I 3(t,u) = u}, that is, it is the pullback

RP x R
q

Hence Gft C\ cL i s an embedded submanifold of IL and since the ^ are open i n ft, Gft i s

an embedded submanifold of ft, closed since i t i s [3,a] (A ) .
B

Since 3: Rp x Rq -• Rq ±s a submersion, Gft n U + RP x Rq i s a submersion, and

so the composite map Gft f\ VL + R i s a submersion. This i s the r e s t r i c t i o n of

a: Gft •> B to

That Gft satisfies the other conditions for a differentiable subgroupoid is

obvious. //

For our later purposes, the most important examples of differentiable

subgroupoids are closed, embedded reductions and arise as the isotropy groupoids of

smooth actions:

Definition 1.18. Let ft be a differentiable groupoid on B and let p: M •*• B be a

smooth map. Denote the pullback of p over the submersion a by ft * M. A smooth

action of ft on (M,p,B) is a smooth map ft * M •• M which satisfies the algebraic

conditions of II 4.1. //
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It is easy to see that the action groupoid ft * M (see II 4.20) is a

differentiable groupoid on B. From this observation comes the following result:

Proposition 1.19. Let 11 * M > M be a smooth action of a differentiable groupoid

ft on a smooth map p: M •• B. Then

(i) each orbit H[u], u eM, of His a submanifold of M;

(ii) each evaluation map ft , x •»• M, £ h+ £u is a subimmersion of constant
p(u)

rank;

(iii) if the action is transitive, then each evaluation map is a surjective

submersion;

(iv) if ft is locally trivial, then (M,p,B) is a fibre bundle and so too is

each orbit (ft[u],p,B);

(v) the set M/ft of orbits has the structure of a quotient manifold from M

iff the graph r = {(u,£u) e M x M | U e M, £ eft..} of the action is

a closed embedded submanifold of M x M.

Proof. (i) - (iii) follow from 1.4, 1.6, 1.7, 1.8 and 1.9.

(iv) follows as in II 4.9.

(v) follows from Godement's criterion and the observation that the

following diagram commutes

ft * M

where the vertical map is (£,u) I—• (u,£u). //

Theorem 1.20. Let ft be a Lie groupoid on B and let ft * M + M be a smooth action

of ft on the fibre bundle (M,p,B). Let p e W be an ft-deformable section. Then the

isotropy groupoid $(y) of ft at y is a closed embedded reduction of ft.

Proof, y takes values in a single orbit of ft so, by 1.19, we can assume that ft

acts transitively on M.

Define f : ^ M x M b y ? K (y( 0g) , £y(ot£) ) . Then = f - i which



CHAPTER III 94

shows that $(y) is closed in ft. We prove that f^Aw in M x M. For £ e $, choose
M p o

decomposing sections U -• ft and V •*• ft in neighbourhoods U, V of x = a£ ,
b b o o

y = $£ ; then f has the local expression
o o

V x G x u •• (V x F) * (V x F)

(y,g,x) h+ ((y,a'(y)), (y,ga(x)))

where F = M, , G = ft and a: U + F, a' : V •*• F are the local expressions of y. Let \

correspond to (y ,g ,x ), and note that a'(y ) = g a(x ) because £ e $(y).
o o o o o o o

Given X,Y e T(F) . . , there is a W £ T(G) such that evaluation G •»• F,

a ' (V g
0

g h+ ga(x ) maps W to X - Y. This is because the action G x F •> F is smooth and
o

transitive and therefore each evaluation is a submersion. Hence, given also

Z e T(V) , we have f^(0 * W <* 0) + (Z * Y) * (Z * Y) = (Z * Y) • (Z « X) and this

proves that f/lî . Hence $ is an embedded submanifold of ft.
To show that $ is a differentiable subgroupoid of ft it is only necessary to

show that the projections $ -• B are submersions. In fact 3: $ -• B is the composite

<j> -£-• A^ —-•• M -£-+ B

in which each map is a submersion.

That $ is locally trivial follows from 1.9. //

This theorem is taken from Ngo (1967, I.3.a); the proof given there,

however, seems to address only the local problem. There is a converse, which goes

back to Ehresmann (1959) and whose principal bundle formulation is well-known from

Kobayashi and Nomizu (1963, I 5.6):

Proposition 1.21. Let ft be a Lie groupoid on B and $ a reduction of ft whose vertex

groups are closed (and hence embedded) subgroups of the vertex groups of ft. Choose

b e B, write G = ft!\ H = *J\ P = ftv and let M be the fibre bundle
 P X i; 6 —

b b b G

corresponding to the standard action of G on G/H, and ft * M -• M the associated

action £<n,gH> = <£n,gH> (see II 4.8, II 4.9).

For x e B choose £ e $^ and define y(x) = <C,H>. Then p is a well-defined,
D

smooth, ft-deformable section of M, and $(y) = $. In particular, $ is a closed,

embedded reduction of ft.
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Proof. That \i is smooth follows from the facts that B, : $ -• B is a surjective
b b

submersion, and $ is a subraanifold of ft . That $(u) = $ is a trivial algebraic
b b

manipulation. //

1.21 shows that a closed reduction of a Lie groupoid is an embedded

submanifold. It would be very interesting to know if every closed transitive wide

subgroupoid of a Lie groupoid is an embedded submanifold, and a differentiable

subgroupoid.

1.20 and 1.21 give a classification of those closed embedded reductions of a

Lie groupoid which have a specified vertex group at a chosen point of the base. A

closed embedded reduction may of course fail to be trivializable over open subsets

of the base over which the larger groupoid is trivializable, as the following

example shows.

Example 1.22. Let G be a Lie group and H a closed subgroup of G. Then

G * G
H

(G/H) x G x (G/H)

< g2'gl > H * ( g 2 H ' g2gl ' g l H )

is a smooth morphism over G/H and an embedding. //

Proposition 1.23. Let Q be a differentiable groupoid. Then ft * GO, + Gft,

(£,A) I""*" Ir(^) = £ H is a smooth action of ft on the inner subgroupoid Gft.

Proof. Since Gft is an embedded submanifold of ft (1.17), this is trivial. //

The following construction is needed in 1.25.

Proposition 1.24. Let ft and ft1 be differentiable groupoids on B, and let ft be

Lie. Then the product groupoid ft x ft' defined in 1§3 has a unique differentiable
BxB

structure with respect to which it is a differentiable groupoid on B, the

projections TT: ft x ft' -• ft, IT': ft x ft1 + ft1 are smooth, and TT' is a submersion.
BxB BxB

ft x ft1 is Lie iff ft1 (in addition to ft) is Lie, and this is the case iff v (in
addition to ir') is a submersion.

Proof. The differentiable structure on ft x ft' is of course the pullback structure
BxB

of [3,a] over [8',a!]. The stated properties are easily verified. //
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The following proposition and examples are basic to connection theory.

Proposition 1.25. Let ("E,p,B) be a vector handle.

(i) The action n(E) * Homn(E; B x R) > Homn(E; B x R) defined by

£<J> = <\>o(Cl)n is smooth.

(ii) The action n(E) * Homn(E;E) -• Homn(E;E) defined by £<j> = ScxjxKs"1)11 is

smooth.

(iii) Let (Ef,p',B) be another vector bundle.on the same base. Then the

action (n(E) x n(E')) * Hom(E;E') > Hom(E;Ef) defined by
B x B i

(£,£')<!> = VC$°Z is smooth.

Proof. The bundles Horn (E; B x R), etc., are commonly defined in terms of charts

induced from charts for E (for example, Dieudonne (1972, XVI.16)). Since charts

for E are decomposing sections for n(E), the results reduce locally to the

smoothness of the corresponding actions of Lie groups on vector spaces,

GL(V) x Homn(V;R) -• Homn(V;R), etc. //

Horn (E;E') of course denotes the vector bundle on B whose fibre over x e B

is the space of n-multilinear maps E x ••• x E •>• E1 and whose bundle structure is

induced from the bundle structure of E and E1 as in the reference cited above. The

actions (i) and (ii) clearly restrict to the subbundles Alt (E;E') and Sym (E;E') of

the alternating and symmetric multilinear maps; further, Hom(E;Ef) in (iii) could

be replaced by Horn (E;Ef) and the obvious action. Lastly, there are analogous

actions of II(E) on the tensor

be included in its statement.

actions of II(E) on the tensor bundles » E. We take all these variations of 1.25 to

Example 1.26. Let (E,p,B) be a vector bundle, and let < , > be a Riemannian
2

structure in E, regarded as a section of Horn (E; B x R) (see, for example, Greub

et al (1972, 2.17)). Then < , > is II(E)-deformable with respect to the action of

1.25(i), since any two vector spaces of the same dimension with any positive-

definite inner products, are isometric. Let II<E> denote the isotropy groupoid of

< , >. By 1.20 it is a Lie groupoid on B, the Riemannian or orthonormal frame

groupoid of (E, < , >). A decomposing section a: U •* IKEX of IKE> is a moving
b

frame for E, and the local triviality of II(E) is in fact equivalent to the existence

of moving frames in E. //
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Example 1.27. Similarly, if A is a determinant function in a vector bundle (E,p,B),

regarded as a never-zero section of Alt (E; B x R) (r = rank E), then A is n(E)-

deformable and the groupoid of orientation-preserving isomorphisms between the

fibres of E is a closed embedded reduction of n(E), denoted II (E). //

Example 1.28. Let (L,p,B) be a vector bundle and let [ , ] be a section of

Alt (L;L) such that each [ , ] : L x L •• L is a Lie algebra bracket. We call

such a section a field of Lie algebra brackets in L.

A field of Lie algebra brackets need not be II(L)-deformable. For example,

let D be a non-abelian Lie algebra with bracket [ , ] and in L = R x D define

[ , ] = t[ , ]. However 1.20 implies that if [ , ] is a field of Lie algebra

brackets in a vector bundle L and if the fibres of L are pairwise-isomorphic as

Lie algebras, then L admits an atlas of charts which fibrewise are Lie algebra

isomorphisms. In this case, (L,[ , ]) is a Lie algebra bundle, as defined in 2.3

below, and we denote the isotropy groupoid by II[L]. //

Example 1.29. Let y be a section of a vector bundle E on a connected base B. Then,

by a similar argument, E has an atlas of charts U x V •• E such that the local

representatives U •• V of y are constant, iff y is either never-zero or always

zero. This (trivial) result is well-known in the case of tangent vector

fields. //

Greub et al (1973, Chapter VIII) introduce a concept of E-bundle, defined as

a vector bundle E together with a finite set E of sections a. of various tensor
r. 1

bundles » (E), such that E admits an atlas with respect to which all the a are

constant. Their Theorem 1 (loc.cit.) follows from 1.20 by considering the natural

action of II(E) on the direct sum of the relevant tensor bundles. It is interesting

to compare the proof of their result with that of 1.20.

It is worth noting that in 1.28 and 1.29 the condition of pairwise

isomorphism, or of being never-zero or always zero, need hold only on each component

of the base separately. A similar comment applies to the next, and last, example.

Example 1.30. Let (E ,p ,B), v = 1,2, be vector bundles on base B, and let
1 2 1 2

<J>: E > E be a morphism, considered as a section of Hom(E ;E ) . Then <j> is

II(E) x n(E' )-deformable iff it is of constant rank. Now 1.20 shows that if this

is the case, there are atlases {ij> : U. x V -> EL }, v = 1,2, and a linear map
f: V1 > V2 such that <j>: E^ > E2 is represented by (x,v) H> (x,f(v)).
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This is of course a vector-bundle version of the standard characterization

of a subimmersion; note, however, that it does not apply to general subimmersions

M •• N since we are working with a fixed base. The result, nonetheless, is important

in the abstract theory of transitive Lie algebroids (see IV§1). //

The following result is often used.

Proposition 1.31. Let <|>: ft •• ft1 be a morphism of Lie groupoids over a connected

base B. Then

(i) <J> is of constant rank;

(ii) if <j> is injective for some b e B, then <J> is an injective immersion;

(iii) if <j> is surjective for some b e B, then <j> is a surjective submersion.

Proof. Follows from II 2.13 and the corresponding results for Lie group morphisms.

Proposition 1.32. Let <|>: ft •• ft1 be a morphism of Lie groupoids over B. Then

K = ker <j> is a closed embedded submanifold of Gft, and a sub Lie group bundle of Gft.

Further, im(<|>) is a submanifold of ft' and a reduction of ft1.

Proof. Let {a : U -• Q } be a section-atlas for ft, and denote by iĵ  = Ia> the

induced charts for Gft. Since <J>, is of constant rank, TC is an embedded submanifold

of ft^ Clearly ^(tL x K^) = Ky , so Ky is an embedded submanifold of Gftjy •

Since the Gftj are open in Gft, it follows that K is an embedded submanifold of Gft.

-1 ~
Since K = <J> (B) , it is obviously closed.

Let X denote the equivalence relation {(£A,£) | £ e ft, X e K, ot£ = $X} on ft

induced by K. As in 1.10, it is easy to see that 6f : ft x ft •»• ft, (n,£) H+ n £ is a
-1 &

submersion; since 6' (K) = X it follows that X is a closed embedded submanifold of
*2

ft x ft, and hence of ft x ft. The projection x • ft is a submersion, since

ft * K
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commutes; here ft * K -• X is (£, A) »—• ( £A, £) and ft * K > ft is (£,A) I—• £; this

latter map is a submersion because in the pullback square defining ft * K, the

projection K •• B is a submersion.

So, by Godement's criterion, the quotient manifold ft/X - that is, ft/K -

exists. It is easy to adapt the proof of II 1.6 to show that ft/K is a

differentiable groupoid; since h : ft -• ft/K is now a smooth morphism over B, it

follows that ft/K is Lie. Now the induced morphism <j>: ft/K -• ft' is smooth and

injective; since $ is of constant rank (by 1.31(1)) it follows (as in 1.6) that

<j> is also. It is therefore an immersion. This completes the proof. //

1.32 is the only result concerning quotient differentiable groupoids that we

will need. A more general result is stated in Pradines (1966).
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Lie algebroids.

This section introduces the concept of Lie algebroid, preparatory to the

construction in §3 of the Lie algebroid of a differentiable groupoid.

The concept of Lie algebroid, as a generalization of the concept of Lie

algebra, and obtained from a differentiable groupoid by a process clearly

generalizing that by which a Lie algebra is obtained from a Lie group, first

appeared in Pradines (1967). It was not used by Ehresmann (1951, 1956) in his

definitions of a connection. Atiyah (1957) had earlier constructed from a principal

bundle an exact sequence of vector bundles which is the Lie algebroid of the

corresponding groupoid (see 3.20); see also Nickerson (1961).

Related to the concept of Lie algebroid is the purely algebraic concept of

Lie pseudo-algebra over a (commutative and unitary) ring, which stands in the same

relationship to the concept of Lie algebroid as does that of module over a ring to

the concept of vector bundle. The concept of Lie pseudo-algebra has been introduced

by Herz (1953), Palais (1961b), Rinehart (1963), Hermann (1967), Nelson (1967) and

Pradines (1967), and by other writers since Pradines, usually with a view to

studying de Rham cohomology and Lie algebra cohomology simultaneously.

Rinehart (1963) proves a Poincare-Birkhoff-Witt theorem for protective Lie

pseudo-algebras and this is the only result of substance in the theory before the

announcement in Pradines (1968b) of the integrability of Lie algebroids. A

treatment of the material of this section, as well as parts of §5 and §7, and much

of IV§1, in terms of Lie pseudo-algebras, was given in Mackenzie (1979). We manage

to avoid here the explicit use of the concept of Lie pseudo-algebra.

The basic examples of Lie algebroids first appeared in Ngo (1968).

Definition 2.1. Let B be a manifold. A Lie algebroid on B is a vector bundle

(A,p,B) together with a vector bundle map q: A •• TB over B, called the anchor of A,

and a bracket [ , ] : Tk x Tk -»• TA which is R-bilinear and alternating and satisfies

the Jacobi identity, and is such that

(1) q([X,Y]) = [q(X),q(Y)] X,Y £ Tk

(2) [X,uY] = u[X,Y] + q(X)(u)Y X,Y e TA, u e C(B).

The Lie algebroid A is transitive if q is a submersion, regular if q is of

locally constant rank, and totally intransitive if q = 0. B is the base of A.
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Let A1 be a second Lie algebroid, on the same base B. Then a morphism of

Lie algebroids (f>: A •• A1 over B is a vector bundle morphisra such that q'©<}> = q and

], ¥X,Y e TA. //

The simplest examples of Lie algebroids are Lie algebras, Lie algebra

bundles, and the tangent bundle to a manifold. The reader familiar with principal

bundles should at this point read A§2-§3 where it is shown that the Atiyah sequence

of a principal bundle is a transitive Lie algebroid.

Pradines (1967) named the map q: A •»• TB the "fleche" of the Lie algebroid.

The usual translation, "arrow", is a much-used Word and we propose to call this map

the "anchor" of the Lie algebroid. It ties, or fails to tie, the bracket structure

on FA to the Poisson bracket on TTB.

The anchor of a Lie algebroid A encodes its geometric properties. If A is

transitive then right inverses to the anchor are connections in A (see §5). If A is

regular then the image of the anchor defines a foliation of the base manifold and

over each leaf of this foliation, the Lie algebroid is transitive. Compare the

situation with groupoids, where local right-inverses to the anchor correspond to

decomposing sections.

Proposition 2.2. Let A be a Lie algebroid on B, and U £_; B an open subset. Then the

bracket TA x TA ->• TA "restricts" to L A x r A ->• T A and makes Ay a Lie algebroid on

U, called the restriction of A to U.

Proof: It suffices to show that if X,Y e TA and Y vanishes on an open set Ui— B,

then [X,Y] vanishes on U. For x e U take u: B •• R with u(x ) = 0, u(B\j) = {1};
o o

then [X,Y](XQ) = [X,UY](XQ) = U(XQ)[X,Y](XQ) + q(X)(u)(xQ)Y(xo) = 0. //

For the restriction of Lie algebroids to more general submanifolds of the

base, see Almeida and Kumpera (1981).

The following examples are basic.

Definition 2.3. A Lie algebra bundle, or LAB, is a vector bundle (L,p,B) together

with a field of Lie algebra brackets [ , ]: FL x TL -• TL (see 1.28) such that L

admits an atlas {^ : U. x n -• L } in which each ty. is a Lie algebra isomorphism*
i i jj IL i,x

A morphism of LAB's <}>: L •*• L' , <\> : B •• B1, is a morphism of vector bundles
_______«___ Q

such that each <(> : L + L1 . . is a Lie algebra morphism. //
x x ^QW
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An LAB is clearly a totally intransitive Lie algebroid. On the other hand a

totally intransitive Lie algebroid is merely a vector bundle with a field of Lie

algebra brackets, as in 1.28, and need not be an LAB.

Example 2.4. Let B be a manifold and let Q be a Lie algebra. On TB * (B * 0)

define an anchor q = TT̂  : TB * (B x Q) and a bracket

[X * Y, Y « W] = [X,Y] 4> (X(W) - Y(V) + [V,W]}.

Then TB * (B * D) is a transitive Lie algebroid on B, called the trivial Lie

algebroid on B with structure algebra Q•

Let <t>: TB • (B x n ) +TB • (B xQ') be a morphism of trivial Lie algebroids

on B. Then the condition q V <J> = q implies that <j> has the form

(3) <KX * V) = X 4> (a)(X) + (J)+(V))

where co: TB -»• B x O1 is a Q1 -valued 1-form on B and <}>: B xQ -• B x Q ' is a vector

bundle morphism. Writing out the equation

[<KX • V ) , <j>(Y * W ) ] = <J)[X O V , Y * W]

and setting firstly X = Y = 0, then V = W = 0, and lastly V = 0, we obtain,

successively

(4) [<t>+(V),

(5) 6co(X,Y) + [u)(X),u>(Y)] =* 0

(6) X(<|>+(W)) - <|>+(X(W)) + [u)(X),<|>+(W)] = 0.

(4) is the condition that <J) be an LAB morphism, (5) is the condition

that a) be a Maurer-Cartan form. We call (6) the compatibility condition.

It is easy to see that, conversely, a Maurer-Cartan form a) e A (B,O')

and an LAB morphism <J> : B x Q ^ B x D 1 which satisfy (6), define by (3) a morphism

of Lie algebroids TB o (B x n ) -• TB * (B x n ' ) .

This decomposition should be contrasted with the decomposition I 2.13 of

morphisms of trivial groupoids. Given a morphism < { > : B X G X B - » - B X G ' X B

over B, if we define F: B x G -• B x G! by (x,g) H+ (x, TT <xj>(x,g,x)) and 6: B •• G1

by 8(x) = ir o<()(x,l,b) , where b is fixed, then 8 and F must satisfy a compatibility

condition comparable to (6). See 3.21 and 7.30.
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Similarly, it is possible to describe <|>: TB * (B x j ) -• TB * (B xfl1)

in terms of w and a single morphism of Lie algebras f = <J> • n > Q1 . Here,

however, f and u) must still obey a compatibility condition; see 7.30. //

Example 2.5. Let E be a vector bundle on B and consider the jet bundle exact

sequence (see, for example, Palais (1965))

End(E) ••-•• Diff (E) -£• Hom(T*(B) ,End(E) ) .

Here Diff (E) is the vector bundle Hom(J (E),E), whose sections can be naturally

regarded as first or zeroth order differential operators from E to itself, and the

symbol map, a, maps D e TDiff (E) to

6f M> (y h+ D(fy) - fD(y)) f e C(B), y e TE.

Map TB injectively into Hom(T*(B),End(E)) by

X h+ (w I--*- (y h+ o)(X)y)) a) e TT*(B), y e TE

and construct the inverse image vector bundle over B (see C.5),

CDO(E) > TB

(7)

Diff*(E) — • > Hom(T*(B),End(E)) .

The inverse image exists because a is a surjective submersion and since the right-

hand vertical arrow is an injective immersion, it follows as usual that the left-

hand arrow is also and we can therefore regard CDO(E) as a subvector bundle of

Diff (E). Similarly, because a is a surjective submersion, it follows that the top

arrow is also; we denote it by q. Clearly the kernel of q is still End(E), and we

have an exact sequence of vector bundles over B,

End(E) +--• CDO(E) -%+ TB

where the sections of CDO(E) are those f i r s t - or zeroth-order differential

operators D: TE •• TE for which
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(8) cr(D)(6f)(y) = X(f)y

for some X = q(D) e TTB and all f e C(B), y e TE. Equivalently,

(8a) D(fy) = fD(y) + q(D)(f)y f e C(B), y e TE.

A (first- or zeroth-order) differential operator D with the property (8) for

some vector field X is usually called a derivation in E. We will not use this term

because when E = L is an LAB it would unavoidably lead to confusion with the concept

of derivation which refers to the Lie bracket. Instead we call such a D a covariant

differential operator in E, since for any connection V in E and vector field X on B,

the covariant derivative V obeys (8).

For D,D! e TDiff^E), the bracket

[D,Df ] = D°Df - D'oD

is also in TDiff (E) and it is easy to check from (8a) that if D,D' e TCDO(E),

then [D,D'] e rCDO(E), and q([D,D']) = [q(D),q(Df)]. Lastly, one can also easily

check, again from (8a), that

[D,fDf] = f[D,D'] + q(D)(f)D' D,Df e TCDO(E), f e C(B)

and so CDO(E) is a transitive Lie algebroid on B, the Lie algebroid of covariant

differential operators on E.

Let E = B x V be a trivial vector bundle, and define a morphism from the

trivial Lie algebroid TB * (B x QI(V)) into CDO(B * V) by

(X • <|>)(n) = X(y) + <|>(y) y: B > V

where X(y) is the Lie derivative. It is easy to check that this is an isomorphism

of Lie algebroids over B.

In general, CDO(E) plays the role for E that is played for a vector space V

by the general linear Lie algebra ol(V). This will become apparent in the course of

the following sections.

See also the original construction in Atiyah (1957,§4), where the bundle

D(E) is a form of the dual of CDO(E). //

Example 2.6. An involutive distribution (without singularities) A on a manifold B

is a regular Lie algebroid on B with respect to the inclusion A 2 TB as anchor and

the standard bracket of vector fields. //
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Example 2.7. Let B = R and define a bracket [ , ]' on TB by

d̂ _

dF
d

dF : B

and an anchor q: TB > TB by q(C ~r") - t£ -«— • It is straightforward to check that

TB is a Lie algebroid on B with this structure, and that it is not regular //

Let A be a transitive Lie algebroid on B. The kernel L of q: A --»•-> TB

inherits the bracket structure of A (by (1) in 2.1) and is itself a totally

intransitive Lie algebroid on B. We usually write a transitive Lie algebroid in the

form

L -J-+ A -£•• TB.

The notation j allows L to be any totally intransitive Lie algebroid isomorphic to

the kernel of q; for example, in the case of the Atiyah sequence of a principal

T P P x flT P
e of a pr

P x fl
—=-"- (s

T P P x fl
bundle P(B,G,TT), the kernel —-r- of TT̂  is usually replaced by —=-"- (see A§3).

We call L the adjoint bundle of A. The reason for this terminology will

gradually become clear - see, for example, A§3, 3.18 and 3.20, and 5.8. In IVS1 we

will prove that L is actually an LAB.

A morphism <J>: A •• A* of transitive Lie algebroids over B obeys

q '© § = q and therefore induces a morphism of the adjoint bundles <J> : L + L1 •

This is a morphism of totally intransitive Lie algebroids. In IV§1 we show

that <j> (and hence <j>) is of locally constant rank.

The following version of the 5-lemma is extremely useful.

Proposition 2.8. Let <J>: A > A' be a morphism of transitive Lie algebroids over B.

Then <J> is a surjection, injection or bijection iff <J> : L •• L1 is, respectively, a

surjection, injection or bijection.

Proof: This is a diagram-chase in
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If A is a regular Lie algebroid on B then I = im q is an involutive

distribution on B and L = ker q is still defined. Such a Lie algebroid could be

written in the form

L 4+ A JU i

and a version of 2.8 would continue to hold. However in this case L need not be an

LAB and morphisras need not be of locally constant rank (as the totally intransitive

case shows).

The regular case may to some extent be reduced to the transitive case, since

the restriction of a regular Lie algebroid to a leaf of the foliation defined by

I - im q is transitive. However there remains the question of how the restrictions

are bound together, and we will not address this problem.

We conclude this section with some basic algebraic definitions. These are

kept to the minimum needed in the present chapter, since little of substance can be

said except in the transitive case and then only by using results which will not be

proved until IV§1.

Definition 2.9. Let A be a Lie algebroid on B and let E be a vector bundle, also on

B. A representation of A on E is a morphism of Lie algebroids over B,

p: A •• CDO(E).

Let p1: A •• CDO(Ef) be a second representation of A. Then a vector bundle

morphism <|>: E -• E1 is A-equivariant if <t>(p(X)(y)) = p(X)(<j>(y)) for X e A, y e E.

Let p : A •• CDO(E ), i = 1,2 be representations of Lie algebroids over B on

vector bundles over B, let <f>: A •• A be a morphism of Lie algebroids over B, and

let ^: E •*• E be a morphism of vector bundles. Then ty is <j>-equivariant if

Kp^XXy)) = p2(<KX))(Ky)), VX e A1, y e E1. //

In IV§1 we will see that if A is transitive, then equivariant morphisms are

of locally constant rank.

Example 2.10. Let A be a Lie algebroid on B and let V be a vector space. The

trivial representation of A on B x v is

p°(X)(f) = q(X)(f) f: B -• V, X e TA. //
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Example 2,11. Let A be a transitive Lie algebroid on B. The adjoint representation

of A. is the representation

ad: A + CDO(L)

of* A on its adjoint bundle L defined by

ad(X)(V) = [X,V] X e TA, V e TL. //

We return to the adjoint representation in §4 and §5. It plays a crucial

role in the developments of Chapter IV,

p x v
Example 2.12. Let P(B,G) be a principal bundle and let E = — p — be an associated

vector bundle. Given x e r(—) denote by X the corresponding G-invariant vector

field on P; and given p e FE denote by y: P -• V the corresponding G-equivariant

map. Then the Lie derivative X(y) is also G-equivariant (see A 4.4); denote the

corresponding element of TE by X(y). Then A 4.6 shows that X H (y t—• X(y)) is a
TP

representation of —— on E. //

Example 2.13. Let E be a vector bundle on B, and let V be a flat connection in E.

Then X h+ Vx is a representation of TB on E. //

Definition 2.14, An exact sequence of Lie algebroids over B is a sequence of

morphisms of Lie algebroids over B

A 1 •»--• A —•-• A "

which is exact as a sequence of vector bundles over B. //

The Lie algebroid A1 must be totally intransitive, for

q1 = qoi = (q"*ir)oi = 0. The basic example is of course L +1+ A -^+ TB for A a

transitive Lie algebroid.

Definition 2.15. Let A be a transitive Lie algebroid. A is abelian if its adjoint

bundle is, that is, if

[V,W] = 0 ¥V,W e L. //

Proposition 2.16. Let E -•—• A1 —••• A be an exact sequence of Lie algebroids over B

with E abelian. Then
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i(p(X)(y)) = [X',i(y)] X e TA, y e TE,

where X' £ FA' has TT(X' ) = X, defines a representation of A on E.

Proof: Exercise. //

In particular, if A is transitive and abelian, there is a natural

represeatation of TB on the adjoint bundle L (compare the final remarks in I§3).

Definition 2,17. Let A be a Lie algebroid on B. A Lie subalgebroid of A is a Lie

algebroid A1 on B together with an injective morphism A' ->—*• A of Lie algebroids

over B.

If A is transitive, a reduction of A is a Lie subalgebroid of A which is

itself transitive. //

Proposition 2.18. Let A and A' be Lie algebroids on B and let A be transitive.

Let A * A1 denote the inverse image vector bundle over B
TB

q1

TB

(see C.5). Let q: A ^ A1 + TB be the diagonal composition and define a bracket on
TB

r(A * A') by
TB

[X * X' , Y « Yf ] = [X,Y] * [X1 ,Y' ] .

Then A * A1 is a Lie algebroid on B, and the diagram above is now a
TB

pullback in the category of Lie algebroids over B. Lastly, A * A1 is transitive
TB

iff A1 (as well as A) is transitive and this is so iff A * A1 + A
TB

(as well as A $ A' •• Af) is surjective.

Proof: Straightforward. //

A <* A.1 is called the direct sum Lie algebroid of A and A1 over TB. Note

that the trivial Lie algebroid TB * (B xQ) is not a direct sum of TB and B *D .

Concepts of kernel, ideal and quotient Lie algebroid are defined in IV§1.
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3. The Lie algebroid of a differentiable groupoid.

This section gives the construction of the Lie algebroid of a differentiable

groupoid and works the basic examples. The construction follows very closely the

construction of the Lie algebra of a Lie group. However since the right translations

on a groupoid, the R : ftg * ft , are diffeomorphisms of the a-fibres only and not

of the whole groupoid, a vector field X on a differentiable groupoid ft can be

defined to be right-invariant only if it is tangent to the a-fibres. Having noted

this, a right-invariant vector field on ft is determined by its values on the

unities x, x e B, and we define the Lie algebroid of ft to be Aft = [J T ( ^ x ) ~
 w i t h

xeB
the natural vector bundle structure over B which it inherits from Tft. The Lie

bracket is placed on the module of sections of Aft (not on Aft itself) via the

correspondence between sections of Aft and right-invariant vector fields on ft. This

bracket is not bilinear with respect to the module structure on TAft but obeys

[X,fY] = f[X,Y] + q(X)(f)Y f e C(B), X,Y e TAft

where q: Aft > TB is a vector bundle morphism over B which maps each X £ TAft to

the 3^projection of the corresponding right-invariant vector field. The map q,

which we are calling the anchor of Aft, ties the bracket structure on TAft to its

module structure, and is the only feature of the Lie algebroid concept which does

not appear in the case of Lie algebras. The anchor q: Aft •• TB is, further,

essential to the connection theory of ft; for this see §5.

The construction of the Lie algebroid of a differentiable groupoid is due to

Pradines (1967).

Let ft be a differentiable groupoid on a manifold B.

Definition 3.1. The vector bundle AH + B is the inverse image of Taft ->• ft

across the embedding e: B •>• ft. Thus

(1)

is a pullback. //

Aft > Taft

1 I
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Since e is an embedding we will usually regard Aft as the restriction

of Taft to 3 and we identify the fibres Aftl with the tangent spaces T(ft ) ~ ,
a x x

x e B, and regard Aft -• T ft as an inclusion.

Definition 3.2. A vertical vector field on ft is a vector field X which is vertical

with respect to a; that is, X e T^ap\
 f o r a 1 1 ^ i n t h e doTnain o f x«

A global vector field X on ft is right-invariant if it is vertical and

X(nO = T(R^) ̂ (XCn)) for all (n,S) e ft * ft. //

A trivial manipulation shows that a vertical vector field X is right-

invariant iff X(£) = T(R )(X(§T)) for all E, e ft. Thus a right-invariant vector field

is determined by its values on the submanifold of identity elements. We denote the

section of Aft corresponding to the composite X©e: B •• T ft by xl The next result

provides an inverse for X H-• XJ .
TB

Proposition 3.3. The vector bundle morphism

T°a J L Aft

(2)

where 7[ = T(R ) : T(ft ) + T(ft ) , is a pullback.
£ E~

Proof: The composite of T(6): T(ft x ft) -• Tft with the tangent to ft + ft x ft,
a a

£ H- (a^,^), restricts to Taft •> Taft; factoring this map over the pullback Aft

gives J\t which is therefore smooth.

0 CD
Each A is clearly an isomorphism of vector spaces, so «/(, is

C.2. //

Corollary 3.4. Given X e TAft, the formula

T(R5)(X(35)), 5 e ft,

defines a right-invariant vector field on ft.

Proof: For, in the notation of C.3, X = $ # ( X ) . //
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Corollary 3.5 The map

C(ft) » rAft -• TT\ f • XH- fX
C(B)

is an isomorphism of C(ft)-modules.

Proof: See C.4. //

For a Lie group G it is well-known that TTG = C(G) » (J and since a Lie

algebra is free as a vector space it follows that any vector field X on G can be

written as

(3) X = f.xt + ••• + f X*
1 1 n n

where {Xn,...,X } is any basis for D • For a vertical vector field X e rraft, 3.5
In u

states that there are X e rAft for which (3) holds, but since rAft is in general only

a projective C(B)-module, and not free, the X and n may vary with X.

The two pullback diagrams (1) and (2) show that T ft -• ft is trivializable

iff Aft •• B is so; this generalizes the fact that the tangent bundle of a Lie group

is trivializable.

RI &
Denote the set of right-invariant vector fields on ft by r T ft. It is a

C(B)-module under the multiplication fX = (f•3)X and the maps

(4) rRITaft + rAft, XH- x[B; rAft + rRITaft, X H- X

are mutually inverse C(B)-module isomorphisms.

Lemma 3.6. rRTTaft is closed under the Poisson bracket.

Proof: X e TTft is vertical iff X ~ 0 e ITB and X e rraft is right-invariant

iff XJ0 ~£ x|0 for each £ e ftj, x, y e B. The result now follows from the fact

that for any smooth map <J>: M •»• N, and X,Y e TTM, X1 ,Yf e HTN, X ~ X1 and Y ~ Y1

imply [X,Y] ~ [X',Y']. //

Rl ot
3.6 permits the Poisson bracket on T T ft to be transferred to TAft, that is,

we define
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(5) [X,Y] = [X,Y][B X,Y e rAft.

This bracket is alternating, R-bilinear and satisfies the Jacobi identity; these

follow immediately from the corresponding properties of the Poisson bracket. For a

function f e C(B) and X,Y e rAft we have

[X,fY] = [X,(fc3)Y]

= (f°3)[X,Y] + X(f<>3)Y

= f[X,Y] + X(f«3)Y.

Now because 3: ft + B is a surjective submersion and 3*R- = 3, V£ eft, every right-

invariant vector field X is 3-projectable; that is, there is a vector field X1 on B

such that

X'(f)o3 = X(f«3) Vf e C(B),

and in terms of X1, we obtain

[X,fY] = f[X,Y] + X'(f)Y.

X1 is the 3-projection of the right-invariant vector field associated to X,

and is described more simply as follows.

Definition 3.7. The anchor q = q : Aft •»• TB of Aft is the composite of the vector

bundle morphisras

I I
and

Taft > Tft > TB

//

B
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Since 3°£ = id , q is a morphism over B.
B

Lemma 3.8. For X e rAft, X is 3-related to q(X).

Proof: T(3)(XU)) = T(3«>R^) (X( 3 O ) - T(8)(X(8O), and clearly

q = T(3 )~: T(ft )~ -• T(B) . //

X XX X X X

It now follows that for any X,Y e TAft and any f £ C(B),

(6) [X,fY] = f[X,Y] + q(X)(f)Y.

Further, since X is 3-related to q(X) and Y is 3-related to q(Y), it follows

that [X,Y] is 3-related to [q(X),q(Y)]. But [X,Y] = [X,YJ is also 3-related to

q([X,Y]) and since 3 is surjective it follows that

(7) q([X,Y]) = [q(X),q(Y)].

These results permit the

Definition 3.9. The Lie algebroid of ft is the vector bundle Aft •• B defined in 3.1

together with the bracket [ , ] defined in (5) and the anchor q defined in 3.7. //

It is worth noting that the vector bundle Aft + B Is always locally trivial

and that this is not related to the local triviality of ft. The local triviality

of Aft goes back ultimately to the assumption that 3 is a submersion.

We now need to make a few comments on the local version of the correspondence

between sections of Aft and right-invariant vector fields on ft. For 2^£ft open, a

local right-invariant vector field on iL is a vertical vector field on (X such that

X(n£) = T(Rp)(X(n)) whenever an = 3£ and both n€ and nare inZ^. If X £ r Aft,

where U S B is open, then 3.3 shows that X( £) = T(R )(X(3£)) defines a smooth local

right-invariant vector field on ft . On the other hand, we have

Lemma 3.10. Let X e r T ft be a local right-invariant vector field on an open

set ̂ S ft. For x £ 3(26 choose any £ £ # X and define

X(x) = T(R )(X(£)).

Then X is a well-defined and smooth local section of Aft on 3 $ ) .
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Proof: That X is well-defined follows from the right-invariance of X. Let

U = 3 $ ) and note that (ft restricts to Taft|^- kQ\y' N o w S°e =^°x i s s m o o t h> a n d

since 3 is a submersion it follows that X is smooth. //

If we now take X e F T ft, where V-Q ft is open, and apply first 3.10 to

get X e TQ(f/\A® and then 3.3 to get (X) e T Taft, then we obtain a right-

invariant vector field defined on the 3-saturation of CC which is equal to X onZt.

We call (X) the 3-saturation of X and any right-invariant vector field defined on

a 3-saturated open subset of ft will be called a 3-saturated right-invariant vector

field. The above shows that we need not consider right-invariant vector fields

defined on more general open sets. Clearly (X) is the only right-invariant vector

field on $~l ($($)) which coincides with X on 2t.

If %L is itself 3-saturated, say tt = 3~ (U) where U is open in B, and

X e T«/ Taft, then X is actually the restriction of X to Ur\ B = U. In this case we

write XJ , rather than x, and there are mutually inverse C(U)-module isomorphisms

(8a) X H+ X, r Aft + rRI Taft
U 3~1(U)

and

(8b) x f-> xl rRI. Taft + r_.Aft.
3" (U) U

It is straightforward to show that the bracket on fiil transported from
RI a
T Tft via (8) coincides with the bracket induced from the bracket on TAftby
3~1(U)

the method of 2.2.

Now consider a morphism <J>: ft -»• ft1 of differentiable groupoids over B. We

construct the induced morphism <j>̂: Aft •• Aft1 of Lie algebroids over B.

Since a'o<j> = a, the vector bundle morphism T(<j>) restricts to

T(<J>): T ft •»• Tft1. Since <\>oe = £f the composition

(9)

is a vector bundle morphism over ef: B -»• ft' and so there is a unique vector bundle
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morphism <|>̂: Aft •*• Aft' over B such that the composition

Aft » Aft' • T V

is equal to (9).

From 3'°<J> = 3 and the definition of the anchors on Aft and Aft' it follows

immediately that q'© <t>̂  = q. It remains to prove that <j>̂  preserves the brackets.

Lemma 3.11. Let X e TAft, Xf e TAft'. Then X1 = <J>*(X) iff X ^ X*.

Proof: This is a straightforward manipulation. //

Now take X, Y e TAft and write X' = <J>*(X), Yf = <1>*(Y). From 3.11 it follows

that X ~ X' and Y ~ Yf, so [X,YJ = [X,Y] ~ [X1,Y'] = [X1,Y'] and by 3.11 again, we

have [X',Y»] = ^([X,Y]).

The constructions ft h-+ Aft and <|> t-+ <J>̂  constitute a functor from the category

of differentiable groupoids on a given base B and smooth morphisms of differentiable

groupoids over B to the category of Lie algebroids on B and Lie algebroid morphisms

over B. It is called the Lie functor.

The construction of the induced morphism of Lie algebroids (J>̂: Aft >Aftf can

be extended to the case where <j>: ft + ft' is a morphism of differentiable groupoids

over an arbitary smooth map <J> : B -»• B1. For this see Almeida and Kumpera (1981);

the difficulty lies not in the construction of <|>̂  but in giving an abstract

formulation of the bracket-preservation property of <f> . The case where <J> is a
* o

diffeomorphism does not present this difficulty and is treated in §4.

Example 3.12. The Lie algebroid of a cartesian square groupoid B x B is naturally

isomorphic to TB. For any differentiable groupoid ft, the anchor map

[3,a]: ft + B x B, considered as a morphism over B, induces the anchor q: Aft + TBof

Aft. //

We now need a series of results concerning the relationship between

properties of <J> and properties of (j>̂.
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Proposition 3.13. Let <J>: ft •• ft1 be a morphisra of differentiable groupoids over B.

Then

(i) <(> is a submersion iff each <{> : ft + ftT is a submersion, and
X X X

iff <Ĵ : Aft •• Aft' is a fibrewise surjection;

(ii) <j> is an immersion iff each <j> is an immersion, and iff <j> is a fibrewise

injection;

(iii) <J> is of locally constant rank iff <\> is.

Proof: We prove (iii); the other results can be proved by the same method.

(=>) Let the components of ft be C and let the rank of <J> on C be k . Take

£ e ft and write x = ot£, y = 3£. From the diagram

T(ft ) > > T(ft) » T(B)
x K K y

» T ( B ) y

i t follows that rk (<j> ) = k - dim B, for £ e C . Now for any £ e ft we have

V R 5 = % < O ° * a 5 S 0 **%<•*»{> " r k 5 ( * a C } - T h e r e f o r e > r k x ( * x ) = k i " dif f l B 1 S

constant for x e 3(C.) and since 3 i s open, t h i s shows that rk~(<J> ) i s a loca l ly

constant function of x.

(<=) Let the components of B be B and let the rank of <J>̂  on B. be k . By1 v
the same argument it follows that rkc(4> c) = rk^((()QC) = k. for £ e ft and so

B C a^B 3^ ^ iB B
rk£(<j>) = k . + dim B for £ e ft . Since ft is open in ft, this completes the

proof. //

Recall from 1.31 that every base-preserving morphism of Lie groupoids is of

locally constant rank, and that such a morphism is a submersion if it is surjective

and is an immersion if it is injective. It is not true that every base-preserving

morphism of differentiable groupoids is of locally constant rank, even if the base

is connected: let ft be an action groupoid G x B where G x B •»• B is a smooth action

with a fixed point x and all other orbits of dimension > 1. Then

[3,a] is G x B -• B x B, (g,x) h+ (gx,x) and the rank is not constant in any
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neighbourhood of (1,x ) . Since [3,a] = 6 is known, by 1.4, to be of locally

constant rank for any differentiable groupoid this example also shows that 3.13

(iii) cannot be strengthened to make it similar in form to (i) and (ii).

The following result is used in §6.

Proposition 3.14. Let <j>: ft -• ft1 be a morphism of differentiable groupoids over B.

If ft1 is a-connected and <j»̂: Aft + Aft' is fibrewise surjective, then <f> is surjective.

Proof: By 3.13, <t> is a submersion and so 4>(ft) is a symmetric a-neighbourhood

of the base in ft1. By II 3.11, <j>(ft) generates ft1; since <J>(ft) is a subgroupoid

of ft1 it follows that <|>(fl) = ft1. //

Proposition 3.15. Let M •* • ft1 >-• ft be an exact sequence of differentiable

groupoids over B; that is, l and TT are morphisms of differentiable groupoids over

B, i is an embedding, n is a surjective submersion, and im(i) = ker(ir). Then
l* %

AM > > Aft1 • Aft is an exact sequence of Lie algebroids over B.

Proof; All that need be proved is that the sequence of vector spaces

T ( i ) ~ T(ir ) ~
T(M ) ~ > > T(ft» ) ^ T(ft ) ~

XX ' XX XX

is exact, and this follows immediately from the fact that IT : ft1 -»• ft is a

submersion with (TT ) ( X ) = M . //

3.15 asserts that the Lie functor is exact.

Corollary 3.16. Let ft be a differentiable groupoid on B. If ft is locally trivial

then Aft is transitive. If Aft is transitive and B is connected, then ft is locally

trivial.

Proof: Since [3,a]^ = q: Aft •• TB, the first result follows from 3.13 (i) and the

second from 3.14. //

If ft is a Lie groupoid on B then

Gft V—>• ft
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is an exact sequence of differentiable groupoidS over B, and Gft is a Lie group

bundle on B; if {a : U -• ft^ is a section-atlas for ft then {la : \3± x ft£ + GftL }

is an LGB-atlas for Gft. Since [3,a]^ = q: Aft + TB, the adjoint bundle of Aft Is the

Lie algebroid of Gft as a differentiable groupoid; the following calculation

confirms that this coincides with the Lie algebra bundle associated to Gft.

Example 3.17. Let (M,p,B) be a Lie group bundle. (See A§1.) The Lie algebra

bundle asociated to M is denoted M^ and defined as follows (Douady and Lazard

(1966)):

Let M^ be the inverse image of TPM •> M across the identity section

B + M, x H 1 , of M. The fibre of M^ over x is then the Lie algebra of M .

Let {ij> : U x G + M } be an LGB atlas for M; then the induced chart for TPM is the

composite of î 7 x id: M. x q -»• n x G x 0 followed by U x G x 0 -• T(U. x G) ,
i u, u i u i U i

(x,g,X) I-+ 0 * T(R )(X),followed by T(iJ/ ): T(U x G) -• TM. The restriction of
x g i i

this chart to the identity section U £ M is therefore

(x, X) I-+ T(*1)(0x -P X) = T(i|/i x)(X)

and is denoted ^ *: U. xD > M. I ; fibrewise ip * is the Lie algebra isomorphism
i i u IU. i

duced by ^ : G •• M • Thus M. with the Lie algebra bracket on each
i ,x x *

uced from the Lie group structures on the fibres of M, is a Lie algebra

bundle.

It is clear that the construction of M^ as an LAB coincides with the

construction of the Lie algebroid AM of M considered as a totally intransitive

differentiable groupoid. //

Definition 3.18. Let ft be a Lie groupoid. The LAB associated to Gft is

denoted Lft and is called the adjoint Lie algebra bundle of ft. //

D ->• M^l in

fibre induc

Proposition 3.19. Let ft be a Lie groupoid. For £ e

to be T(I ) , Then A

adjoint representation

to be T(I ) , Then Ad: ft •• II[Lft] is a smooth representation of ft on Lft, called the

ft define Ad(£): Lft|ag *
 LU\3

entation of ft on Lft, called

Proof: The proof is straightforward, using either local triviality to reduce to the

case of Lie groups, or 1.23. //
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If ft is abelian then, as in I§3, Ad(£) depends only on ot£ and B£ and so

there is a global chart B xD + Lft, where D is the Lie algebra of a vertex group

of ft.

For an arbitrary differentiable groupoid ft, the adjoint representation can

be defined and shown to be smooth as a map ft * A(Gft) -• A(Gft), by using 1.23.

The construction of the Lie algebroid of a differentiable groupoid, as we

have presented it here, emphasizes that it is a direct and natural generalization of

the concept of Lie algebra of a Lie group. The next result shows that, for a Lie

groupoid ft, the Lie algebroid Lft >—> Aft -*> TB is the Atiyah sequence of any of the

principal bundles associated to ft. See A§3 for the construction of the Atiyah

sequence of a principal bundle.

Proposition 3.20. Let ft be a Lie groupoid on B, let b e B and write P = ft ,

G = ft and p - 3 : P -• B. Then the restriction of^ : Taft + Aft to TP + Aft induces an

isomorphism

TP

of Lie algebroids over B. The induced morphism

is <£,X> M- Ad(£)(X).

Proof; Clearly^ : TP •• Aft, p: P + B is constant on each orbit of the action of G so
TP

by A 2.2 it quotients to a vector bundle map R: — •• Aft over B, given by

R ( < X » = T(R ^ X X ) . SinceJl is fibrewise bijective, it follows that R is also,

and it is therefore a vector bundle isomorphism. That q*R = p# is a straightforward

consequence of #»R = 3, ¥€ e ft; it remains to verify that R is bracket-

preserving.

Take X, Y e V(^-); it suffices to verify that [R(X?, R(Y?] and R[X,Y] are

equal on P; that they are equal on ft then follows from the transitivity of ft.

Now [Rlxt, RTY?]|p = [RTxt|p, RTYt|p], because RTxt|pand RTYt|p are tangent to P,

and [Rtxt|p, RTYt|p] - [X,Y] t|

P X H TP

Lastly, the map •" -J—-• ~ , <£,X> h+ <T(m,.)(X)> of A 3.2 can be

rewritten as <£,X> h> <T(L )(X)> since m : G + P is precisely the restriction of
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L : ftb -• ft3^ to G = flj> fif^S P. Consequently, R+(<£,X>) = T(R , LJ(X) = Ad(£)(X).€ D b _-l t,
II *

We now give some simple examples of the construction of the Lie algebroid of a

differentiable groupoid. Further examples are developed in the following sections.

Example 3.21. Let B be a manifold, G a Lie group, and ft the trivial Lie groupoid

B. x G x B.

a is the projection TT : B x G x B •• B, so T ft is the Whitney sum TT *TB « ^o*70

of the inverse image bundles ir *TB and TT *TG over B X G X B. Since the compositions

ir.ee and TT © e are x H- X and x ^ 1 respectively, the inverse image of T ft over e is

(iTj©e)*TB * (TT • e)*TG = TB * (B x D ) , where the Whitney sum is now over B. This is

the vector bundle Aft.

We will write a general vector field on ft in the form X U U where X, V,

Y are sections of IT *TB, IT *TG, TT *TB, respectively. Such a field is vertical iff

Y = 0. The right-translation R, : B x G x {y} -• B x G x {z} has tangent
(y>n»z)

R/ t. \)t N : X ^ V ^ 0 H> X ^ T(R.)(
( y , h , z ) ; ( x , g , y ) x g y x v > i / v

V ) • 0gy z

and so X • V * 0 is right-invariant iff V(x,gh,z) = T(R^) (V(x,g,y)) and

X(x,gh,z) = X(x,g,y) identically in x, y, z, g, h. This is so iff V(x,g,y) is

independent of y and right-invariant in g and X(x,g,y) depends only on x. When this

is so, V can be identified with the function x H-• V(x,l,x), B > D , also denoted by

V, and X can be identified with the vector field x H X(x,l,x) on B, also denoted by

X; with this notation X • V is the section X * V * o[B of TB • (B xj ).

Conversely, given X e TTB and V: B +h , the right-invariant vector field X * Vis

(x,g,y)H+ X • T(R )(V(x)) + 0 .
x g y

To simplify the calculation of the bracket on Aft, temporarily denote by

V and X the right-invariant vector fields o T v and X -e 0. With this notation, for

any V,W: B ->-Q and X,Y £ TTB,

[X * $, Y * i] = [X + V, Y + W]

= [X,Y] + [X,W] - [Y,V] + [V,W].

It is easy to verify that V has the global flow ^ (y,g,x) = (y,exptV(y)g,x) and that

if {(f>t> is a local flow for X on U S B then {<£**} defined by ^(y,g,x) = (<j> (y),g,x)
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is a local flow for X on U x G x B. Using these flows it is straightforward to show

that [V,W] = [V,wj, where [V,W] is the map x H> [V(x),W(x)], B +Q ; that

[X,W] = X(W), where X(W) is the Lie derivative of the vector-valued function W: and

that [X,Y] = [X,Y] . Consequently the bracket on TB «> (B xrt ) is given by

[X * V, Y * W] = [X,Y] * {X(W) - Y(V) + [V,W]}.

The anchor q: TB • (B x n) -• TB is clearly the projection X * V I—• X and the adjoint

bundle is, by the formula for the bracket in TB « (B xD ), the trivial Lie algebra

bundle B x n . Thus A(B x G x B ) is the trivial Lie algebroid on B with structure

algebra tj constructed in 2.4.

Now consider a morphism <$>: B x G x B + B x H x B o f trivial Lie groupoids

over B. By I 2.13, <t> can be written in the form

<Ky,g,x) = (y, e(y)f(g)6(x)"1, x)

for some morphism of Lie groups f: G + H and smooth map 9: B + H. In terms of this

description T(<J>)(X * V « Y), where X e T(B) , V e T(G) , Y e T(B) , is given by
x g y

X • (T(R )T(6)(X) + T(Lfl, )T(R jT(f)(V)
f(g)6(y) l 9 U ) e(y)"1

- T(L )T(R )T(6)(Y)} • Y.
e(x)f(g)6(y)"i 6(y) V

Setting Y = 0 and y = x, g = 1, this reduces to X * {A(0)(X) + Ad(8(x))f^(V)} * 0,

where A is the right-derivative (see B§2). Hence ^ : TB • (B x|j) + TB • (B x fo )

is

^(X * V) - X * (A(9)(X) + Ad(6)f^(V)}.

In terms of the description (3) in 2.4, <f)̂  is formed from the Maurer-Cartan

form A(6) and the LAB morphism Ad(9)of^. The compatibility condition

for A(9) and Ad(9)of^ is proved directly in B 2.1. //

Example 3.22. Let m: G x B -• B be a smooth action of a Lie group G on a manifold B,

and ft the corresponding action groupoid (see I 1.6). Then, as in the preceding

example, T ft = TT^TG * 0 and Aft = B x n as a vector bundle on B. A vertical vector

field V: G x B -> TG is right-invariant iff V(gh,y) = T(R^) (V(g,hy)) identically in

g, h, y. For V: B •>• D the corresponding right-invariant vector

field V is V(g,x) = T(R )(V(gx)). The anchor q: B x D > TB is (x,X) ̂  T(m(-,x)) ^X).
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It would be interesting to have a simple formula to describe the bracket on FAft in

terms of the isomorphism Aft = B x P: it is certainly not the case that the Lie

algebroid bracket on F(B X[J) i s t n e pointwise bracket ofQ-valued maps, since if the

action is transitive and abelian, the pointwise bracket on F(B X Q ) is identically

zero and the anchor surjective, but the bracket on FTB will only be zero in

degenerate cases. //

Example 3.23. Let G be a Lie group and H a closed subgroup of G. The Atiyah sequence

of the principal bundle G(G/H,H) is calculated in A 3.9 and, by 3.20, is the Lie

algebroid of the Lie groupoid — g — (see II 1.12).

C x C
By II 1.12, the Lie groupoid — ^ — is isomorphic to the Lie groupoid

G x (G/H) of 3.22, where G acts on G/H in the standard fashion; the isomorphism is
— 1 TC

<go»gi> •""* (S2gl »glH)* T h e i n d u c e ( i isomorphism of Lie algebroids — •> (G/H) x D is

described in A 3.9 . / /

The following result is a straightforward exercise.

Proposition 3.24. Let ft and ft1 be differentiable groupoids on B and let ft be Lie.

Denote by ir and IT' the projections ft x ft1 -• ft and ft x ft1 -• fl'. Then A(ft x ft1)
BxB BxB BxB

is naturally isomorphic to Aft * Aft1 under X I—• TT X * TT'X. //
TB

* * * * * * * *

We insert here some remarks about differential forms on differentiable

groupoids which will be needed in later sections. Until 3.28, let ft be a

differentiable groupoid on B.

Definition 3.25. (i) Let § be a vector bundle on ft. Then FAltn(Taft;§) is denoted

A (ft,©) and elements of A (ft,§) are called fibred n-forms on ft with values in S .

(ii) Let E be a vector bundle on B; recall that $*E is the inverse image of E

over 3: ft -»• B. A fibred n-farm a) e An(ft,$*E) is called right-invariant if

u(T<Vn(V «V,<V>-"<'i V

for all V e Ta(ft) and £ e ft such that n£ is defined.

The subspace of right-invariant fibred n-forms is denoted A? (ft,3*E). //

Whereas An(ft,3*E) is a C(ft)-module, A^x(ft,3*E) is only a C(B)-module, with



123

u E C(B) acting by u«B e C(ft).

Definition 3.26. Let E be a vector bundle on B. Then the vector bundle Alt (Aft;E)

is denoted Cn

in E. //

Proposition 3.27. There is an isomorphism of C(B)-modules

is denoted Cn(Aft,E) and elements of rcn(Aft,E) are called n-cochains on Aft with values

which to a) e rcn(Aft,E) assigns w defined by

for V ,...,V E Taft| , 5 e ft, and which to w E A^_(ft,3*E) assigns o»| defined by
I n ' c, RX VSD

x

for X X e Aft I = Taftl .
1 n Ix I ~

x

Proof: Straightforward. //

Taking E = B x R we obtain the vector bundle dual C (Aft, B x R)

= Hom(Aft, B x R) = Aft*. By 3.27, the module of global sections of this dual can be

identified with the C(B)-module of real-valued right-invariant forms A^T(
fi, ft x R).

Given OJ e TC (Aft, B x R) and X £ TAft one can form <X,a)> = u)(X) : B •»• R and

<X,w> = w(x): ft + R and w(X)(5) = &>r(T(Rr)(X(8O)) = wflp(X(eO), tor all ? e ft, so

a)(X) = a)(X)o3. One could call the elements of A^T(
fi» ft x R) the Maurer-Cartan forms

of ft.

Taking E to be the vector bundle Aft itself, let 9 e TC (Aft,Aft) be the identity

map Aft •• Aft. Then 6 E A Î(ft,8*Aft) maps V E T
aftj^ to T(R _1>(V) and is essentially the

map Ji of 3.3. One could call 6 the Maurer-Cartan form of ft.

If now (M,p,B) is a fibred manifold and f: M + ft is a smooth map with

ct°f = p, one can define a right derivative
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by A(f) = T ( R ) T(f ) , where u e M , x e B. Then A(f) is, in an obvious
U f(u)~ X U X +

extension of 3.25, a fibred form on M, and A(id ) = 9. We will not pursue this

concept here.

Pradines (1967) obtains 8 as A(6), where 6 is the division map

ft x ft -• ft, (n,S) h* r)ZT , regarded as a morphism of differentiable groupoids over

8: ft -• B (see I 2.14).

Proposition 3.28. Let ft be a Lie groupoid on B. Choose b e B and write

P = ft , G = ft,. Let V be a vector space and G x v •*• V a linear action of G on V;
p x V

let E = —-p,— be the associated vector bundle.
G

Then there are natural isomorphisms of C(B)-modules

rcn(Aft,E) -^-An(

where An(P,V)G = {w e An(P,V) | (R )̂ (a)) = g"1^

equivariant V-valued forms on P.

Proof: See A 4.12(i). //

e G} is the C(B)-module of G-
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§4. The exponential map and adjoint formulas.

The exponential map with which this section deals associates to a local

section X of the Lie algebroid of a differentiable groupoid ft, a 1-parameter family

ExptX of local admissible sections of ft. Namely, the right-invariant vector field

X has flows consisting of local left-translations, and the local admissible sections

corresponding to these left-translations are the ExptX. There is a second concept

of exponential map, which maps Aft into ft itself and is etale on a neighbourhood of

the zero section of Aft; it however depends on a choice of connection in the vector

bundle Aft. For this see Pradines (1968a) or Almeida (1980, §9).

The exponential map for a Lie groupoid is used in the same way, and for the

same purposes, as the exponential map of a Lie group. The first major use (4.5) is

to identify the Lie algebroid AII(E), for a vector bundle E, with CDO(E). This

result is from Kumpera (1971), though the proof has been simplified. Using 4.5, we

calculate in 4.7 the Lie algebroid of an isotropy subgroupoid; this result is

central in the connection theory of §7. In 4.8 we use the exponential to

differentiate the standard representations of the frame groupoid n(E) of a vector

bundle E on the associated bundles Horn (E; B x R), Horn (E;E), etc. From 4.7 and 4.8

it follows that, for a vector bundle E and a geometric structure on E defined by

tensor fields, the Lie algebroid of the frame groupoid consists of those covariant

differential operators with respect to which the tensor fields are constant (or

parallel)• This result encapsulates a number of calculations usually regarded as

part of connection theory. Here we need only the cases of Riemannian bundles and

Lie algebra bundles.

In the remaining part of the section we give formulas for the adjoint

representations of a differentiable groupoid and its Lie algebroid which generalize

the well-known formulas for Lie groups and Lie algebras.

The definition and basic properties of the exponential, the fundamental

theorem 4.5, and the adjoint formulas in 4.11 are due to Kumpera (1971). (Except

for 4.5, this material also appears in Kumpera and Spencer (1972, Appendix).) The

remainder of the section is due to the author.

Let ft be a differentiable groupoid on B and take X e TAft. Let

{<j>t: U "*
>Wt.} be a local flow for X e TTft. Since X is a-vertical, we have

a©<j) = a so for x e B with S n ft £ 0, each <j> restricts to 1Lc\ ft -• 2l n ft . For
t X t X t X

£ e ft^ where 24nftx £ 0, %L(\ fty ^ ^ w e k n o w ( R ^ ( x | f i ) = x | Q so ^ ^ R - R o ^

for a l l t . y x
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Now define U - 3(K), U = 3(Z£) and i|> : U + U so that

•t

3

U

commutes; that is, <K(x) = 3(<|> (n)) for any n e V, with 3n = x. Since

<(> (n£) = <\> (n)C, this is well-defined, and since 3 is a submersion ip is smooth.
t t, t

Since (<j>t> = <fr has the same properties as <fr , it follows that (ip_t» ̂ )«3 = 3
and ij> is therefore a local diffeomorphism. Now, for x e U,

J 1 A ->.

= 3*(X(n))
0

f o r a n y n e t i n ftX, a n d s o {i|> : U •• U } i s a l o c a l f l o w f o r q ( X ) = 3 . ( X ) .
t t *

Lastly, <f> :%+% and t|> : U ->• U satisfy the conditions of II 5.8 and so

each <J> is the restriction of a unique local left-translation L : ft > ft

where afc e ryft is defined by O^K) = <fr (n)n~ , where n is any element of

uLn ftX. This proves the following result.

Proposition 4.1. Let ft be a differentiable groupoid on B, let W S B be an open

subset, and take X e F Aft. Then for each x e W there is an open neighbourhood U
w o

of x in W, called a flow neighbourhood for X, an e > 0, and a unique smooth family
oo

of local admissible sections ExptX e Î ft, |t| < e, such that;

(i) TT = X,
0

(ii) ExpOX = id e r ft,

(iii) Exp(t + s)X - (ExptX)*(ExpsX), whenever |t|,|s|,|t + s| < e,

(iv) Exp-tX = (ExptX)"1,

(v) {3°ExptX: U + U } is a local 1-parameter group of transformations

for q(X) e T TB in U. //
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(iii) may be expressed more fully as follows: if x £ U, if

|s|,|t|,|s + t| < e and if 3(ExpsX(x)) e U (which is true for all |s| < 5 for

some 6 > 0), then (Exp(t + s)X)(x) = ((ExptX) ( 6(Expsbc(x)))ExpsX(x).

The family t !-•»• ExptX is smooth in the sense that R x u ~+ ft,

(t,x) I—• ExptX(x) is smooth; this follows from the smoothness of the local flow

R x a ~* nf (t,5) |-+ 4>t(S) = ExptX(05)5 for X.

A well-defined exponential map X h+ ExpX may be defined on the sheaf of

germs of local sections of Aft with values in the sheaf of germs of local admissible

sections of ft. We will use the term "exponential map" in the obvious loose sense.

The following result is proved in Kumpera and Spencer (1972, Appendix).

Theorem 4.2. Let ft be a differentiable groupoid on B, let X e TAft, and let

£ eft with 3£ = y . Then the integral curve for X through £ is infinitelyo oo o
extendable in both directions iff the integral curve for q(X) through y is

+ o
infinitely extendable in both directions. In particular, x is complete iff q(X) is

complete. //

Proposition 4.3. Let <J): ft •• ft1 be a morphism of differentiable groupoids over B.

Then if U is a flow neighbourhood for X e FAft, it is also a flow neighbourhood

for <ĵ (X) and

• (ExptX) - Expt^(X)

for all t for which ExptX is defined.

Proof: It is easy to verify that t /—• •( ExptX) has the properties which

characterize t h Expt^(X). //

Examples 4.4. Let ft = B x B and let X e TAft = ITB have a local flow {<J> : U > U }.

Then {<j> x id • U x B -• U x B} is a local flow for X = X * 0 and ExptX can be
t B t

identified with <J> e T (B x B ) (see II 5.3).

Let M be an LGB on B, and let X e r(M*)« T^11 ExptX is the global section

x H- exptX(x) of M whose value at x e B is the Lie algebra exponential of

X(x) e nj •
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Let P(B,G,TT) be a principal bundle and let X £ r ( S . It is shown in A 3.7
— G

that the local flows of X £ T TP are of the form <J> (i|; ,id >, where {f : u > U } is a
_i , t t G t t

local flow for TT^(X) and {<{> : ir (U) •• ir (U^)} is defined on rr-saturated open sets.

It is easy to see that if X is regarded as

corresponds to ExptX under II 5.6. //

It is easy to see that if X is regarded as in rA(P ̂  ? ) (see 3.20) then <|>t(i|> ,ldG)

Theorem 4.5. Let E be a vector bundle on B. For X e TAII(E) def ine o5 (X); TE -• TE

by

where y e TE, x e B, and the exponential is taken in a flow neighbourhood of x.

(The bar notation is defined in II 5.4.)

Then oD(X) e rCDO(E), and Jb: TAII(E) + TCDO(E) defines an isomorphism

AH(E) •• CDO(E) of Lie algebroids over B.

Proof; Choose b e B, write P = n(E) and V = E and for y e TE define

y: P •• V by y(^) = C y(3£). For X c TAn(E) , let X denote the restriction of

X e rRITan(E) to P. Then it is straightforward to verify that

x(y).

Now for f: B •• R it follows that

b x(f#Bb)y

and hence that o5 (X)(fy) = f.0(X)(y) + q(X)(f)y. This shows that Jb (X) is a first

or zeroth order differential operator and, further, an element of FCDO(E).

Similarly it is easy to verify that

e9(X + Y) - Jb(X) + o8(Y), X,Y e TAn(E) ,

and ofi(fX) = f o&X) , f: B •• R,

and so oU induces a morphism oO : AII(E) •»• CDO(E) of vector bundles over B. It

follows from what we have already done that JD respects the anchors on AII(E)

and CDO(E). As for the bracket condition, for X,Y e TAII(E) and y e TE,
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= [X,Y](y)

= X(Y(y)) - Y(X(y))

= oO(X)(«©(Y)(y)) - «£(Y)(o9(X)(y))

and so oU is a morphisra of Lie algebroids over B.

Lastly, o8 + : Ln(E) -• End(E) is fibrewise the realization of T(GL(E )),,
x id

aso|(E ) , x e B, (see B§1), and is therefore a vector bundle isomorphism. By 2.8 it

follows that ©(/ is an isomorphism. //

A proof of 4.5 first appeared in Kumpera (1971). The proof given here is a

simplification of Kumpera's. A similar construction occurs in Kobayashi and Nomizu

(1963, p. 115).

In what follows we will identify AII(E) with CDO(E) via this isomorphism

without comment.

Definition 4.6. Let p: ft -• n(E) be a representation of a differentiable groupoid

ft on a vector bundle E. Then the induced representation p^ of Aft on E is

P*(X)(y) = - ̂ - p(ExptX)(y)|Q,

X e TAft, y e TE. //

The notation p is introduced at the end of II§5. The next result

generalizes a simple formula for Lie groups and Lie algebras. In the present

generality it is essentially a part of connection theory.

Theorem 4.7. Let p: ft > n(E) be a representation of a Lie groupoid ft on a vector

bundle E. Let y £ FE be ft-deformable and let $ be the isotropy groupoid of y. Then

TA$ = {X e TAft ( p^(X)(y) = 0}.

Proof: If X e TA$ then each ExptX takes values in $. Hence p(ExptX)(y) = y for all

t and p*(X)(y) = 0 follows.
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Conversely, take X e TAft and suppose P.(X)(y) = 0. Since X = — ExptxL,
dt IU

and $ is an embedded submanifold of ft, it suffices to show that each ExptX takes

values in $. Take x e B and ExptX defined in a neighbourhood of x. Consider the

curve

c(t) = p((ExptX(x))"1)y((6*ExptX)(x))

in Ex; that is,

c(t) = p(Exp-tX)(y)(x).

Now, fixing tQ, we have

,0 = I F P(ExP-(to + t)X)(y)(x)|0

= p(Exp-tQX) (jftr p(Exp-tX)(y)

= p(Exp-toX)(p^(X)(y))(x)

so c(t ) = 0 for all t and hence c is constant at c(0). Therefore
o o

p(ExptX(x)"1)y((3«ExptX)(x)) = y(x),

which shows that ExptX(x) e $, as required. //

The proof of 4.7 of course relies on the fact that $ is already known to be

a differentiable (in fact, a Lie) subgroupoid of ft. In the applications of 4.7 we

need the following formulas for induced representations.

Theorem 4.8. Let E be a vector bundle on B.

(i) Let n(E) * Homn(E; B * R) •• Homn(E; B X R) be the action of 1.25(i).

Then the induced representation of CDO(E) on Homn(E; B x R) is given by

X(4>)(u ,...,y ) = q(X)(<f>(y y )) - I 4><y1,.--,X(u.),... ,y ) .
In In , 1 in

(ii) Let II(E) * Homn(E;E) + Homn(E;E) be the action of 1.25(ii). Then the

induced representation of CDO(E) on Homn(E;E) is given by
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,... ,w ) = x(<Ku1f...,u )) - I •(y,,...,x(y.),...,y ).
In In 1 In

(iii) Let E' be a second vector bundle on the same base, and let

(n(E) x n(E')) * Hom(E;E») -• Hom(E;E') be the action of 1.25(iii). Then the
B*B

induced representation of CDO(E) -e CDO(E') on Hom(E;Ef) is given by
TB

(X * X')(<J>)(iO - X'(<j>(y)) - •(X(y)).

Remark: These formulas generalize results which are well-known in the case of

general linear groups of vector spaces. As with 1.25, we take 4.8 to include the

restrictions of (i) and (ii) to Altn and Sym11 and the corresponding formulas for

general tensor bundles, exterior algebra bundles, and symmetric bundles.

Proof: To illustrate the use of the groupoid exponential, we prove (ii) with n = 1.

The adaptation of the proof to the other cases follows as in the case of general

linear groups of vector spaces.

Take X e rCDO(E) , <J> e rHom(E;E), y e FE and x s B. Let ExptX be defined in

bot

as t •»• 0)

a neighbourhood of x and write x = (3«ExptX)~ (x). Then (all limits are taken

X(4>)(x) = -^rExptX(<J>)(x)|
at ' U

= -limi {ExptX(xt)(<Kxt))-

= -lim i- {ExptX(xt)o<()(xt)o(ExptX(xt))"
1 - •(x)}

so

X(<|))(y)(x) = -lim Y (ExptX(xt)o<J)(xt)o(ExptX(xt))"
1)(y(x)) - •(x)Cy(x))}.

On the other side we have

X(<Ky))(x) = -11m i {(ExptX(xt)o*(xt))(y(xt)) - cf>(x)(y(x))}

and

= -lim ̂  {((J>(x)oExptX(xt))(y(xt)) - (J>(x)(y(x))}.
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Define a curve c(t) for t near 0 e R with values in Hora(E ;E ) by

c(t) = ExptX(xt)«<|>(xt)e(ExptX(xt))'"
1

and a curve f(t) for t near 0 e R with values in E by

f(t) = t t

Note c(0) = <Kx) and f(0) = y(x). Then the left-hand side of our equation is

-lim i (c(t)f(O) - c(0)f(0)}

and the right-hand side is

-limi (c(t)f(t) - c(0)f(t)};

both limits being taken in the one vector space E . It is elementary that these

limits are equal. //

Corollary 4.9. (i) Let E be a vector bundle on B, and < , > a Riemannian structure

in E. Then the Lie algebroid of the Riemannian frame groupoid II<E> (see 1.26) is

given by

TAn<E> = {X e TAn(E) | q(X)(<u,v>) = <X(y),v> + <p,X(v)>, Vy,v e rE}.

In particular, the fibres of the adjoint bundle LII<E> of AII<E> are the Lie

algebras #0(E ) , x e B.

(ii) Let L be a Lie algebra bundle on B. Then the Lie algebroid of the LAB

frame groupoid II [L] (see 1.28) is given by

TAn[L] = {X e rAII(L) | X([p,v]) = [X(y),v] + [u,X(v)], Vu,v e TL}.

In particular the fibres of the adjoint bundle LII[L] of AII[L] are the Lie algebras

Der(L ), x e B. //

4.9 and 1.20 (on which 4.9 strongly depends) show that (i) given a

Riemannian vector bundle (E,< , >) there is a well-defined transitive Lie algebroid,

which we will denote

End<E> •»-•• CD0<E> --•-• TB,

which is the reduction of CDO(E) characterized by the equation in 4.9(i), and (ii)

given an LAB L there is a well-defined transitive Lie algebroid, which we will
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denote

Der(L) *-• CDO[L] -•••• TB

which is the reduction of CDO(L) characterized by the equation in 4.9(ii). We will

in what follows identify AII<E> with CDO<E> and AII[L] with CDO[L] without comment.

It is possible to construct CDO<E> and CDO[L] without use of the underlying

groupoids if one grants the existence of Riemannian and Lie connections in E and L

respectively - this method is used in 7.22 in another case. It is also possible to

construct CDO<E> and CDO[L] from transition forms - this method will be clear after

§5 and IV§4. The method used above seems the most natural.

If (E,Z) is a Z-bundle in the sense of Greub et al (1973, Chapter VIII) then

clearly 4.7 and 4.8 may be used to calculate the Lie algebroid of the Lie groupoid

of 21-preserving isomorphisms. Its adjoint bundle is the Lie algebra bundle which is

constructed in Greub et al (op. cit., 8.4).

It would be interesting to know of useful conditions under which, given a

representation p: A •• CDO(E) of an abstract transitive Lie algebroid A and a

section p £ TE, there is a reduction A' of A characterized by the condition

X e TA1 <=> p(X)(u) = 0.

We turn now to the adjoint representations of Lie groupoids and Lie

algebroids. The first result is an immediate consequence of the Jacobi identity.

Proposition 4.10. Let ft be a Lie groupoid on B. Then the adjoint representation

ad: Aft -• CDO(Lft) of its Lie algebroid (defined in 2.11) takes values in CDO[Lft]. //

This is actually true for all transitive Lie algebroids (see IV 1.5) but we

have not yet established that the adjoint bundle of a transitive Lie algebroid is an

LAB.

We are now concerned to establish that the representation Ad: ft + II[Lft]

induces ad: Aft •• CDO[Lft]. We in fact prove a stronger version of this result, and

for this we need to generalize the construction of induced morphisms.

Let <|>: ft •• ft' be a morphism of differentiable groupoids over <j> : B > B*. As

Taft •• T ®

(where e and e1 are the object inclusion maps B •• ft and B1 •> ft') implies that

in §3, <xf«<fr = <\> *a implies that T(<J>) restricts to Taft •• T® ft1 and <j>©e = e'o 4
o o
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( 1 )

a
T ft

i s a vector bundle morphism over e'° <J> , Now the composite
o

<|>*Aftf Aft' -+ T ft1

£ '

is a pullback because each factor is, and so there is a unique vector bundle

morphism Aft •• <}>*Aft' over B such that the composite
o

Aft Aft'

(2)

is equal to (1). We denote the composition of the first two squares in (2) by

A(<j>): Aft •• Aft1, or by <J> ̂

It is easy to see that 8f« <j> = <• o 3 implies that qfo A = T(<(> )oq. Further,
o * o

just as in 3.11, it is easy to see that if X e TAft and X' e TAft, then

(3) V x = x''*o <=> X * X »

and from this it follows, also as in §3, that for X,Y e TAft and X1,Y' £ TAft',

(4) and imply <^o [X,Y] = [X1 ,Y« ] • • .

If <̂  : B ••• B' is a diffeomorphism, then (4) may be expressed by saying that

the map

«j>̂ : TAft -• TAft -1
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which is semi-linear with respect to

C(B) •• C(B') f H+ f0^ 1,

satisfies the equation

(5) <^([X,Y]) = [^(X),(j>^(Y)] X,Y e TAft

and in this sense we will say that $ : Aft ̂  Aft' is the morphism of Lie algebroids

over <j> : B •• B' induced by <J>: ft -• ft'. It is easy to modify the definition of a
o

morphism of abstract Lie algebroids in 2.1 to include this case.

When <J> : B •>• B1 is allowed to be an arbitrary smooth map a different
o

approach is needed to the definition of a morphism of Lie algebroids A •• A'

over (J> ; B + B'. For this see Almeida and Kumpera (1981). The construction of
Q

<J>̂: Aft • Aft' from <J> : ft •• ft1 is however as we have given it here, and (4) still

essentially expresses the fact that <j>̂  is a morphism of Lie algebroids. We will use
only the case in which <t> is a diffeoraorphism.

o

Let ft be a differentiable groupoid on B, until we reach 4.14* Let

a e Î ft be a local admissible section with ($<»a)(U) = V. Then 1^: ft^ ->- ft^ is a

morphism of differentiable groupoids over B«a: U -• V and we define

Ad(c) = (Io) : AB|n * AB|V.

Proposition 4.11. With the notation just introduced

(i) For X,Y £ ^Aft, Ad(cr)[X,Y] - [Ad(a)X,Ad(a)Y] .

(ii) If X E r Aft and U is a flow neighbourhood for X, then V = (3<>a)(U) is

flow neighbourhood for Ad(a)X and, for It sufficiently small,

ExptAd(a)X = Ia(ExptX)

where Ia(ExptX) e rvft is

(iii) If X,Y e r Aft and U is a flow neighbourhood for X, then

[X,Y] = - j£ Ad(ExptX)(Y)|0.
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Proof: (i) is the equation (5) for <$> = I .

(ii) is a version of 4.3 for the case in which <(> is a general
o

diffeomorphism, and is easily established.

(iii) can be deduced easily from the formula for [X,Y] as a Lie derivative of

Y with respect to the flow L of X, and we urge the reader to work through the

details. //

The results 4.11 generalize well-known identities for the relationship

between vector fields and their flows. For example, (ii) generalizes the following:

If {<j> } is a local flow for a vector field X on a manifold M and <j>: M •»• M is a
-1

dif feomorphism, then {$*$ © <j> } is a local flow for <j>̂ (X). In turn, (ii) can be

deduced from this result by applying it to the right-invariant vector field X

corresponding to X e T Aft.

Similarly we obtain the following formula for "canonical co-ordinates of the

second kind" on a differentiable groupoid ft.

Proposition 4.12. Let X ,... ,X be a local basis for Aft on an open set U S B and

suppose that U is a flow neighbourhood for each X^. Then the map

(tj tr) H+ (Expt1X1 * Expt2X2 * ... * ExptrXr)(x),

where x e U is fixed, is a diffeoinorphism of an open neighbourhood of 0 e Rr onto

an open neighbourhood of x in ft .

Proof: This follows immediately from the result: If X1,...,Xr are linearly

independent vector fields on an open subset U of a manifold M, and if for each i,

{<j> } is a local flow for X on U, then the map

where x e U is fixed, is a diffeomorphism of an open neighbourhood of 0 e Rr onto

an open neighbourhood of x in M. //

If U itself is the domain of a chart for B, we obtain coordinates
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Remark: Compared to the corresponding result for Lie groups, the proof of this

result is immediate. However the purpose of the more delicate analysis in the case

of Lie groups is to prove the existence of analytic co-ordinates; such coordinates

need not exist for differentiable (or Lie) groupoids.

Proposition 4,13. Let X,Y e r Aft where U is a flow neighbourhood for both X and Y.

Then

(i) If [X,Y] = 0, then Expt(X + Y) - ExptX * ExptY on U;

(ii) |j- (Exp-ZtY * Exp-/FX * Exp/tY * Exp/FX)|Q = [X,Y] On U.

Prooft (i) From [X,Y] - 0 it follows that [X,Y] - 0. Hence the local flows

<|>t(O = ExptX(3£)£ and * (£) = ExptY(3C)C commute. It is now easy to check that

8 = <J>« i|> is a local 1-parameter group of local transformations, and that

T"~ 6 (5)L = x(£) + Y ( O . Lastly, 0 , being a composition of left-translations, is
dt t 10 t
itself a left-translation and corresponds to ExptX * ExptY.

(ii) follows, in the same way as does (i), from the corresponding result for

general vector fields (see, for example, Spivak (1979, I, pp. 220 e.s.)). //

From 4.11(iii) the following result is immediate.

Proposition 4.14. Let ft be a Lie groupoid on B. Then

Ad^ - ad: Aft •• CDO[Lft]. //

For Lie groups, the formula in 4.11(iii) follows as a special case from

4.3. However in the groupoid setting, we cannot write [X,Y] = ad(X)(Y) for

X,Y £ FAft, and get a Lie algebroid representation and so this method is not

available. Nonetheless it is possible to overcome this difficulty by lifting to the

1-jet prolongation groupoid ft (see Kumpera and Spencer (197 2) or Kumpera (197 5) for

the definition): The adjoint map defined above 4.11 is well-defined as a map

ft1 > H(Aft)

and gives a smooth representation of ft on the vector bundle Aft, which we denote



CHAPTER III 138

by Ad . Now, by Kumpera (1975, §18), A(ft ) is naturally isomorphic to the natural

Lie algebroid structure on J (Aft) and 4.11(iii) how states that the induced

representation (Ad1)*: JL(Aft) -• CDO(Aft) is

j ^ H * ( Y H [X,Y]), X,Y e TAft.

Thus 4.11(iii) can now be written as [X,Y] = ( A d S ^

Lastly, we note the following for future reference.

Proposition 4.15, Let E be a vector bundle on B. Then Ad: II(E) •• II(End(E)) is

given by

for 5 e n(E)y, +: E + E , x,y e B.
x x y

Proof: I : GL(E ) •• GL(E ) is the restriction to open sets of the linear map

h i X ^ -1

3 E ) •• ni (E ) , 4 h-*• £«<j>»£ and is therefore its own derivative. (The change of
x y y /

sign in the identification of T(GL(V))id with ql(V) of course cancels out.) //
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$5. Infinitesimal connection theory and the concept of transition form

Infinitesimal connection theory is now part of mainstream mathematics and

thorough treatments of it exist (for example, Kobayashi and Nomizu (1963), Greub et

al. (1973)). We present an account of connection theory in the first part of this

section and in §7, partly because we need in Chapter IV sharper forms of some

results than are available elsewhere and partly because infinitesimal connection

theory is an integral part of the theory of (transitive) Lie algebroids and this

fact has not been evidenced before. Primarily, however, we include this material in

order to show that the Lie groupoid/Lie algebroid language contributes something to

elementary connection theory itself. (See also Chapter V.) Traditionally the

motivation for the constructions and results of general connection theory (i.e., the

connection theory of principal bundles) have come from the special case of linear

connections and, in particular, from Riemannian geometry. It will become clear in

the course of this and the next two sections that the general theory of connections

is essentially coextensive with the Lie theory of Lie groupoids and Lie algebroids

and as such, granted the importance of the Lie theory of Lie groups and Lie

algebras, has a natural algebraic interpretation and justification. This cannot be

brought out in a treatment which uses only the principal bundle concept. We submit

that the Lie groupoid/Lie algebroid formulation of connection theory offers a

genuinely new insight into the theory, and that it is the first to do so since the

foundational account of Kobayashi and Nomizu (1963).

This section treats those parts of connection theory which do not use

the concept of path-lifting or holonomy. Infinitesimal connection theory

in this sense can in fact be developed in the context of abstract transitive Lie

algebroids and without reference to Lie groupoids; this can only be done however

once some nontrivial results about transitive Lie algebroids have been established,

and these results are proved in IV§1 by making essential use of connection theory.

Once the results of IV§1 are established, however, the results and proofs of this

section can be applied to the abstract situation without change.

It is also possible to extend the results of this section (and of Chapter

IV) to a purely algebraic setting, in which manifolds are replaced by commutative

and unitary rings and vector bundles by protective modules over such rings. This was

done in Mackenzie (1979).

In the second part of this section we present the concept of transition

form, introduced in Mackenzie (1979). The transition forms of a transitive Lie

algebroid play a role analogous to that played by the transition functions of a Lie
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groupoid or principal bundle. Consider a Lie groupoid ft. Given a section-atlas

{a : u. •• ft,} there are local morphisms 6 : U x U -> ft, induced by the a , which
i i b i i i i

differentiate to Lie algebroid morphisms TU + Aft . These may be considered to be

local flat connections in Aft. On an overlap U ^ 0 two such connections differ by

a tensor, which is essentially a Maurer-Cartan form on U . with values in D . These

Maurer-Cartan forms are in fact the right-derivatives of the transition functions

a a. for ft, and we call them the transition forms of Aft. In IV§4 we will prove

that every abstract transitive Lie algebroid possesses a system of local flat

connections, and hence a family of transition forms. Here we prove (5.15) that a

transitive Lie algebroid can be constructed from a family of transition forms.

Together with the results of IV§4, this will show that there is a complete

classification of transitive Lie algebroids up to equivalence by families of

transition forms. This classification will be central to the integrability results

proved in Chapter V.

Definition 5.1 is due to Atiyah (1957) and Pradines (1967); 5.11 appears in

Pradines (1967). The formalism of induced connections in associated vector bundles

appears in, for example, Koszul (1960) and Pradines (1967), but the derivation of

them from the Lie algebroid representations 4.8 induced by the Lie groupoid

representations 1.25 is new and appears here for the first time. The concept of

transition form and 5.15 are due to the author (Mackenzie (1979), (1980)). The

local description of connections and their curvatures, and 5.19 and 5.20 are

slightly sharper and more general versions of standard results (Kobayashi and Nomizu

(1963, II 1.4 and II.9)).

Definition 5.1.

(i) Let L •*•--»• A -*-> TB be a transitive Lie algebroid. A connection in A is a

morphism of vector bundles y: TB •• A over B such that q*T = id,^. A back-connection
ID "

in A is a morphism of vector bundles w: A + L over B such that caoj = id .
L

The curvature of a connection y in A is the alternating vector bundle

morphism R : TB ^ TB •• L defined by

j(RY(X,Y)) = T[X,Y] -

for X,Y e TTB.
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A connection y is flat if R = 0 ; that is, iff y is a morphism of Lie
Y

algebroids over B.

The Lie algebroid A is flat if it has a flat connection.

(ii) Let Hbe a Lie groupoid on B. An infinitesimal connection

in fi is a connection y in the Lie algebroid Aft. A back-connection in ft is a back-

connection in Aft.

ft is flat if its Lie algebroid is flat. //

The term "back-connection" is chosen to avoid the term "connection form",

which we wish to retain in its standard meaning.

If E' ••—• E —*•• E" is an exact sequence of vector bundles over a fixed base,

then IT has right-inverse morphisms p: E" + E, necessarily injective, and i has left-

inverse morphisms A: E ->• E1 , necessarily surjective. If either of p, A is chosen

then the other is determined uniquely by the equation i©A + pair = id ; such a

pair p, A are said to be associated, or to correspond and E" -»—• E —•-• E1 is then an

exact sequence.

Applying this to the setting of 5.1, there is a bijective correspondence

between connections y and back-connections oo, such that

(1) j»w + yq = idA .

Example 5.2. Let P(B,G,IT) be a principal bundle and consider the Atiyah sequence

(see Appendix A). There is a bijective correspondence between connections
TP

Y: TB •»• — and invariant horizontal distributions Q on P, the determining
Q

relationship being im(y) = — (see A§4). There is a bijective correspondence
TP P x 9 "*• 1

between back-connections co: — -• —•£*- and connection forms u> e A (P,g); h e r e

a) is the quotient over G of ID (see A§4) . For a connection y and its back-
connection a), the corresponding invariant horizontal distribution Q and connection-

s-
form a) correspond in the standard sense of Kobayashi and Nomizu (1963, II.1).

- p x c
The curvature R : TB «> TB + *- of a connection y and the curvature form

2 Y G
ft e A (P,tt) of the corresponding invariant horizontal distribution are related in

TP — n
the obvious fashion: for X,Y e r(-r-), R ( TT^X, TT^Y) is the section of P *S
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corresponding to the G-equivariant map ft(X,Y): P +EL (see A.4.16). //

Note that a Lie algebroid q: A •• TB admits a connection iff it is

transitive. In particular, a differentiable groupoid on a connected base B admits a

connection iff it is Lie.

Example 5.3. Let E be a vector bundle on B. Then it is easy to see that a

connection y: TB •• CDO(E) in CDO(E) or, equivalently, an infinitesimal connection

in n(E), is a Koszul connection V in E, where

V (y) - Y(X)(y).
X

In what follows we will use the standard notation X }-•*• V for connections in CDO(E).
X

The curvature of V is R^: TB -e TB + End(E) defined by

(2) R (X Y)(u) = V (y) - V (V (y)) + V (V Cu)).

This is the negative of the usual definition, but it is shown in A§4 that the

definition 5.1 of R for a connection in an arbitrary Lie algebroid corresponds in a
y 2

natural way and with the correct sign, to the standard curvature form Q, e A (P,R)

for a connection in a principal bundle P(B,G) and so we accept the change of sign in

the case of vector bundles. To do so does not of course oblige us to reverse the

sign of the curvature for specific Riemannian (or other) manifolds; one simply

changes the sign in the formulas by which sectional and scalar curvature are

obtained from R .

There is of course no difference between our concept of connection in a

vector bundle and the usual one (compare the equations defining V in Kobayashi and

Nomizu (1963, III.l) with the formulas in 4.5); the change of sign in (2) is a

consequence only of the way we identify T(GL(V)) with Oj(V) for V a vector space

(see B§1). See Kobayashi and Nomizu (1963, p. 134) for the point at which this

identification determines the sign of R~.

The definition (2) has occasionally been used, notably by Milnor (1963).

If < , > is a Riemannian structure in E then a connection in CDO<E> is a

Koszul connection V in E such that

<V (y),v> + <y,V (v)> = X(<y,v», X e TTB, y,v £ TE.
X X

Such a connection is called a Riemannian connection; 4.9 shows that such a
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connection always exists.

Let L be an LAB on B. Then a connection in CDO[L] is a Koszul connection V

in the vector bundle L such that

V ([V,W]) = [V (V),W] + [V,V (W)], X e TTB, V,W e TL.
X X X

Such a connection is called a Lie connection in L. Again, 4.9 shows that a Lie

connection always exists. //

Example 5.4. Let TB * (B x Q ) be a trivial Lie algebroid. Then

TB -+ TB • (B x D ) , X H+ X • 0 is a flat connection, called the standard flat

connection in TB * (B x D) and denoted by y .

An arbitrary connection in TB * (B x D ) has the form X h+ X * a)(X) where

a): TB •• B x a is a D-valued 1-form on B. The corresponding back-connection

is X * V H V - oo(X). The curvature is -( 6u> + [u>,a>] ) e A (B,0). //

Definition 5.5. Let <f>: A •• A' be a morphism of transitive Lie algebroids over B and

let y be a connection in A. Then y1 = <J>oy is called the produced connection in A' .

Clearly, then

(3) RY, = f,£y.

The terminology "produced" is an extension of the usage in II 2.22 and

corresponds to that in II 7.10.

Example 5.6. Let E be a vector bundle on B, and let V be a connection in E. Then

V induces connections in the vector bundles Horn (E; B x R) f Horn (E;E) and in the

various tensor, exterior and symmetric algebra bundles built over E through the

representations 4.8. For example, the produced connection V in Horn (E; B x R) is

V (<f>)(y ...,y ) = X(<f>(y ,,...,y )) - I ^(y, ,...,V (y.),...,y ) .
A i n l n _ . i x i n

Similarly, if E1 is a second vector bundle on B and VT a connection in E' then the

representation of CDO(E) $_ CDO(E') on Hom(E;E') given in 4.8(iii) induces the

connection V in Hom(E;E') given by

Vx(d>)(y) = V̂ (<f>(y)) - 4>(Vx(u)). //
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Definition 5.7. Let <j>: E + E' be a morphisra of vector bundles over B and let

V and V be connections in E and E' respectively. Then <j> maps V to V if

<KVx(y)) = V̂ (<j>(y)) for all X e TTB and all y e TE. //

If <f> in 5.7 is an isomorphism, then it induces an isomorphism of Lie

groupoids 4>: II(E) •»• II(Ef), £ h+ <t> o J° S ° (<f> ̂ ) • This differentiates to

^ : CDO(E) +• CDO(E') where <f^(D)(y) = (<j>oD«<J> )(y) for D e TCDO(E) and y e TE

(see §4). Now, given a connection V in E, the produced connection ^(V) is the

unique connection in E' which <t> maps V to.

The following case of a produced connection will be used repeatedly in what

follows.

Definition 5.8. Let ft be a Lie groupoid on B and let y: TB •• Aft be an infinitesimal

connection. Then the produced connection adoy: TB + CDO[Lft] in Lft will be denoted

V and called the adjoint connection of y. II

Example 5.9. If V is a connection in a vector bundle E then the adjoint connection

in End(E) is the connection

V̂ (<j>)(y) = vx(<fr(u)) - <KVx(y)),

and coincides with that induced from V via the action of n(E) on End(E). (See

4.15.) //

Proposition 5.10. Let ft and y be as in 5.8. Then

Y
(i) V is a Lie connection in the LAB Lft; and

(ii) if Lft is abelian then VY is independent of y - that is, there is a

single adjoint connection in Lft - and it is flat.

Proof: (i) follows from 4.10.

Y'
(ii) Let y1 = y + j*£ be a second connection in Aft. Then j(V^(V))

- [Y'(X),j(V)] = [y(X),j(V)] + jU(X),V] = [y(X),j(V)] = j(VY(V)). By (3), the
y + — +

curvature of V is ad «R , and ad : Lft + Der(Lft) is zero if Lft is abelian. //

Proposition 5.11. Let ft and y be as in 5.8. Then
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G{vldV(Y,Z)) - RV([X,Y],Z)} = o
Ay I

for all X,Y,Z e TTB.

Here ̂  denotes the cyclic sum over X,Y,Z.

Proof: Apply j to the LHS. The result is

©'{[YX,Y[Y,Z] - [YY,YZ]] - Y[[X,Y],Z] + [Y[X,Y],YZ]}

= 0{[YX,Y[Y,Z]] - [YX,[YY,YZ]] - Y([X,Y],Z] + [Y[X,Y] ,YZ] }.

The first and the last terms cancel, once G> is applied. The second and the third

terras vanish by the Jacobi identity. //

5.11 is of course the (second) Bianchi identity. It does not have much

importance for this account of connection theory but has a central role to play in

the cohomology theory of Chapter IV.

We come now to the algebraic formalism of covariant derivatives. This

material will not be used in the remainder of this chapter, but will be drawn on

repeatedly in Chapter IV. Let ft be a Lie groupoid on B and let y: TB •• Aft be an

infinitesimal connection.

For n > 0 denote the vector bundle Alt (TB;Lft) by C (TB,Lft) (compare

3.26). Thus elements of rcn(TB;Lft) are alternating n-forms on B with values in the

vector bundle Lft. Treat C (TB;Lft) as Lft itself.

Define differential operators VY: rcn(TB,Lft) + rcn+1(TB,Lft) by

I (i) v
r=l r

(4)

+ I ( D r + S f([x x ],x,.\.\x ) .
r<s

(-Dr+S f([x x ],x,.\.\x

V is the (exterior) covariant derivative associated with the connection

VY. For V e TLft = rc°(TB,Lft), the covariant derivative X I-+ VY(V)(X) is the adjoint

connection X V+ VY(V) itself,x
Y "~

Observe that the Bianchi identity 5.11 can now be written V (R ) = 0.
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Proposition 5.12. Let Y? be a second connection in Aft and let 1: TB •*• Lft be the map

with Y1 = Y + j*£. Then

Proof : For X,Y e TTB,

R t (X,Y) - Ry(X,Y) = Y'[X,Y] - y[X,Y] - [ Y ' X , Y ' Y ]

j U [ X , Y ] - VY

which gives the result. //

In particular, if two connections have the same curvature, then their

difference map I: TB -• Aft satisfies V (£) + [1,1] = 0, which is a Maurer-Cartan
Y

equation with respect to the adjoint connection V .

lie also need a covariant derivative for forms on Aft. With

Cn(Aft,Lft) = Altn(Aft;Lft), define DY: rcn(Aft,Lft) + TCn+1(Aft,Lft) by

(5)

v r+1 Y

r-1 l VqXr

I { i) fcix ,x j,x ,...,x )
r<s

n TP P x Q
If ft corresponds to a principal bundle P(B,G) and C (— , —r-*2-) is identified

n G Y
with A (̂ ,3) , the pseudo-tensorial n-forms on P of type (ad,D), then D is (n+1)
times the exterior covariant differentiation of Kobayashi and Nomizu (1963, II

5.1). For the proof see A 4.15.

associated to VY*q: Aft •• CDO[Lft].

Y
5.1). For the proof see A 4.15. We call D the (exterior) covariant derivative

Proposition 5.13. Let co: Aft -• Lft be the back-connection corresponding to Y-

Then for X,Y e TAft,

RY(qX,qY) = (D
Y(o)) + [ 00,03] )(X,Y) .

Proof: Using j«oj + Y«q = id, we expand [X,Y] and get



147

[X,Y] = [.io)X,ja)Y] + [ju)X,YqY] + [YqX,ju)Y] + [YqX,YqY]

= j[u)X,coY] - jVY
y(toX) + jVY

x(a)Y) + [YqX,YqY]

so

[X,Y] - [YqX,YqY] = j{[o)X,u)Y] - VY
y(o)X) + V^CcoY)}

and therefore

R^(qX,qY) = Y[qX,qY] - [YqX,YqY]

- Yq[X,Y] - [YqX,YqY]

- [X,Y] - jo)[X,Y] - [YqX,YqY]

= j{-o)[X,Y] + [o)X,o)Y] - V (a)X) + V (wY)},

whence the result. //

In particular, if y is flat then a) satisfies an equation of Maurer-Cartan

type. (The resemblance between 5.12 and 5.13 is explained in IV 3.10.)

If p: Aft •• CDO(E) Is any representation of Aft on a vector bundle E, then

exterior covariant derivatives can be defined in both C*(TB,E) and C*(Aft,E), using

the produced connection p»Y in place of V in equations (4) and (5).

In the connection theory of principal bundles, the definition of a

connection as an invariant horizontal distribution Is usually given pre-eminence,

perhaps because one can visualize an invariant horizontal distribution more readily

than one can the associated connection form. Nonetheless it is easier to compute

with the connection form than with the associated distribution, and most

computations are done In terms of forms, either global or local.

In the connection theory of Lie algebroids we will usually work with

connections Y: TB > A rather than with back-connections oo: A -• L. Here the reason

is that Y is anchor-preserving (q«Y = id) whereas oo is not and for this reason

Y fits into the algebraic formalism of Lie algebroids better than does a). This

point will be more evident after Chapter IV. For the present, note that the

definition of curvature in terms of co would need to be via 5.13 and would present

curvature as the failure of u to be a Maurer-Cartan form; the simple definition 5.1
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for the curvature of y is only meaningful because y is anchor-preserving.

On the other hand, it is desirable to have the formalism of back-connections

available, firstly to relate the global Lie algebroid formalism to the standard

theory, and secondly because the back-connection formalism is needed in the

cohomology theory of Chapter IV.

* * * * * * * *

We come now to the local description of transitive Lie algebroids and their

connections.

Let ft be a Lie groupoid and let {a : U •* ft } be a section-atlas for ft.
U *_ l b

Each 6 : U. x u. •• ft , (y,x) I-* cr (y)a (x) is a morphism of Lie groupoids over

U and is a local right-inverse to [3,a], so each (8^)*: T B L •• Aftjy is a morphism
i i

of Lie algebroids over U with q«(6 ) = id, and may therefore be considered to be a
i i *

flat connection in Aft . We call the (9 ) the local flat connections induced by

the section-atlas {a }.

When U . £ 0, there are two connections in Aftl namely (0 ) and

l j U i j J 1 l
(6,)., and so there is a unique vector bundle morphism I. : TB + Lft

1J Jii Uii
such that -1 J

Let {i>±:
 u

±
 x J * ^ l y } denote the atlas for Lft induced from {o±}; that is,

i|), = Ada (x); and define Q -valued 1-forms x. . on U by

. - 1
Y = \h 9 £, j TTJ -• TT x Q (

Proposition 5.14. With the notation above,

where {s } is the cocycle corresponding to {a }. In particular, each x.. is a

Maurer-Cartan form.

Proof: For X e T(U . ) ,
ij x
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(8l.).(X) = T(R jT(a.) (X).

Now use a. = aj.s.. . //

We call the x . the transition forms corresponding to the section-atlas

}, or to the cocycle {s^}. Since I + £.^ = Z whenever U ^ 0, it follows

that

where {a .: U •• Aut(n)} is the cocycle for Lft corresponding to the atlas

{ty = Ada }. We call (6) the cocycle condition for the x . ; it: a l s o follows

directly from s = s #s by the product rule for right derivatives (see B§2,

equation (1)).

Consider the Lie groupoid isomorphism

V »i * G *»i • \

(y,g,x) |->

It is straightforward to see that

is

(7) X M H (e±)*(X) + *±(V)

and we call (Z.) the Lie algebroid chart for Aft induced by a . From the bracket-
i * i

preservation equation for (£).,., it follows that
i *

(8) [(e1)^(x)f

for X e rru and V: U •• D. Now (8) may be interpreted as the statement that

V Ui X 9 "*" L"lu mapS the standard flat connection V°(V) = X(V) in the trivial

bundle U x U to the adjoint connection induced in Lft| by (6 ) # in Aftj

Similarly, (8) signifies that (^)^ maps the standard flat connection in

B x G x B to (0.)*-
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When U f 0 we obtain an overlap isomorphism

(X • V) f~> X • (xi (X) + ai.(V)).

Since this is a morphism of trivial Lie algebroids, the compatibility condition of

2.4 must be satisfied, that is, we must have

(9) X(a (V)) - atj(X(V)) + [x^ (X) .a^ (V) ] = 0

for all X and V. (9) can be proved directly from the equations a = Ad#s and

X ~ A(s ) by using B 2.1, and can be written more succinctly as

(9a) A(Si.) = ad»x

where A is the right derivative for the Lie group Aut(q) (use equation (6a) in B§2).

Written in this form, the equation is an immediate consequence of a = Ad»s .

It is to be expected that the Lie algebroid Aft can be reconstructed from a

system of transition forms X., . • The presence in the cocycle condition of the a

inevitably complicates the formulation of this result and the reader is urged to

check the details in the proof of the following theorem.

Theorem 5.15. Let B be a manifold and let D be a Lie algebra. Let {U.} be an open

cover of B and let {a : U. . -• Aut(Q)} be a cocycle. Let (x.. e A (U. .,«?)} be a set

of local Q -valued 1-forms and suppose that

(i) each x., is a Maurer-Cartan form,

•IV = *-M + a-M^**v^ whenever U ^ 0,

(iii) A(a .) = ad»x for all i,j.

Then there is a transitive Lie algebroid L +—• A —•+ TB on B whose adjoint bundle L

is the LAB corresponding to {a } and which admits local flat connections

Y : TBj •• A | such that

i i
Y = Y + fey
j Yi W± Xij

where {i|> : ^ xD + L } is an LAB atlas for L with {a } as cocycle.
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Let L -»—• A —••• TB and L1 ••—* A1 —••• TB be transitive Lie algebroids on B

for which there are, firstly, LAB atlases {^ : \] x 0 -• L } and

{^': \J^ x n -• L ' } (with the same fibre type Q and open cover {t^}) for L and Lf

which both have {a .} as cocycle and, secondly, local flat connections

Yi : TBlu "*" Aiu and T': T Blu "*" A' I u SUCh that Y* * y± + V X i j and

Y1 = Y1 + V°X whenever U ^ 0. Then there is a unique Lie algebroid isomorphism

<\>: A •• A' such that <j> °ty = i|/! and <|>°Y = Y! f o r a H *••

Proof: For each i, let A be the set TU -e (U x D ) and on the disjoint sum
it i *• *• d

11 A define an equivalence relation ~ by
i

(i, X • V) ~ (j, Y ^ W) <=> X = Y and W = X..(X) + a (V).

Denote the quotient set by A and equivalence classes by <i, X • V>.

Define a map p: A -»• B by p(<i, X •© V>) = x where X e T(U ) . Then it is

easy to see that

X <» V H <i, X * V>

is a bijection. Give A the smooth structure induced from the manifolds

TU. + (U. x D ) via the iji ..
l l ij l

Clearly (A,p,B) is now a vector bundle, and further, the map q: A •»• TB,

<i, X * V> h+ X, is well-defined and a surjective vector bundle morphism over B.

Denote the kernel of q by L. The iK restrict to charts

V ui X3 + \ ' V H - X I , o«v>

for L and the atlas {ty } has {a .} as cocycle.

Now we define a bracket in TA. For y,v e TA and x e B, choose U containing

x and write U = <i, X ^ V > , v = <i, Y-©W> where X and Y are vector fields on U

and V and W are maps U -• P . Define

[<i, X ^ V>, <i, Y * W>] = <i, [X,Y] ^ (X(W) - Y(V) + [V,W]}>.

It is an instructive exercise to verify that this is well-defined and makes

A a transitive Lie algebroid on B with adjoint bundle L.
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The local flat connections y are defined by X t-+ <i, X * 0>. The remainder

of the proof is straightforward. //

The reader is urged to work out the relationship of 5.15 and its proof to II

2.19.

Remark. It is proved in IV§4 that every transitive Lie algebroid admits a system of

local flat connections and thus of transition forms. //

We postpone until IV§4 the concept of equivalence for systems of transition

forms and the proof that equivalent systems generate, under 5.15, isomorphic Lie

algebroids. Here we merely note that if {a': U •*• ft } is a second section-atlas

with respect to the same open cover {U } and reference point b, then there are
•• i

maps r : U > G = ft such that a1 = a r and the following formulae, which are
i i b i i i

easily proved, relate the primed data to the unprimed.

(10a) 6!(y,x) = 0.(y,x)I , N(r.(y)r.(x) ) ,
i i ^(x) i i

(10b) (9«) = (6 ) + <MA(r ),
i * i * i i

Xij ~ ri ri Xij aij rj '

(10d) a'±. = Ad(ri)"
1aijAd(rj).

(10c) also follows from s! . = r s r. by using 5.14 and the formulas in

B§2.

We come now to the local description of infinitesimal connections. Let

ft be a Lie groupoid on B, let y: TB ->• Aft be an infinitesimal connection in ft

and let {a, : U. -• ft,} be a section atlas. Continue the notations 6̂  , iK , x., . » a.,lib i i ij Ij
used above.

For each i, define a) : TU + U * Q by

(11) 4»(CO) = Y| — (0 )i(.

i

The a) e A (U,,Q) are called the local connection forms for Y with respect to the

atlas {a }. Clearly, on a U which is nonvoid,
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(12) " i - W + Xij

and, conversely, if {u> e A (U ,D)} is a family of forms which satisfy (12), then

they define by (11) a connection Y in Aft. (Compare, for example, Kobayashi and

Nomizu (1963, II 1.4).)

v
Proposition 5.16. With the above notation, the adjoint connection V is given

locally by

where X e TTU and V: U +0 .

Proof: Use (11) and (8). //

Corollary 5.17. Let ft be an abelian Lie groupoid on base B. Then the (unique)

adjoint connection V in Lft is the image of the standard flat connection V in B xD

under the canonical chart ip: B x 0 -• Lft.

Proof: Since Q is abeliart the equation in 5.16 reduces to

9

Now V is equal to V° for any connection y, and (because ft is abelian) ^ is equal

to if; for any i (see remark following 3.19). //

Define R1 e A2(U.,U) by

(13)

The R are the local cufyature forms for y with respect to {o^}. Clearly

RY = aji(RY} W h e n Uij * 0*

Proposition 5.18. Continuing the above notation,

Proof: Follows easily from (11) and (8). //
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Proposition 5.19. Let ft be a Lie groupoid on B, and continue the above notations.

(i) If {a } is a section-atlas for ft whose cocycle {s } consists of

constant maps, then

\ - (V*
is a well-defined and flat (global) infinitesimal connection in ft.

(ii) If Y is a flat infinitesimal connection in ft then there is a section-

atlas i°.} for ft whose cocycle consists of constant maps and for which

on all U1.

Proof; (i) Since s is constant, it follows that X.. = 0 and so (12) admits the

solution a) = 0 for all i.

(ii) Let {a : U + ft } be a section-atlas in which each U. is connected and
lib i

simply-connected. Since Y if flat, the co are Maurer-Cartan forms and so there

exist maps f. ; U •• G such that

Define x : U + ft^ by x̂  = o f . It is easy to verify that A(t ) = 0, where
i i b i i i ij

{t } is the cocycle for {x }, and so t .is constant.

Denote by 61 the local morphism induced by x . Then, using

(6^(X) = T(R .J^V

for X e T(U ) , it is easy to verify that

(e;) = (e ) +

l * i * l l

Hence (6.')* = Y|TT as claimed. //

The following version of 5.19 is used several times in the sequel.

Proposition 5.20. Let B x G x B be a trivial Lie groupoid with B connected and

simply-connected. Then for any flat connection Y, there is an automorphism <j>
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of B x G x B over B such that <}>̂ *Y = T, where *y is the standard flat connection.

Proof: Y is of the form X h+ X • u)(X) where co e A (B,g) is a Maurer-Cartan form

(see 5.4). Let f: B •>• G be such that A(f) = u>; then <))(y,g,x) = (y,f(y)gf(x) ,x)

has the required property. //

Ever since Spivak (1979, Volume II), any new account of connection theory

has to address the following result.

Proposition 5.21. Let B be a manifold and < , > a Riemannian structure in the

vector bundle TB. Let V be a Riemannian connection such that

(14) VX(Y) - VY(X) - [X,Y] = 0 X,Y e TTB.

Then if V is flat, B is locally isometric to Euclidean space.

Proof; Let <J>: R •• U be a chart for B. Pull the Riemannian structure and the

connection on TB| back to T(R ) . Continue to use the notations < , > and V.

By 1.26 there is a neighbourhood W of 0 e R , which we may assume to be connected

and simply-connected, and a decomposing section a: W ->• IKTR > . This a defines an

automorphism of the vector bundle TW which maps the given Riemannian structure to

another, still denoted < , >, for which II<TW> is W x 0(n) x W; the value of a at 0

can be chosen so that < , >n is the standard metric on R . We transport V under

this automorphism also; V is still a Riemannian connection in TW and still

satisfies (1A), and still is flat.

By 5.20 there is a map f: W +(i?(n) such that F: W * Rn •• W x Rn,

(x,X) H+ (x,f(x)(X)) maps the standard flat connection V° to V; that is,

Vx(Y) "1

we can also require that f(0) = I e(£?(n). Let {——} be the standard vector fields
9 t

on R and define X. = F -r— . Then for any vector field X,
i 8Xi

(15) Vx(Xi) = F(X(-^-)) = 0

since -^— is constant as a map W -• Rn. Hence from (1A) it follows that



CHAPTER III 156

[X ,X.] = 0 for all i,j and so there is a local coordinate system {y ,...,y }

around 0 in W such that

-~- = X± for all i

(see, for example, Spivak (1979, 1.5.14)).

Now in this coordinate system the metric is canonical, for

= 0 by (15)

3 3
and so < — — , — — > is constant and we arranged the value at 0 to be 6 ..
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$6. The Lie theory of Lie groupoids over a fixed base

This section treats the correspondence between a-connected reductions of a

Lie groupoid and reductions of its Lie algebroid, and the correspondence between

local base-preserving morphisras of Lie groupoids and base-preserving morphisms of

their Lie algebroids.

In 6.1 we prove that if fi is a Lie groupoid and A' is a reduction of Aft,

then there is a unique a-connected reduction ft1 of ft such that Aft1 = A1. This

result is closely related to the Ambrose-Singer theorem of connection theory; our

proof of 6.1 is essentially a groupoid formulation of the main idea of Kobayashi and

Nomizu's proof of the latter result. Conversely, in §7 we deduce a strong form of

Ambrose-Singer as an immediate corollary of 6.1 and the correspondence between

infinitesimal and path connections. At the same time, the proof of 6.1 follows

closely the outline of the proof of the corresponding result for Lie groups and Lie

algebras.

In 6.5 we prove that if ft and ft' are Lie groupoids on the same base B and

<j>: Aft ->• Aft1 a morphism of their Lie algebroids over B, then if ft is a-connected

and a-simply connected, <J> can be integrated to a global morphism f: ft •• ft1. This

follows from 6.1 in a manner similar to the case of Lie groups. The local

integrability of <J>, in the case where ft is an arbitrary Lie groupoid on B, is then

deduced (6.7) from 6.5 via the results of II§6 on the monodromy groupoid of the

a-identity component subgroupoid of ft.

A second proof of 6.7, using connection theory, is given in §7.

There are generalizations of both 6.1 and 6.7 applicable to arbitrary

differentiable groupoids and not-necessarily-base-preserving morphisms, stated in

Pradines (1966, 1967) and proved in Almeida (1980) and Almeida and Kumpera (1981).

The proofs of these generalizations are largely disjoint from the proofs of 6.1 and

6.7. In particular, the generalization of 6.1, or rather the recovery of 6.1 from

it, depends on the very subtle construction of the holonomy groupoid of a

microdifferentiable groupoid. This subject is essentially a generalization of

foliation theory; a very brief discussion is included here, following 6.3. In the

same way that our proof of 6.7 depends on 6.1, the general result on the local

integrability of morphisms depends on the generalized subgroupoid-subalgebroid

correspondence; here the main problem is to give a correct definition of the

general concept of morphism of Lie algebroids. We have preferred to omit these

substantial considerations and give instead proofs of the special cases which
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suffice for Chapter IV.

In category-theoretic terms, the main results of this section, taken

together with the results of II§6, show that the Lie functor is both full and

faithful, regarded as a functor from the category of germs of local base-preserving

morphisms between Lie groupoids on a given base B, to the category of transitive Lie

algebroids and base-preserving morphisms over B.

The section ends with a demonstration that some smaller parts of the Lie

theory of Lie groups and Lie algebras do not generalize to Lie groupoids and Lie

algebroids.

Theorem 6.1. Let ft be a Lie groupoid on a a connected base B and let

L1 -»—• A1 -•••»• TB be a reduction of Lft +—• Aft —••• TB. Then there is a unique

ot-connected Lie subgroupoid $ of ft such that A$ = A' .

Proof: The proof is modelled on the proof for Lie groups as given, for example, by

Warner (1971), and we deal only with the features that are new.

Denote by A the inverse image bundle 3*A' on ft. Since

T
aft } Aft

1 . 1
is a pullback, it follows that there is a unique injective vector bundle morphism

i a
A —->• T ft over ft such that

i

A

commutes. By a standard result (see C.4) it follows from A = 3*A' that

FA = C(ft) • FA1 and using this one can mimic the proof for the case of groups and
C(B)

show that A is an involutive distribution on ft.
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For each x e B, let A be the restriction of A to ft ; A is an involutive
x xx

distribution on ft . Let $ be the (connected) integral manifold of A which
^ x x x

contains x and let $ be the union of the sets $ , x e B. For any x,y e B and
£ e ft7 it follows from the definition of A that T(R )(A ) = A , and therefore if

x ^-l x y

£ e $y it follows that R ( $ ) = $ . Thus $ is a subgroupoid of ft in the algebraic
x _-l y x

sense.

Write ot',3f for the restrictions of a,3 to 4. Because qf : A' •• TB is

assumed to be suriective, it follows that 3': $ + B, x e B, is a submersion, for
xx

T(3') . £ e 4 , is the composite
x £ x

where the middle map is the pullback. Hence each im(3'), x e B, is open in B.

Since $ is a groupoid in the algebraic sense, the im(3f), x e B, partition B and

since B is connected it follows that each 31 is onto B. Thus $ is transitive.
x

We now give $ a differentiable structure. Choose b e B and write H = $ .
b

Since 3' is a surjective submersion, H is a closed embedded sub-manifold of $ .
b b

Also, 3' has a family of local right-inverses a : U •• * , where the U cover B.
b i l b I

Let
U.

E^ : U. x H x \]± + *
 J

be the bisections defined using {a.}; to show that the overlap maps are smooth, it

suffices to show that the transition functions s : U •• H for {a } are smooth.

Now, again using the fact that 3' is a surjective submersion,
b

K * K = {^»^> £ K x K I 3(T1)
b b b b i

is a submanifold of $ x $ and hence of ft x o . consider the restriction of

6': ftfe * ftb -• ftb (n,0 H * n""1^

to * * 4 . Since * is a leaf of the distribution A on ft , it follows that

b b b b b
$ * $ > ft is smooth as a map into 4 , and since H is an embedded submanifold
b b b b

of 4 , it follows that 4 * 4 •*• 4, is smooth as a map into H. Hence s : U •> H,
b -i b b b lj lj

x H" CJ.(X) a.(x) is smooth, as required. Also, it follows that H x H •• H,
1 -I*' b i

(h,hf) h* h hf is smooth and so H is a Lie subgroup of ft, . The maps Z. now define
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a differentiable structure on $ with respect to which it is a Lie groupoid on B.

Because the a. are smooth into * with its leaf differentiable structure, it follows
1 b

that each $ , x e B, inherits from $ the differentiable structure it was originally
X i

given by A, and because the inclusion $ Ss ft is locally (with respect to the I.)
•> i

represented by id x ( H S ft ) x id , it follows that $ is a Lie subgroupoid
U b U

of ft. J 1

The inclusion $ S ft induces an injective Lie algebroid morphism A$ •• Aft

over B; since A$| = T( $ ) = A = A' , ¥x e B, it follows that A$ •*• Aft is a Lie
'X X ~ ~ X

X X
algebroid isomorphism onto A1.

Suppose now that ty: ¥ •• ft is a Lie subgroupoid of ft with ^(AY) = A'.

From the diagram

T V ) A ^ Ta(ft)

I I 1
--* *- A1 S Aft

in which each vertical arrow is a pullback, it follows that T (i|/) is onto A and

hence for each x e B, i|> (¥ ) is an integral manifold for A through x. So there

exists a smooth map $ : ¥ •»• * such that
X X X

(1)

ycommutes. It is easy to see that <J> « R = R o<)i for each ^ e V , x,y e B and

U y £ 9X v. s) x x
<))x is a morphism of algebraic groupoids ^ "*" * over B. Since

x
V and $ are Lie and <j> is smooth, it follows that <J) is smooth. From (1) it follows

that <j> is an injective immersion and so <f> is an injective immersion. Lastly, from

^ A1 = A$, it follows that ¥ and $ have the same dimension, so <j> is etale,

and therefore, by 3.14, <j> is onto $. //

A brief outline of this proof was given in Bowshell (1971).
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Corollary 6.2. Let <j>: ft -• ft' , <J> : B •* B' be a morphism of Lie groupoids and let* o

$ be a reduction of ft1. Then i f <J> takes values in $, it is smooth as a map ft + $.

Proof; First assume that ft is a-connected. Let ¥ be the a-identlty component

subgroupoid of *• Then for each x e B, the submanifold ¥ . . of ft' is a leaf of

the foliation on ft1 defined by A*. So <|> : ft + V . . is smooth. Hence, by the
x x ^Q^)

smooth version of II 1.21(i), <j>: ft + ¥ is smooth; since ¥ is open in $ it follows

that <{>: ft + $ is smooth.

The case where ft is not a-connected now follows from 1.3 and II 1.21(ii).

The assumption that A' is transitive is essential to the possibility of

transferring the differentiable structures on the $ globally to the groupoid $. If

A1 is not transitive one obtains in general only the algebraic groupoid $ and a

differentiable structure on a subset W <S $ which contains B and generates $. This

constitutes what was called by Pradines (1966) "un morceau differentiable de

groupoide"; we propose to call it a local differentiable groupoid structure. The

precise definition follows.

Definition 6.3. (Pradines (1966))

Let $ be a groupoid in the algebraic sense on a manifold B. Then a local

differentiable groupoid structure on $ is a subset W of $ together with a

differentiable structure on W such that

(i) x £ W, Vx e B and W generates $;

(ii) a : W •> B, 3J : W -• B are smooth submersions and e: B •• W is smooth;

(iii) (w x w) n 6" (W) is an open subset of W x W and the restriction of

6 to (W x W) (\ <$~ (W) > W is smooth,
a

A locally differentiable groupoid is a pair ($,W), where $ is a groupoid in

the algebraic sense on a manifold B and W is a local differentiable groupoid

structure on $. Two local differentiable groupoid structures W and W on a

groupoid $ are equivalent if for all x e B there is a set x e U S W n W such that U

is open in both W and W . An equivalence class of local differentiable groupoid

structures on a groupoid $ is a micro differentiable groupoid structure

on $, and $ together with this structure is a microdifferentiable groupoid. //
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A smooth foliation v on a connected manifold B defines a microdifferentiable

groupoid structure on X<£ B x B, the groupoid corresponding to the equivalence

relation defined by v • Conversely a microdifferentiable structure on a wide

subgroupoid of B x B defines a foliation on B. (Pradines (1966).)

Almeida (1980) proves the following generalization of 6.1:

Theorem. Let H be a differentiable groupoid on B and Af a Lie subalgebroid of Aft on

a submanifold B' of B. Then there is a unique microdifferentiable subgroupoid ft1 of

ft such that Aft1 = A1. //

The proof of this result is not difficult, though the correct definition of

the general concept of Lie subalgebroid is not obvious and requires care.

However the deduction of 6.1 from this theorem depends on the construction of the

holonomy groupoid of a microdifferentiable groupoid, and this is a very subtle and

substantial theory. We have preferred here to give a direct proof for the locally

trivial case.

We come now to the correspondence between local morphisms of Lie groupoids

over a fixed base and morphisms of their Lie algebroids.

It is easy to extend the construction of the Lie functor to the case of

local smooth morphisms <J): ft ~+ ft' , <{> : B + B' of dif ferentiable groupoids. Denote

the domain of <t> by % . Then T(<}>): Tftl + Tft' restricts to Ta(<j)): Taftj -• î ft'

and one can form the composition

Aft

I 1 , 1
and proceed as in §4. The version of equation (3) of §4 needed is that X| ~ x' iff

<j>£*X = X'• 4> > and equation (4) holds without change. The following unicity result

can now be proved in the most general setting.

Proposition 6.4. Let <J>,̂ : ft ~* ft' be local morphisms of dif ferentiable groupoids.
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Xf 4> = ^ : B •• B' and <J> = ty : Aft -• Aft', then <J) and ip are germ-equivalent. If <j>
o o ty.

and ^ are global morphisms and ft is a-connected then <j> = if> , <f>̂  = ^ imply <t> = ^.

Proof: Germ-equivalence is defined in II 6.7. Let IC be the intersection of the

domains of <J> and I|J. From <j>̂  = ^ it follows immediately that T (<J>) and T (i|0

coincide on T ft|#» Now the diagram

T(af)

i s val id for <j> and ty> and <J> = i|; : B + B1 , so i t follows that T(<j)) and T( ip)
o o

coincide on T(ft)o/.

<j> and ij; are now two maps ft ~* ftf which coincide on the closed embedded

submanifold B of ft and whose tangent maps coincide on an open neighbourhood of B;

it follows that <J> and i|; themselves coincide on an open neighbourhood of B.

The second assertion follows from II 3.11. //

We now address the construction of a local morphism of Lie groupoids

corresponding to a base-preserving morphism of their Lie algebroids.

Theorem 6.5. Let ft and ft' be Lie groupoids on base B with ft a-connected and

a-simply connected, and let <J>: Aft * Aft1 be a morphism of Lie algebroids over B.

Then there is a morphism f: ft •• ft1 of Lie groupoids over B such that f = (j).

Proof: Define ^: Aft -> Aft * Aft' by X h+ X 4> <J>(X). Then <j> is an injective vector
TB

bundle morphism over B, and so its image, im( <J>), is a sub vector bundle

of Aft * Aft'. It is easy to see that im(<j>) is a transitive Lie subalgebroid
TB

of Aft * Aft'. Therefore, by 6.1, there is a unique a-connected Lie subgroupoid
TB

$ of ft x ft' such that A$ = im(<j>). Let TT denote the restriction of the projection
B*B

ft x a« > n to *. Then TT̂ : A$ -• Aft is X * <J>(X) I—• X and is evidently an
B*B

isomorphism of Lie algebroids over B.
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From 6.6 below i t follows that each TT : $ •*• ft i s a covering and since
x x x

$ and ft are a-connected and ft is a-simply connected, it follows that each ir is a

diffeomorphism. So, by 3.13, IT itself is a diffeomorphism and it is easy to check

now that f = ir • IT : ft -*• ft' has the required properties. //

Compare the proof for Lie groups; for example, Varadarajan (1974, 2.7.5).

Theorem 6.6. Let $: ft + ft1 be a morphism of Lie groupoids over B.

(i) If $ is a surjective submersion, then for each b e B,

ftv(ft' ker(<£),<jO is a principal bundle.
D D D D

(ii) If <J>̂: Aft + Aft1 is an isomorphism and ft and ft1 are a-connected, then

each <j> : ft •• ft' is a covering. (In particular, <J> is a surjective submersion.)
b b b

Proof: Use the notation p = ft G = ft, , Q = ft/, H = ft' , K = ker(<(> ) , TT = 3, ,

(i) From 3.13 it follows that <j> : P -»• Q is a surjective submersion. The
b

algebraic requirements are easily verified, and it only remains to prove that

P(Q,K,<J>b) admits local charts.

Given £ e P, let a: U •> P be a local section with a(x ) = £ , where
o _^ o o

x = TT(£ ). Then, under the chart U x G •• IT (U) induced by a, the point
o o i
(x ,1) corresponds to ? . Let U * H •* TT'~ (U) be the chart for Q(B,H) induced by

<Ma: U •• Q. Then <j>, is locally id x A u x G +• U x H.
b b b

Now let T: W -> G be a local section of «f>, : G -• H , where G , H are the
o Tb o o* o* o

identity components of G and H. Then i d x T : U * W - » - U x G defines a principal

b °
bundle chart for p(Q)K,4» ).

(ii) From 3.13 it follows that <|> is etale and so <|>(ft) is open in ft'. By

II 3.11, it follows that <f> is onto, and so, by (i), P(Q,K,4>^) is a principal bundle.

Now <j>̂: Aft ->• Aft1 is an isomorphism and so, by 2.8, ( K ) ^ fl "*" *J' l s a n

isomorphism and so K = ker(<j> ) < G is discrete. Since P and Q are connected, it
b

follows that cf>b is a covering (see, for example, Hu (1959, pp. 104-105)). //

We will need the full generality of 6.6 in Chapter IV.
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Theorem 6.7. Let ft and ft' be Lie groupoids on B and <J>: Aft •> Aft' a morphism of Lie

algebroids over B. Then there is a local morphism F: ft ~+ ft1 of Lie groupoids over

B, such that F^ = <f>.

Proof: It is no loss of generality to assume that ft is a-connected. Let \\>: Mft •• ft

be the projection of the monodromy groupoid, and apply 6.5 to <|>«iĵ  : AMft + Aft'.

There is then a morphism f: Mft •• ft' over B such that f = «J>°^. Now, by II 6.11, \p

has a local right-inverse morphism x: 8 ~* Mft, and f©x: ft ~* ft1 is now a local

morphism over B with (f»x)* = <t>0%°Xk ~ $• II

Corollary 6.8. Let <j>: ft ~+ ft' be a local morphism of Lie groupoids over B. Then

<j) is a local isomorphism iff <f>̂: Aft -̂  Aft' is an isomorphism.

Proof: Follows from 6.7 and 6.4. //

Two instances of 6.7 need to be noticed.

Example 6.9. Let ft be a Lie groupoid on a connected base B. A flat infinitesimal

conection y: TB ->• Aft is a morphism of Lie algebroids and so, by 6.7, integrates to a

local morphism of Lie groupoids 9: B x B ~+ ft. By II 6.8, local morphisms

B x B ~+ ft are equivalent to section-atlases whose transition functions are

constant, and this argument therefore gives an alternative proof of 5.19(ii). The

reader may like to trace through in detail the relationship between the two proofs.

Since A7C(B) = TB, y may also be integrated to a glpbal morphism

h : /T(B) + ft, called the holonomy morphism of y. Conversely, any Lie groupoid

morphism /T(B) •• ft differentiates to a flat infinitesimal gonnection in ft.

See also 7.29. The holonomy of general connections is treated in §7. //

Example 6.10. Let ft be an a-connected Lie groupoid on B.and p: Aft + CDO(E) a

representation of Aft in a vector bundle E on B. Then, by 6.5, there is a

representation P: Mft ̂  n(E) of the monodromy groupoid of ft in E with P^ = p.

In the case where ft is B x B, the monodromy groupoid of ft is 7T(B) and a

representation of 7T(B) in E is precisely a local system of coefficients on B with

values in E (see, for example, Hu (1959, IV.15)). In analogy with this case we call

a representation Mft •»• n(E) a local system of coefficients on ft with values in E.

Note in particular that a flat connection in a vector bundle E on B

constitutes a local system of coefficients on B with values in E. //
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Lastly, we note for reference the following result, whose proof will now be

evident.

Theorem 6.11 Let Si be a Lie groupoid on base B. Then the covering projection

ip: Mft •* ft induces an isomorphism of Lie algebroids ip*: AMft •> Aft. //

Two items in the Lie theory of Lie groups and Lie algebras which do not

generalize to Lie groupoids and transitive Lie algebroids are the correspondence

between connected normal subgroups and ideals, and the result that a connected Lie

group with abelian Lie algebra is abelian.

The concept of ideal of a transitive Lie algebroid is not defined until

IV§1, but assume that we have some concept of ideal which satisfies the minimal

requirement that every transitive Lie algebroid is an ideal of itself. Then

the ct-connected Lie subgroupoid of ft corresponding to Aft itself is the o-identity

component subgroupoid ¥ of ft and II 3.7 shows that ¥ need not be normal in ft.

If ft is an a-connected Lie groupoid with abelian Lie algebroid then the

adjoint bundle Lft is abelian and so the identity components of the vertex groups

of ft are abelian. If the base B is simply-connected then the vertex groups

of ft must be connected (by the long exact horaotopy sequence for the vertex bundles

(see the proof of II 6.6)), and so ft is abelian. However if B is not simply

connected, then the vertex groups of ft need not be abelian, and I: ft + n(Gft) need

not quotient to B * B •• n(Gft): consider, for example, the fundamental groupoid of

any manifold, such as the Klein bottle, which has a nonabelian fundamental group.

(Compare II 3.7.) It is however true that if Aft is abelian, then Ad: ft + II[Lft]

quotients through a map h:7T(B) *• II[Lft] with ad = h^pq.

There remains one major topic in the Lie theory of Lie groupoids and

transitive Lie algebroids: the integrability of transitive Lie algebroids. This

topic is treated in Chapter V.
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§7. Path connections In Lie groupoids

§7 is concerned with the relationship between the action of an infinitesimal

connection and the action of its holonomy groupoid.

The first part of this section formalizes the concept of c -path connection

in a Lie groupoid ft and establishes its correspondence with connections in the Lie

algebroid Aft. The path lifting associated with an infinitesimal connection has

usually been treated as a subsidiary concept; though passing references to an

independent concept of path connection have been made in the literature (for

example, Bishop and Crittenden (1964, 5.2), Singer and Thorpe (1967, 7.1)) no full

discussion seems to have appeared. Our purpose in treating this concept here is to

keep clear the distinction between the infinitesimal aspect of connection theory,

which may be developed in the context of abstract transitive Lie algebroids, and

those parts of connection theory - the concept of path lifting and holonomy - which

require the Lie algebroid to be realized as the Lie algebroid of a specific Lie

groupoid. The situation is exactly parallel to that existing with Lie groups and

Lie algebras: the one transitive Lie algebroid may arise from several distinct Lie

groupoids, which are only locally isomorphic, and although the curvature, for

example, depends only on the Lie algebroid, the holonomy, and its associated

concepts, depend on the Lie groupoid. This point does not need to be made in the

standard treatments of connection theory, because there a connection is regarded as

existing on a specific Lie groupoid or principal bundle, but we have argued

elsewhere in this book the need to regard abstract Lie algebroids as mathematical

structures in their own right.

In 7.11 we prove a very general result, crucial to the developments of

Chapter IV, concerning structures on vector bundles defined by tensor fields. 1.20

may be reformulated to state that such a structure is locally trivial iff the

structures defined on the fibres of the vector bundle are pairwise isomorphic; in

7.11 we prove that this is so iff the bundle admits a connection compatible with the

structure. From this it follows, for example, that (7.13) a morphism of vector

bundles <J>: E + E over a base B is of locally constant rank iff <J> maps some
1 1 2 2

connection V in E to a connection V in E . The proof of 7.11 is a concatenation

of results already established. 7.11 is a slight generalization of a result of

Greub et al (1973, Chapter VIII); the proof given here is new.

In 7.25 to 7.28 we give a strong, Lie groupoid form of the Ambrose-Singer

theorem. 7.25 and 7.26 give an abstract construction of the Lie algebroid of the

holonomy groupoid of a connection which is easily seen (IV§1) to hold in any

transitive Lie algebroid.
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7.30 is a connection-theoretic analysis of morphisms of trivial Lie

algebroids over a fixed base. In I 2.13 it is pointed out that a morphism of

trivial groupoids <f>: B x G x B - > - B x H x B can be constructed from any morphisra

f « $,: G •• H and any map 6: B •• H; however 7.30 shows that an arbitrary Maiirer-

If L
Cartan form co = A(9) e A (B,h) and Lie algebra morphism D •• n need to satisfy a

further compatibility condition before they define a morphism of trivial Lie

algebroids TB * (B x ft ) +TB • (B xfj). This difference in behaviour turns out to

be typical. Using 7.30, we obtain a second proof of the local integrability of

base-preserving morphisms of transitive Lie algebroids.

Throughout this section we assume that B is a connected manifold. Until we

reach 7.9, we work with a fixed Lie groupoid Q on B,

We modify the notations C(I,B), p a * pa(ft) and P01 = pa(ft) of II§6: each now
? o o

denotes the corresponding set of continuous and piecewise-smooth paths. No topology

is required on these sets.

Definition 7.1. A C -path connection in ft is a map T: C(I,B) •• P (ft), usually

written c V-+- c, satisfying the conditions (i) and (ii) of II 7.1, and consequently

(iii)-(v) of II 7.4, and in addition,

(vi) If c e C(I,B) is differentiable at t e l then c is also
o

differentiable at t ;

dc dc
(vii) If c1 ) C o e C(I,B) have r-̂ - (t ) = -r-^ (t ) for some t e I,

1 2 dt o dt o o
dc dc

then -I (t^.^-a^).

dc dc dc
(viii) If c1,c2,c3 e C(I,B) are such that - ^ (tQ) + -^ (tQ) = j~ (tQ)

for some tQ e I, then ^ (tQ) + ̂  (tQ) = ̂  (tQ). //

We refer to (vi) and (vii) as the tangency conditions and to (viii) as the

additivity condition. All three are clearly necessary, if it is to be possible to

differentiate T to an infinitesimal connection.

Proposition 7.2. Let T: c !•—• c be a C -path connection in ft. Then

dc dc
(ix) If c1,c2 e C(I,B) are such that — (tQ) = k — (tQ) for



169

dc dc
some t e l and k e R, then -r-— (t ) = k -rr— (t ).

O at O at O

(x) If <\> : U x (-e,e) + B is a local 1-parameter group of local
t - U

transformations on B, then the map <J> : ft x (-zye) + ft constructed as in
II 7.3 is a local 1-parameter group of local transformations on ft, and

for all t e (-e,e)«

Proof: (ix) follows from the reparametrization condition on F and (x) is proved

exactly as for (the local form of) II 7.3. //

00

Theorem 7.3. There is a bijective correspondence between C -path connections

F: c I-* c in ft and infinitesimal connections y: TB •• Aft in Aft, such that a

corresponding F and y are related by

(1) i . S ( t ) - T ( R ) ( Y ( | _ c ( t o ) ) ) ( c e C ( I . B ) , t e l .
c(to)

Remark: Note that there is no continuity condition on the map F.

Proof: Suppose given a C -path connection T. For X e T(B) take any c e C(I,B)

with c(t ) = x and •—" (t ) = X for some t e l , and define
o dt o o

T(X) -T(R J & c C ^ ) ) .
c(to)

Since a«c is constant, the RHS is defined, and lies in T(ft ) . By the
X x

tangency conditions, Y(X) is well-defined with respect to the choice of c. By
(viii) and (ix), y: T(B) > Aft| is R-linear.

Now let X be a vector field on B. We prove that y(X) is a smooth section

of Aft. Let <J> : U x (-e,e) + B be a local flow for X and ̂  : ft x (-e,e) -»• ft the

T-lift of {<|» }. Let X* be the (local) vector-field on ft derived from (i }. Then,

from the definition of ̂  l n I1 7»3, it is clear that X* is right-invariant. From

the definition of y above, it is clear that X* is the (local) vector field on ft

associated to Y(X); in the notation of 3.10, X* = Y(X)|U« Hence, by 3.10, y(X) is
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smooth. Therefore y: TB •• Aft is smooth.

Conversely, suppose given an infinitesimal connection y: TB •• Aft, and a

path c e C(I,B). Let a: U • (I be a local decomposing section of ft with
U

c(0) e u, and let Z: U x G * U -• (2 be the corresponding chart. Let t > 0 be such

that c([0,t])SO and c is smooth on [0,t ] and write c on [0,t ] as Z«(c,a,c(0)),

where a: [0,t ] •• G has a(0) = 1. Then (1) becomes

where u) e A (U,Q) is the local connection form of y with respect to a. In terms of

the right-derivative of a this can be rewritten as

(2a) A(a) = c*oo ,

where c*o) e A ([0,t ],O) is the pullback of co. Now c*o) is a Maurer-Cartan form,

since [0,t^] is 1-dimensional, and so there is a unique smooth solution a to (2a) on

[O,t]J with a(0) = 1. Since c has only a finite number of points where it is not

smooth, and since c(I) is covered by a finite number of domains of decomposing
— ot

sections a^. \s + ftfe, this process yields a curve c e P Q satisfying (1) and with

properties (i), (vi), (vii) and (viii). The remaining property, (ii), is easily

seen from the form of (2) and the uniquenss of its solutions. //

The second part of this proof is a reformulation of that of Kobayashi and

Nomizu (1963, II 3.1).

Corollary 7.4. (of the proof) Let y: TB •• Aft be an infinitesimal connection

in ft and let T be the corresponding path connection. Then, for all X e FTB,

Exp ty(X)(x) = r(<j>,x)(t)

where {<J> } is a local flow for X near x, and T((|>,x): R ~+ ft is the lift of

t V-+ • (x).

Proof: Follows from the definition of y in terms of T in 7.3 and the construction

of $ in II 7.3. //

Corollary 7.5. Let <f>: ft •*• ft' be a morphism of Lie groupoids over B, let y be an
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infinitesimal connection in ft, T the corresponding path-connection, and y1 the
00

produced connection, y' = ^9y» Then the C -path connection P associated to Yf

is the produced c -path connection, T1 = <J>»r, and

Proof: Take c e C(I,B). Then, since c satisfies equation (1) for y it immediately

follows that <(>«c satisfies equation (1) for ^o y. Thus rf = $oT.

That <f>(Y) = r follows immediately, as in II 7.12. //

Corollary 7.6. If ft1 is a reduction of ft, and Y: TB -• Aft takes values in Aft1,

then V < ft1.

Proof: This is a particular case of 7.5. //

For the proof of the following crucial theorem, we refer the reader to

Kobayashi and Nomizu (1963, II 7.1, II 4.2).

Theorem 7.7. Let T be a C -path connection in ft. Then the holonomy groupoid

¥ of T is a Lie subgroupoid of ft. //

Using the correspondence between principal bundles and groupoids set up in

II 1.19, and the particular account for the holonomy groupoid in II 7.14, a

translation of the proof of Kobayashi and Nomizu into Lie groupoid terms is

immediate, and need not be given here.

It would be interesting to obtain a proof of 7.7 which works directly with

the groupoids, rather than via the holonomy group and holonomy bundle. For example,
00

one may ask for conditions under which a "C Yamabe theorem" for Lie groupoids is

true:

Problem. Let ft'1 be a wide, transitive subgroupoid of the Lie groupoid ft, and

suppose that each Z, e ft' may be joined to ot£ by an element of PQ(^) which lies

entirely in ft'. Find conditions under which ft1 is a Lie subgroupoid of ft. //

It seems likely that a further, rather strong, condition will be needed, to

guarantee the transitivity of the associated Lie algebroid.

Still with reference to 7.7, note that no continuity or smoothness condition

on the map T is needed to guarantee that f is a Lie subgroupoid of ft (compare

II 7.7). However, ¥ need not have the relative topology from ft: for examples, see
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Hano and Ozeki (1956) or Kobayashi and Nomizu (1963, p. 290).

Lastly, we recall that the identity components of the holonomy groups fX are

the restricted holonomy groups H° = U | I is a piecewise smooth loop at x,

contractible in B to x}. See Kobayashi and Nomizu (1963, II 4.2) for the proof.

Corollary 7.8. Continuing the notation of 7.7, for each X e FTB and all t

sufficiently near 0,

Y(X) e M and Exp ty(X) e V.

Proof: These are reformulations of 7.4. //

Henceforth we will call a C -path connection simply a path connection,

unless it is necessary to emphasize the differentiability of the paths.

Later in this section we will calculate the Lie algebroid of the holonomy

groupoid ¥ and in so doing will establish a form of the Ambrose-Singer theorem. We

give now however a series of applications of the concept of holonomy, which are

fundamental to all the developments in Chapter IV.

Theorem 7.9. Let E be a vector bundle on (a connected base) B, and let V be a

connection in E. Let ¥ = ¥(V) be the holonomy groupoid of V.

Write

(TE)V = {y e TE I V( y) - 0}

and recall (II 4.14) that

(FE) = {y e

Then

Remark: Equivalently, V(y) = 0 <=> ¥(V) < $ . A section y of E satisfying
________ y
V(y) = 0 is said to be parallel with respect to V.

Y
Proof: (2) Take y e (TE) . Then y is Y-deformable, and so ft-deformable.

Hence, by 1.20, the isotropy subgroupoid $ = * is a closed reduction of II(E). Now,
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by 4.7,

TA$ = {D e TCDO(E) I D( y) = 0}

and since V < $ by assumption, it follows that D( y) = 0 for all D e TkV. But

Y is the

V(y) = 0.

is the holonomy groupoid for V and therefore, by 7.8, V e TAY, ¥X e ITB. Hence

(£) Assume V(y) = 0. We are to prove that £y( ot£) = y( 3£) for all £ e ¥.

Since V is a-connected it is sufficient (by II 3.11) to establish the equation for
U

£ £ fT, U the domain of a decomposing section U •• n(E), for E.
U b

So we can assume that E is a trivial vector bundle U x V. Now

V: TU + TU * (U x DI (v)) has the form V(X) = X * o)(X), where u e A^U.olcv)) is the

local connection form of V with respect to x H> (x,id ,x). As in 7.3, the lift of

any c: I •• U is t I—• (c(t) ,a(t) ,c(0)), where A(a) = c*w and a(0) = id .

We need to show that a(t)y(c(0)) = y(c(t)) for all t e I, where y is

regarded as a map U + V. We show that — (a(t) y(c(t))) is identically zero.

Write f = yoc: I •• V. From B§2, equation (6a), we obtain

and from B§2, equation (2), we have

Putting these together we get

h ^ \ 1 ^ f)

Now the hypothesis V(y) = 0 is exactly that X(y) + co(X)(y) = 0 for all

X e T(U), and so, putting X = -p , the result follows. //
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Remark; If, in the second part of the proof of 7.9, one knew in advance that y was

II(E)-deformable, then the result would follow directly from 4.7 and 7.6. //

Corollary 7.10. Continue the notation of 7.9 and let b e B be any reference point.

There is an isomorphism of vector spaces

(TE)V -• VH, y V- + y(b)

where V = E, and H = H£.
b b

Proof: Apply II 4.15 to Y * E > E. //

Theorem 7.11. Let SI be a Lie groupoid on B and let p: fi * E •>• E be a smooth linar

action of ft on a vector bundle E. For y e FE, the following four conditions are

equivalent

(i) y is ft-deformable;

(ii) the isotropy groupoid $ of y is a Lie subgroupoid of ft;

(iii) ft possesses a section-atlas {a : U •• ft } such that p(a.(x) )y(x)

lib I

is a constant map U. •• E ;

(iv) ft possesses an infinitesimal connection y such that (poy)(y) = 0.

Proof: (i) => (ii) is 1.20. (ii) => (iii) is immediate; (iii) => (i) follows from

the connectivity of B.

(ii) => (iv) follows from 4.7.

(iv) => (i) Let V be the holonomy groupoid of Y> and let T < II(E) be the

holonomy groupoid of PJ>y. Then p( ¥) = V by 7.5. Now (p.°Y)(y) = 0 so, by 7.9,

y £ (TE) and now ¥' = p(¥) shows that y is ¥-deformable. In particular, y is

ft-deformable. //

In (iii), the various constant maps U. •*• E, may be chosen so as to have the

same value.

7.11 includes Theorems 1 and 2 of Greub et al (1973, Chapter VIII). In the

following series of applications of 7.11, the first, 7.12, may be deduced equally
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well from Greub et al (1973, loc. cit.).

Theorem 7.12. Let L be a vector bundle on B and [ , ] a field of Lie algebra

brackets on L. Then the following three conditions are equivalent:

(i) The fibres of L are pairwise isomorphic as Lie algebras;

(ii) L admits a connection V such that V ([V,W]) = [V (V),W] + [V,V (W) ] for

all X e TTB and V,W e TL;

(iii) L is an LAB.

Proof: Let p: n(L) * Alt2(L;L) -• Alt2(L;L) denote the action 1.25(ii). Then (i) is

the condition that [ , ] is n(L)-deformable, and (iii) is the condition that II(L)
2

admits a section atlas {cr.} such that the corresponding charts for Alt (L;L) via
2 x 2

p map [ , ] e T Alt (L;L) to constant maps IL •• Alt (L -,1^). So (i) and (iii) are
equivalent by the equivalence (i) <=> (iii) of 7.11.

From 4.8(ii) it follows that p^: CDO(L) •• CDO(Alt (L;L)) is

P̂ (D)(<f>)(V,W) = D(<j>(V,W)) - 4>(D(V),W) - <KV,D(W)). Therefore (ii) is the condition

that L admits a connection V such that (p^V)([ , ]) = 0. Hence (i) <=> (ii)

follows from the equivalence (i) <=> (iv) of 7.11. //

Recall from 5.3 that a connection in L satisfying (ii) is called a Lie

connection in L.

Theorem 7.13. Let E and E' be vector bundles on B and let <j>: E •»• E1 be a morphism

over B. Then the following three conditions are equivalent:

(i) x H rk(<f> ) is constant;

(ii) there exist connections V in E and V1 in E1 such that

V^(<Ky)) = <1>(V (y)) for all p e FE and X e ITB;

(iii) there exist atlases {ip.: U. x v + E } and {V.: U. x vf + E! } for E

and E1 such that each <|>: E + Ef is of the form <j>(x,v) = (x,f (v)), where

f.: V + V is a linear map depending only on i.

Proof: This follows from 7.11 in the same way as does 7.12, using now 1.25(iii),

4.8(iii) and the following lemma. //
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Lemma 7.14. Let <|> : V •• V and <\> : W •»• W' be morphisms of vector spaces with

dim V = dim W, dim V1 = dim Wf and rk( <J> ) = rk( $ ). Then there are isomorphisms

a: V •• W, a1 : V' •• W1 such that af«<fr = <j> o a. //

In order to facilitate reference to 7.13, we use the following terminology:

Definition 7.15. Let M be any manifold, not necessarily connected, and let

<(>: E •• E1 be a morphism of vector bundles over M. Then <J> is of locally constant

rank if x J--• rk(<j> ), M •*• Z, is locally constant and <j> is a locally constant morphism

if it satisfies condition (iii) of 7.13. //

Then 7.13 may be paraphrased for morphisms <|>: E -• E1 of vector bundles over

any base as follows: <j> is of locally constant rank iff it is locally constant and

iff there are connections V,V in E,Ef such that <j) maps V to V . In 7.13 itself,

where the base is connected, the maps f̂  may be arranged to be identical.

We will also need the following LAB version of 7.13.

Theorem 7.16. Let L and L' be LAB's on B and let <j>: L •• Lf be a morphism of LAB's

over B. Then the following three conditions are equivalent:

(i) For each x and y in B, there are Lie algebra isomorphisms a: L -• L

and a1: L' •• L1 such that <(> o a = ci'o <j> ;
x y y x

(ii) L and L1 possess Lie connections V and V1 such that <|>(V (V)) = V'(<t>(V))

for all V e TL and X e TTB;

(iii) there exist LAB atlases {i|> : U x D -• L } and W : U x g» -• i» } for

L and Lf such that each <j>: L •• Lf is of the form <()(x,A) = (x,f (A)), where

f : Q + D1 is a Lie algebra morphism depending only on i. //

The proof is similar to that of 7.13. We refer to a morphism <{>: L *• L1 of

LAB's over any (not necessarily connected) base M which satisfies (iii) of 7.16 as a

locally constant morphism of LAB's. When the base is connected, f^ may be chosen to

be independent of i as well.

Further applications of 7.11 are made in IV§1.

The following result is similar in spirit to 7.12, 7.13 and 7.16.
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1 2
Theorem 7.17. Let E be a vector bundle on B, and let E and E be sub vector

1 2
bundles of E. Then E D E is a sub vector bundle of E if there is a connection

V in E such that VCITESS TE1 and V(n£2)S TE2. //

Here V(rE')£ TE' is an abbreviation for "y1 e TE1 ,

=> V (yf) e TE'". Though this result is relate

circuitous proof and will only be completed after 7.23.

X e TTB => V (yf) e TE'". Though this result is related to 7.11, it requires a more

Proposition 7.18. Let E be a vector bundle on B and let E? be a subbundle.

Let p: ft * E + E b e a smooth linear action of a Lie groupoid ft on E. Denote

by $ the subgroupoid {£ e ft | S(E^) = E]' } of ft.

Then if $ is a transitive subgroupoid of ft, it is a closed embedded

reduction of ft.

Proof: Let q be the rank of E1 and let G (E) •>• B be the fibre bundle with
q

G (E) , for x e B, the Grassmannian of q-dimensional subspaces of E and charts
q x x

induced from the charts of E in the natural fashion. Then E1 is a smooth

ft-deformable section of G (E). Now apply 1.20. //

Definition 7.19. Let E be a vector bundle on B and E' a sub vector bundle of E.

Then n(E,E') denotes the Lie groupoid {<(> e II(E) I <KEf .) = E]' }. //
i occp p<p

Proposition 7.20. With the notation of 7.19, the isomorphism «S : AII(E) •• CDO(E)

of 4.5 maps rAII(E,E') isomorphically onto {D e TCDO(E) | D(rE')SrE'}.

The proof of 7.20 is completed after 7.22. Although 7.20 resembles 4.7, the

method of 4.7 cannot be used in a general fibre bundle (such as a Grassmannian) and

we are obliged to give a different proof.

Lemma 7.21. E admits a connection V such that V(rE')S TE1 .

Proof: Let < , > be a Riemannian structure on E, and let E" be the orthogonal

complement to E' in E. Let V and V" be connections in E1 and E1 and define V in

E = E1 © E" by Vx(y» © y") = V^(u') 0 V^y " ) . //

Proposition 7.22. There is a transitive sub Lie algebroid CDO(E,E') of CDO(E) which

has the property
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rCDO(E,E') = {D e TCDO(E) | D ( r E ' ) £ T E 1 } .

P roo f : Let End (E ,E f ) be t h e sub LAB of End(E) d e f i n e d by

r E n d ( E , E ' ) = {<!>£ TEnd(E) | < K r E f ) £ T E ' } ;

it is easy to prove (see IV 1.1 and the subsequent discussion) that a unique such

LAB exists. Let V be a connection in E such that V(rE')£s TE1 and define

i: TB 4> End(E,E') -• CDO(E)

by i(X * <|>) = V + (J>. Then i is an injection since End(E,E') > End(E) is an

injection, and so im(i) is a sub vector bundle of CDO(E). It is easily verified

that [v
x>

v
y] =

 v
x*

 V
Y " V

V X m a p S rE' i n t O rE? f ° r a 1 1 X > Y e r T B > a n d t h a t

[V ,M = V»f - lpoV does likewise, for X e FTB, * e TEnd(E,Ef). It now follows
X X X

that im(i) is closed under the bracket on CDO(E), and hence im(i) is a reduction of

CDO(E).

If V is a second connection in E such that V(rE')S TE1 , then V - V takes

values in End(E,E') and so it is easily seen that im(i) = im(i). Denote this common

image by CDO(E,E!); if D e TCDO(E) has the property that D(TE1)S TEf then

D = V + (D - V ( D ) shows that D e rCDO(E,E
f). //

A similar construction may be carried out with any suitable family of

connections on E.

Proof of 7.20: If X e rAII(E,Ef) then Exp tX takes values in n(E,Ef) for all t and

so, by the definition of o& in 4.5, o5(X) e rCDO(E,E'). Thus Jb maps AII(E,Ef) into

CDO(E,Ef).

To prove that «9(An(E,E')) = CDO(E,Ef), is suffices (by 2.8) to prove that

^"(Ln(E,E')) = End(E,Ef). Fibrewise, £+ is T(GL(V,V'))][ +ol(V,V), and is an

isomorphism by the following (classical) lemma. //

Lemma 7.23. Let V be a vector space and Vf a subspace. Let GL(V,Vf) =

{A e GL(V) | A(V') = V1} and letnl (V,V) = {X e fl/(V) | X(V')£V'). Theno/(V,V)

is the Lie algebra of GL(V,V).

Proof: Take X e tr) (V,V) . Then xn e Ql (V,V) for all integers n > 0and
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therefore, since V1 is closed, exptX maps V into V1 for all t. Thus

exptX e GL(V,V). //

Proof of 7.17. Let ¥ < n(E) be the holonomy groupoid of V. Now

V e TCDOCE^1) = TAIKE^1) SO, by 7.6, ¥ < II ^ E 1 ) . Similarly Y < II(E,E2). So
1 2 1 2

every element £ of V maps E » H Eg- to E g^ /H Eg~.

Let {<(> : U + f } be a section-atlas for ¥. Then the associated charts
i i b 1 9

*.: U. x E^ -• E T , (x,v) f~>- a.(x)(v), restrict to charts for E
1 0 E . //

l i b U. l

We also need an LAB version of 7.17; the proof is exactly analogous.

Theorem 7.24. Let L be an LAB on B, and let L and L be sub LAB's of L. Then
1 ?

L 0 L is a sub LAB of L if there is a Lie connection V in L such that

V ^ L S S VCTL1) and V(TL2)Q TL2. //

We arrive now at the Ambrose-Singer theorem. First we show that, given an

infinitesimal connection y in a Lie algebroid Aft, there is a least reduction,

denoted (Aft) , of Aft which contains y. As we will see in IV§1, this construction

may be carried out in any transitive Lie algebroid. It then follows immediately

that this reduction (Aft) is the Lie algebroid of the holonomy groupoid of y.

Until we reach 7.27, let ft be a Lie groupoid on B and let y be an

infinitesimal connection in ft.

Proposition 7.25. Let Lf be a sub LAB of Lft such that

(i) R (X,Y) e L1 ¥X,Y e T(B), and

(ii) VY(TL')S TLf .

Then there is a reduction A1 < Aft defined by

TA1 = {X e TA | X - Yq(X) e IV}

which has L1 as adjoint bundle and is such that y(X) e A1 for all X e TB.

Proof: Define <J>: TB U ' -• Aft by <|>(X * V ) = y(X) + V . Then im(<j>) = A1 and,

applying the 5-lemma to
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L1 > > TB -0 L1 • * TB

I I
Lft > > Aft >• TB

as in 2.8, it follows that Af is a sub vector bundle of Aft.

Clearly y(X) e A' for X e TB and so the restriction of q to A1 is

surjective. Clearly ker(q| ) = L'•

To prove that FA1 is closed under the bracket on TA, take X,Y e TA' and

write X = YqX + V , Y = YqY + W , where V ,W e IV . Then

[X,Y] = T[qX,qY] - Ry(qX,qY) + V ^ ( W )

and the last four terras are in TV by (i) and (ii). //

7.25 resembles 7.22; we give a general statement of this procedure in

IV 3.20.

Proposition 7.26. There is a least sub LAB, denoted (Lft)\ of Lft which has the

properties (i) and (ii) of 7.25.

Proof: It suffices to prove that if L and L both satisfy (i) and (ii), then

1 2 1 2 '
L O L does also. The only point that is not clear is that L H L is a sut
and since VY is a Lie connection this is established by 7.24. //

The corresponding reduction of Aft is denoted by (Aft) and called the

y-curvature reduction of Aft.

Theorem 7.27. (Ambrose-Singer) Let ft be a Lie groupoid on B and let y: TB •»• Aft be
00

an infinitesimal connection. Denote the associated C -path connection by T and the

holonomy groupoid of T by ¥.

Then AY = (Aft)Y.
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Proof t By 7.8, y takes values in A¥. Hence L¥ satisfies the conditions of 7.25 and

therefore L¥ > (Lft)Y and AY > (Aft)Y. On the other hand, y takes values in (Aft)Y and

Since f is a-connected, ¥ is determined by (Aft)Y via 6.1. Though 7.27 is

considerably stronger than the standard statement of the Ambrose-Singer theorem, it

should be pointed out that everything required to prove 7.27 is implicit in the

proofs of Kobayashi and Nomizu (1963, II 7.1, II 8.1); what the language of Lie

groupoids and Lie algebroids has provided is the means to formulate these results

with their full force.

To complete this account of the Ambrose-Singer theorem, we indicate how the

standard formulation may be obtained from 7.27.

Example 7.28. Let P(B,G) be a principal bundle and let OJ e A (P,0) and

ft e A (P,tl) be a connection 1-form and its curvature 2-form. (For the relationship
TP — P x 0 /

between o> and y: TB -• -— and between ft and R : TB * TB -• — — * - , see A§4.) Let n
G y G

be the Lie subalgebra of 0 generated by {ft(X,Y) | X,Y e T(P)}. Since

Adgft(X,Y) = ft(T(R )X,T(R )Y), g e G, it follows that h is stable under AdG.

g" g"

Let {a.; u. •• P} be a section-atlas for P and let \\).: U. *Q •• -^~z—TT1 1 1 1 y G u.

be the associated charts for — ^ — . Since the transition functions i|£ *. take

values in AdG < Aut(O), it follows that fl translates into a well-defined sub LAB K

Of S-^M-.

From A 4.16 it follows that R (X,Y) e K, ¥X,Y e TB. To show that condition

(ii) of 7.25 holds, note that VY(ih(V)) = i|>.(X(V) + [u>. (X),V]), where V: U. + D , and
1 X l i i 1 u

the a) e A (U.,0) are the local connection forms of y with respect to {a.} (see

5.16). From this it follows easily that VY( HC)S TK.

Hence (Lft) < K. Now n is the least Lie subalgebra of Q which contains all

the values of ft so, by following through the relationships between R and ft, and K

and n , it follows that any sub LAB of Lft which satisfies (i) of 7.25, also contains

K. Hence (Lft)Y > K.

Note that h is an ideal ofD , since it is stable under AdG. //

U

The account of flat connections given in §6 can now be made more precise.
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Proposition 7.29. Let ft be a Lie groupoid on B and let y: TB + Aft be a flat

connection. Then the holonomy groupoid f of y is a quotient of T T ^ ) *

Proof: Since R = 0 we can take L1 = B x {0} in 7.25. So L¥ = (Lft)Y = B x {0}

and y is an isomorphism TB •> A¥. Now, as in 6.9, y integrates to a morphism

hY: 7T(B) •»• Y. Since both 7T(B) and Y are a-connected, it follows from 6.6(ii)

that h is a surjective submersion and fibrewise a covering. //

Thus the locally constant transition functions found in 6.9 form a cocycle

and the path c

connection in /[(B).

for f, and the path connection for y in ft is the image under h of the unique path

Y
In the case of flat connections in a vector bundle E, h gives a smooth

action of /T(B) on E.

We close this section with a more detailed analysis of morphisras of

transitive Lie algebroids, based on 7.11-7.16.

Example 7.30. Let <j>: TB • (B x D ) -• TB «> (B x h ) be a morphism of trivial Lie

algebroids. By 2.4, <j> is <|>(X * V) = X * (w(X) + <|>+(V)) where u> e A^B,/?) is a

Maurer-Cartan form, t : B xD > B xjl is the induced morphism of LAB's, and <j)

and w satisfy the compatibility equation

(3) X(<j>+(V)) - <{>+(X(V)) + [u)(X),(j>+(V)] = 0.

Let V° be the standard flat connection in B x 0 , and define a connection V

in B xr? by

V^(W) = X(W) + [o)(X),W].

Since OJ is a Maurer-Cartan form, V is flat, and it is easily seen to be Lie. In

terms of 7.16, (3) now asserts that <j>+(V^(V)) = Vx(<j)
+(V)), for V: B + D , X e PTB.

Hence 0 is a locally constant morphism of LAB's

Vx(<j)(V)), for V: B +D

Further, V° and V together induce, by 4.8(iii), a connection V in

Hom(B xn B x h ) = B x Hom(D,fc), the vector bundle whose sections are the vector

bundle morphisms B x Q + B x f j . V i s
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- <Kv°(v))

Since V° and V1 are both flat, V is flat.

(3) now asserts that V(<J> ) = 0 and, applying 7.10, <J> is determined by its

restriction to any single fibre, f = <|> | : Q +n. By analogy with the situation for

morphisms of trivial groupoids, one would expect this. However 7.10 also shows that

f cannot be an arbitrary Lie algebra raorphism, but must lie in Hom(Q ,h) , where H is

the holonomy group of V. Since V is induced from V and V via 4.8(iii), it follows

(from 7.5) that H is the direct product H x H of the holonomy groups of V and V

and acts on Hom(n ,n) by (a ,a )(ip) = a©ij;<>(a ) . Since V has trivial holonomy, we
JT B IT B

conclude that f must lie in Hom(£J, H ) where h is t n e vector space of elements

h i
invariant under the V -holonomy action of TT B (see 7.29). A direct calculation

with (2) of 7.3 shows that TT B must act by elements of Int(h).

This is a real restriction; there are certainly Lie algebras with

nontrivial discrete groups of inner automorphisms. (An example is the 3-dimensional

Lie algebra with [ e ^ e ^ = e3> [e2>e3] = [ e ^ e ^ = 0; see Helgason (1978, p. 130).)

Thus if ir B / 0, if UJ £ 0, if n is not abelian, and if the action of TT B

on n induced by u) is nontrivial, then there will be Lie algebra morphisms Q + n

which are not the restriction of a Lie algebroid morphism which induces u). //

This analysis also yields an alternative proof of 6.7.

Proposition 7.31. Let B be a simply-connected manifold and let

<!>: TB * (B x Q ) -• TB * (B x h ) be a morphism of trivial Lie algebroids over B. If G

and H are Lie groups with Lie algebrasQ and n , then there is a local morphism M of

trivial Lie groupoids B X G X B ~ + B X H X B such that M^ = <f>, and M is unique up to

germ-equivalence•

Proof: For convenience we assume that G is connected and simply-connected; the

general case is only notationally more complicated.

With (j> and co as in 7.30, choose b e B and define 9: B •• H to be the

solution to A(0) = co, 9(b) = 1, and F: G •• H to be the Lie group morphism with

F^ = <|>+|b. Define M r B x G x B + B x R x B b y M(y,g,x) = (y ,6(y)F(g)6(x)"1 ,x).

Then, by 3.21, M^ is X + V h> X 4- {A(6)(X) + Ad(6)F^(V)}; thus the Maurer-Cartan
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form for M^ is A(8) = co and M^ = Ad(0)F^. We need to show that M^ = <J> •

Since both M^ and <(> are LAB morphisms compatible with co, they are both

parallel with respect to V. Also, M. L = (Jl) = FA = <J> I , since 0(b) = 1. So, as
* i b b * * ' b

in 7.30, it follows that M* = <|>+.

That M^ = Ad(6)F^ is parallel with respect to V also follows from B 2.1.

To prove uniqueness, let Mf: B x G x B + B x R x B b e any other morphism

= <j>. Then, by I 2.13, M'(y,g,x) = (y,e»(

It easily follows that 6' = 6 and F1 = F. //

with M ; = <j>. Then, by I 2.13, M'(y,g,x) = (y, 6' (y)F' (g)6» (x)" 1 ,x) where 61 (b) = 1.

Theorem 7.32. Let ft and ft1 be Lie groupoids on B and let <J>: Aft •• Aft1 be a morphism

of Lie algebroids over B. Then there is a local morphism M: ft ~* ft1 of Lie

groupoids over B such that M^ = <J>, and M is unique up to germ-equivalence.

Proof: Let {U±} be a simple cover of B, and let {a±: \]± •• ft } and {a': U -• ft/}

be section-atlases for ft and ft' over {U,}. Let E. denote the isomorphism
Ui -1 "

\ x G x U;L -• ft (y,g,x) h+ (y,a (y)ga (x) ,x) and (E..)*: TU± * (u± xn ) + Aftjy
1 -1 i

its derivative. Let s±. = E1 •E for U±. ^ 0. Similarly with E^ and S|..

Define <j> = (E.1) •<fr©(z7 )**» bY 7.31, 4 integrates to a well-defined local
i i —1

morphism M : U x G x u ~-»- U x G1 x u. . In order to show that the E'PM eE stick
together into a well-defined local morphism ft ~+ ft1, it is sufficient to prove
that ( S ! , ) " T » M ° S , , = MJ whenever U. . £ 0. By the uniqueness result in 7.31, it

13 1J -1 i J 1
suffices to prove that (S f.)^ »M^«(S ) ^ = M^, and this follows from the definition

Of <j> (̂J) .

Likewise, the uniqueness statement may be deduced from the uniqueness result

in 7.31. //

The idea of this proof of 6.7 is due to Ngo van Que (1968). Although part

of the analysis in 7.30 relies on 6.7, it would be possible to develop connection

theory sufficiently to prove 7.32 without making use of 6.4 to 6.10. Thus this

connection-theoretic proof of 7.32 is independent of the results in §6 on the

local integrability of morphisms of Lie algebroids.
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It is one of the principal theses of this book that Lie algebroids deserve

to be recognized as mathematical objects in their own right. It will already be

apparent from III§5 that infinitesimal connection theory - that part of standard

connection theory which does not depend on the concepts of path-lifting or holonomy

- can be developed entirely within the context of transitive Lie algebroids, and the

final step in demonstrating this is accomplished early in §1. The cohomology theory

which is developed in this chapter includes the equivariant de Rham cohomology

H* OU(P) of a principal bundle P(B,G) (with coefficients in vector bundles
deRn

associated to P(B,G) now allowed) and incidentally shows that this cohomology, which

has been the subject of an enormous body of work (see Greub et al (197 6)) is

strictly an infinitesimal invariant: principal bundles which are locally isomorphic

will have the same equivariant de Rham cohomology although they need not be

isomorphic.

The advantages of this point of view, both for connection theory and

cohomology theory, are immense. One should try to imagine a situation in which Lie

group theory was actively pursued without any use being made of the Lie algebra.

The situation for Lie groupoid and principal bundle theory is exactly comparable:

it is for example well-known that curvature is a more accessible, but less subtle,

invariant than holonomy; from the results of III§7 it is clear that two locally

isomorphic bundles will admit the same infinitesimal connections and that

corresponding connections will have the same curvature, but the holonomy of these

connections will depend upon the connectivity properties of the underlying bundle.

The situation with the equivariant de Rham cohomology is similar. In the

case of cohomology theory however, there are further benefits arising from the use

of the Lie algebroid concept. Firstly the Lie algebroid cohomology produces results
P

for the equivariant de Rham cohomology H* , (P,V) which, in the case of compact
deRn

groups G and trivial coefficients reduces to H* (P) » v itself; it is reasonable
deRh

to expect that the vast body of work done on the cohomology structure of principal

bundles with compact groups will generalize to the equivariant (or Lie algebroid) de

Rham cohomology. Some beginnings on this programme are made here; their

development will be continued elsewhere.

The concept of Lie algebroid also allows de Rham cohomology to be treated as

a cohomology theory of algebraic type, comparable to the cohomology theories of Lie

algebras or discrete groups. Together with the fact that coefficients in general

vector bundles are now allowed, this enables the enormous body of results and
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techniques established for discrete group and Lie algebra cohomology to be applied

to principal bundle cohomology. Again, a beginning on this programme is made in

this chapter; its development will be continued elsewhere.

The concept of Lie algebroid is due to Pradines (1967); the closely related

concept of Lie pseudo-algebra has been found (under a variety of names) by many

authors - see III§2. The cohomology of Lie pseudo-algebras has likewise been

defined by a number of authors - see §2 in this chapter. However we believe that

this is the first occasion on which the technical problems peculiar to Lie algebroid

cohomology - namely, the problems involved in staying within the category of smooth

vector bundles - have been dealt with, and we believe this account goes considerably

further than any previous account.

The central results of this chapter are two classifications of transitive

Lie algebroids. Firstly, the results of §3 give a global classification of

transitive Lie algebroids in terms of curvature forms and adjoint connections.

Secondly, 4.1 allows the classification of transitive Lie algebroids by transition

forms, which was begun in III§5, to be extended to all transitive Lie algebroids.

Both these classifications are cohomological in nature, and it should be noted that

both are classifications up to equivalence, not up to isomorphism.

The results of this chapter are from Chapter III of Mackenzie (1979), but

have been substantially revised in the account given here. The proof of 4.1 is a

revision and the detailed classification (including III 5.15) appear here for the

first time. Most of the proofs in §3 have been rewritten for clarity. As well, the

proofs of 1.6 and 1.16 now use the results of III§7 instead of the concept of local

flat connection (as in 4.7). This seems preferable, since the earlier approach was

in danger of appearing circular.

The theory of transitive Lie algebroids may be developed without reference

to the theory of Lie groupoids. A reader familiar with principal bundles may read

this chapter, together with Appendix A, III§2 and III§5, independently of the rest

of the book, although they will miss some explanatory material by so doing.

We now give a brief description of the sections. §1 proves several

technical results about transitive Lie algebroids, which enable a proper algebraic

theory to be developed. These results establish that transitive Lie algebroids do

in many ways behave like Lie groupoids. §2 defines the cohomology of an (arbitrary)

Lie algebroid and gives interpretations in degrees 2, 1 and 0. §3 deals with the

theory of general (non-abelian) extensions of Lie algebroids and their cohomological
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classification. This section embodies a re-interpretation of infinitesimal

connection theory; in particular, we obtain a necessary and sufficient condition

for an LAB-valued 2-form to be the curvature of a connection in a transitive Lie

algebroid. §4 gives the proof that every transitive Lie algebroid is locally

isomorphic to a trivial Lie algebroid; this result is central to Chapter V and

will, we believe, be central to any further development of the theory of transitive

Lie algebroids. §5 constructs a spectral sequence for the cohomology of a

transitive Lie algebroid in terms of the cohomology of its base and its adjoint

bundle, and uses algebraic methods to calculate a few of the higher-order

differentials. The relationship between extensions of a transitive Lie algebroid

and extensions of its adjoint bundle is explicated.

§1. The abstract theory of transitive Lie algebroids

This section uses the results of III§7 to prove several algebraic results of

basic importance about transitive Lie algebroids. In 1.4 we prove that the adjoint

bundle of a transitive Lie algebroid is an LAB; in 1.6 we prove that

if <|>: A •* A1 is a base-preserving morphisra of transitive Lie algebroids then

<1> : L + L1 is a locally constant morphism of LAB's; it follows that such morphisms

have well-defined kernels and images. In 1.16 we prove that if p is a

representation of a transitive Lie algebroid A on a vector bundle E, then E is a

flat vector bundle with a natural flat connection; in 1.19 we prove that (under the
^ q ir.B

same hypotheses) (TE) is naturally isomorphic to (V") i , where V and Q are the

fibre types of E and L and IT B acts via the holonomy of the natural flat connection

in E . These results are fundamental to the cohomology theory developed in the

following sections, and to any development of the algebraic theory of transitive Lie

algebroids.

Each of these results is an infinitesimal version of results established for

locally trivial groupoids in Chapters II and III; the groupoid results are

comparatively elementary.

The results of this section are due to the author. 1.4, 1.6, 1.15 and

several of the subsidiary results appeared (with different proofs in the case of 1.6

and 1.15) in Mackenzie (1979).

We begin with some necessary observations about LAB's. The definition,

recall, was given in III 2.3. Throughout this section, except in 1.19, B is a fixed

arbitrary manifold.
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Many constructions in the category of Lie algebras carry over to LAB's.

Examples we will need include the centre LAB ZL of an LAB L, the derived LAB [L,L],

the LAB of derivations Der(L), and the adjoint LAB ad(L). In the first two cases,

the following construction principle applies.

Proposition 1.1. Let L be an LAB on B with fibre type 0. Let n be a characteristic

subalgebra of Q ; that is, <Kn ) = h for all $ e Aut(fl). Then there is a well-

defined sub LAB K of L such that any LAB chart i|>: U x Q + L^ for L restricts to an

LAB chart U * h + K for K.

Proof; Immediate. //

Taking h = 2j t the centre of 0 , the resulting LAB, denoted ZL, clearly has

fibres ZLI , x e B, which are the centres of the fibres L of L. Further, for any

open U S B , the (infinite-dimensional) R-Lie algebra T (ZL) is the centre of r L.

The LAB ZL is called the centre of L. The derived sub LAB [L,L] is obtained in the

same way.

For Der(L), consider first a vector bundle E on B. The vector bundle End(E)

is the unique vector bundle with fibres End(E) = End(E ) , x e B, and

charts ij): U x DJ (y) -• End(E)TT induced from charts ty: U x V -• En for E by

^x(A) = <M A«iJ>x . Here V is the fibre type of E and ^ is the isomorphism

V -*• E obtained by restricting i|>. It follows that End(E) is an LAB with respect to

these charts.

Now given an LAB L, with fibre type D, observe that the Lie subalgebra

I /
Der(jJ) of Jj'(*}) is invariant under automorphisms of B» (0) of the form

Af-* s«Aos , where s: D + tj is a Lie algebra automorphism. Applying the same

method of proof as for 1.1, it follows that Der(L) is a sub LAB of End(L). It is

called the LAB of derivations of L. (Der(L) was introduced in III§4 by a different

construction; the equivalence of the two definitions follows from III 3.17.)

Proposition 1.2. Let L be an LAB on B. Then the LAB morphism ad: L + Der(L),

defined as being fibrewise the adjoint map ad : L > Der(L ) of the fibres of L, is

locally constant as a morphism of LAB's, in the sense of III 7.16(iii).

Proof: To prove that ad is smooth, note that [V,W] = ad(V)(W) is smooth whenever V

and W are smooth sections of L. To prove that it is locally constant, note that ad
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is locally id x ad : U x D > U x Der(lj), with respect to an LAB chart of L and the

corresponding chart for Der(L). //

It follows that ad(L), the image of ad, is a sub LAB of Der(L), called the

adjoint LAB of L. It is also an ideal of Der(L), in the sense of the following

definition, and is also called the ideal of inner derivations of L.

Definition 1.3. Let L be an LAB on B and let K be a sub LAB of L. Then K is an

ideal of L, denoted K « L, if K is an ideal of L , for all x e B. //
_____— -£ -̂

Given K an ideal of L, a quotient LAB L/K can be constructed in an obvious

fashion. Its elements will be written V + K or V.

The terminology of Lie algebra theory will be taken over without comment:

an LAB is reductive, semisimple, nilpotent, abelian, etc., if each of its fibres has

the corresponding property. Many deep results of the structure theory of Lie

algebras generalize without effort: for example, a reductive LAB L is the direct

sum ZL * [L,L].

With these preliminaries established, we turn to the abstract theory of

transitive Lie algebroids. The first result shows the relevance of the preliminary

discussion.

Theorem 1.4. Let L +^+ A -^+ TB be a transitive Lie algebroid on base B. Then L is

an LAB with respect to the bracket structure on IT. induced from the bracket on TA.

Proof: Recall the adjoint representation ad: A +• CDO(L) of A on the vector bundle L

(III 2.11). Let y be a connection in A and consider the produced connection

V - ad©Y: TB -• CDO(L) in the vector bundle L. A calculation with the Jacob!

identity for TA, similar to that for III 5.10(i), shows that V satisfies the

condition (ii) of III 7.12 with respect to the field of Lie algebra brackets on L

induced from the bracket on TA (see III§2). Hence, by III 7.12, L is an LAB. //

The following result, like III 4.10, is an immediate consequence of the

Jacobi identity. It is only by virtue of 1.4, however, that it is possible to

formulate it.

Proposition 1.5. Let L -•—• A -*-• TB be a transitive Lie algebroid on B. Then the

adjoint representation of A on L, ad: A •• CDO(L), takes values in CDO[L]. //
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For a connection y in A, the produced connection ad«Y: TB + CDO[L]
Y

will be called, as in III 5,8, the adjoint connection of y9 and denoted V .

It is a Lie connection in L.

From now on we will call L the adjoint LAB of A. This should not be

confused with the expression "adjoint LAB of L", which refers to ad(L).

The following theorem is a Lie algebroid analogue of III 1.31(1).

Theorem 1.6. Let <j>: A •• A! be a morphism of transitive Lie algebroids over B.

Then <j> : L + L! is a locally constant morphism of LAB's

bundles over B, <j>: A •• A1 is of locally constant rank.

Then <j> : L + L! is a locally constant morphism of LAB's and, as a morphism of vector

Proof; Let y be a connection in A and let Y1 = <J>*Y be the produced connection in
Y Y*

A1. Let V and V be the corresponding adjoint connections in L and L1. Then it

is easily checked that <J>+: L •• L1 maps VY to VY', that is, <f satisfies (ii) of III

7.16. Now III 7.16 establishes that <J> is a locally constant morphism of LAB's.

That <f> itself is of locally constant rank follows from applying the 5-lerama

to <j>+ and $, as in the proof of III 2.8. //

Thanks to 1.6, there is a significant algebraic theory of transitive Lie

algebroids. For example, it is only by virtue of 1.6 that the following definition

is usable.

Definition 1.7. Let <(>: A -»• A' be a morphism of transitive Lie algebroids over B.

Then the kernel of <j>, denoted ker(<|>), is the sub bundle ker(<J> ) of L. The image

of <J>, denoted im(<J>), is the transitive Lie algebroid im(<J> ) •>—• im(<f>) —••• TB. //

Proposition 1.8. Let <}>: A •>• A' be a morphism of transitive Lie algebroids over B.

Then ker(<J>) is a sub LAB of L.

Y
Proof; Let y be a connection in A and V the corresponding adjoint connection

in L. Write K = ker(<j>). Then VY(TK)S TK, for if V e TK and X e TTB, then

<J)+(VY(V)) = <K [Y(X) ,V] ) = [<j>Y(X),<j>" (V)] = 0 . So K is a vector bundle with a field
Y

of Lie algebra brackets which admits a connection - the restriction of V - which

satisfies III 7.12(ii). //

We leave to the reader the proof that im(<|>) is actually a reduction of A',

as implied in 1.7.
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Definition 1.9. Let L +—> A -++ TB be a transitive Lie algebroid on B. An ideal of

A is a sub LAB K of L such that

X e TA, V E IX => [X,V] E HC.

That K is an ideal of A is denoted K 4 A.

An ideal reduction of A is a reduction L1 ••—• Af —•-• TB of A such that L! is

an ideal of A. //

Clearly the kernel of a morphism of transitive Lie algebroids over B is an

ideal of its domain Lie algebroid. Other examples of ideals of a transitive Lie

algebroid L ->—• A —•-• TB include ZL and [L,L] .

Example 1.10. If Q' is an ideal of a Lie algebra £j then B x j 1 is an ideal of the

trivial Lie algebroid A = TB 4> (B X P ) , and A1 = TB * (B * £ f) is an ideal reduction

of A. But note that, for X e TA and Y' e TA1 , it is not necessarily true that

[X,Yf] e TA1. //

Proposition 1.11. Let L +^-+ A -*•> TB be a transitive Lie algebroid on B and L' an

ideal of A. Let A and L be the quotient vector bundles A/j(L') and L/L1 and

let q: A > TB and j: L •• A be the vector bundle morphisms induced by q and j.

Define a bracket on T(A) by

[X + TL' , Y + IV ] = [X,Y] + TV

for X,Y e TA. Then L ->̂-> A -%+ TB is a transitive Lie algebroid on B and the

natural projection hj: A —••• A, X H X + L, is a surjective submersion of Lie

algebroids over B, and has kernel L1.

If <J>: A •• A" is any surjective submersion of transitive Lie algebroids over

B, and K 3 A its kernel, then there is a unique isomorphism <j>: A/j(K) •• A" of Lie

algebroids over B, such that <\> = 4>*t[.

Proof; Straightforward. //

A = A/j(L') is the quotient transitive Lie algebroid of A over the ideal

L1. We usually denote A/j(L') by A/Lf.
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Proposition 1.12. Let <J>: ft —••»• ft1 be a surjective submersive morphisra of Lie

groupoids over B, and let M denote its kernel. (See III 1.32.) Then AM = M* is an

ideal of Aft and (f>̂: Aft -••• Aft1 induces an isomorphism J^: Aft/M* = Aft'.

Proof: This follows by putting together III 1.32, III 3.15 and 1.11 above. //

The following remark extends III 7.30.

Remark 1.13. Let 4>: A •• A' be a morphisra of transitive Lie algebroids over B. As

in 1.6, let Y be a connection in A, let Y1 = <J>°Y, and let V and VT be the
+ Y Y1

corresponding adjoint connections. Then the condition that <j> maps V to V is
equivalent to V(<j> ) = 0, where V is the connection in Hom(L,Lf) induced from
Y Yf

V1 and V1 .

V(<J> ) = 0 raay be paraphrased roughly as the statement that the rate-of-

change of <\> : B •• Hom(L,L' ) is zero in every direction within B; the morphisms

<f> : L •»• L1 are in this sense constant with respect to x. When d> is equalx x x F T

to f ̂: Aft •• Aft1 for a morphism of Lie groupoids f: ft -»• ft1 over B, we have

<f>+ = kd(4>U))~l° <j>+°Ad(O, for every £ e ft7 (this follows from fy = l"JP? f ^ U ) .
y x x y 9v^/ x s

The condition <J> (VY) = VT is an infinitesimal version of this equation. It is

remarkable that the structure of a transitive Lie algebroid is sufficiently tight to

impose this local constancy on <j> •

In §4 we will give a second proof of 1.6, which sheds further light on the

structure of <J>. //

The following generalization of 1.6 is proved by the same method.

1 2 1 2
Theorem 1.14. Let A and A be transitive Lie algebroids on B, let <J>: A •*• A

1 2
be a morphism of Lie algebroids over B, let p and p be representations of
1 2 1 2 1 2

A and A on vector bundles E and E , and let ij>: E + E be a <j>-equivariant

morphism of vector bundles over B, as defined in III 2.9. Then i|> is of locally

constant rank. //

1.6 is actually a special case of 1.14, for if <J>: A + A1 is a morphism of

transitive Lie algebroids over B, then there is the representation ad of A on L and

the representation X t-+ (V h+ ad(<J>(X))(V)) of A on L1, and <j>+ is id^equivariant

with respect to them.
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For representations of transitive Lie algebroids, a refinement of 1.6 is

necessary.

Theorem 1.15. Let A be a transitive Lie algebroid on B, and let p: A •• CDO(E)

be a representation of A on a vector bundle E. Then there exist an LAB atlas

**i: Ui X 9 * LU * f o r L a n d a n a t l a s **i: U± x v -• E y } for E, and representations

f i : 9 * 3^V^ of±H on v> such that i

L £ • End(E)

id

3
commutes, where {<j> } is the atlas for End(E) induced from the atlas {$^} for E (see

the discussion preceding 1.2).

Proof; Let y be a connection in A, let V be the adjoint connection in L,

let poy be the produced connection in E, and let V be the connection in End(E)

induced by p«y.

Let ft = n[L] x II(E) and consider the action of ft on Hom(L,End(E))

which is constructed from a double application of III 1.25(iii). Then

Aft = CDO[L] * CDO(E); let V be the connection in Aft defined by VT and pey. Then
T B ~ +

it is easy to check that V(p ) = 0 .

Now apply III 7.11 to ft, V and p e rHora(L,End(E)). It is easy to see that

a section-atlas for ft, with respect to which p is locally constant, is composed of

an LAB atlas {iĵ } and a vector bundle atlas i^} with the required property. //

When B is connected, a single representation f of 0 on V may be used for

all i.

Corollary 1.16. With the assumptions of 1.15, let E I where x e B, denote
L X>

E x - {u e E I p+(W)(u) = 0, V W e L }. Then E L = U EL| is a sub vector bundle
X X ' X X _. • X

xeB
of E.
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Proof; From the diagram it follows that

for W e fl , u e V. From this it is easy to see that each <t> : V •• E restricts to
3 n L i,x x

an isomorphism V •• E //

Continue the notation of 1.15. The representation p of A on E restricts to

a representation, denoted p, of A on E , for we have

P+(W)(p(X)(y)) = [p+(W),p(X)](y) + p(X)(p+(W)(y))

for all W e TL, X e TTB, y e TE, and so if y e T(E ), then the second term obviously

vanishes, and the first term vanishes because [W,X] is in (the image in FA of) TL.

For p: A + CDO(E ), the representation (p) : L •• End(E ) is of course zero.

Let y be any connection in A, and consider the produced connection

p©Y in E • Since R- = (p)oR (by equation (3) of III§5) and since
- + L ^°^ - ^
(p) : L •• End(E ) is zero, poy is flat. Further, if Y1 is a second connection in A,

say Y1 = Y + j°£, £: TB •• L, then for y e T(E ) and X e rTB,

(pn)(X)(y).

Thus the representation p of A on E induces a unique flat connection in E , which we
p

will denote by V . We summarize all this for reference.

Proposition 1.17. Let L •*-—• A —••• TB be a transitive Lie algebroid, and p a

representation of A on a vector bundle E. Then p restricts to a representation of A

on E , denoted p, and p maps every connection in A to a single flat connection,

VP, in EL. //

This phenomenon, apparently differential-geometric, is well-known in

algebra: if N •>•—• G —••* Q is an exact sequence of (discrete) groups, then every

representation of G on a vector space V induces a representation of Q on V •
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Definition 1.18. Let A be a Lie algebroid on B and p a representation of A on a

vector bundle E. Then

(TE)A = {y e TE | p(X)(y) = 0 ¥ X e TA}

is called the space of A-parallel sections of E. //

If A is totally intransitive, then (TE) is a C(B)-submodule of TE.
A

Otherwise (TE) is merely an R-vector subspace of TE. If A is totally intransitive,

(FE) need not correspond to a sub vector bundle of E, even if A is an LAB.

Theorem 1.19. Let A be a transitive Lie algebroid on a connected base B, and

let p be a representation of A on a vector bundle E. Choose b e B and write

3 = L, , V = E, , T^B = ir^Bjb). Then the evaluation map TE + V restricts to an
b b 1 1

isomorphism of vector spaces

(TE)A --- (V3) l

where TT B acts on V" via the holonomy morphism of V .

p

Proof: Clearly (TE)A = (r(EL))V , in the notation of III 7.9. The result now
follows from III 7.10 and III 7.29. //

By way of comparison, if p is a representation of a Lie groupoid ft on a
CO.

vector bundle E, then E is a trivializable sub bundle of E, isomorphic to
G ft G

B x V (see II A.18), and (TE) is isomorphic to V (see II 4.15). One may say that
Gft

the sections of E invariant under the action of B x B are the constant sections,

that is, they are the elements of V .

1.19 may be regarded as the calculation of the Lie algebroid cohomology of A

with coefficients in E, at degree zero. In §5 we will extend this to arbitrary

degrees.
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With the results of this section established, one can now develop a full

theory of abstract transitive Lie algebroids. The greater part of the present

chapter is devoted to the development of their cohomology theory and connection

theory, two subjects which are inextricably linked.

A number of the concepts and constructions of III§5 and III§7 carry over to

the abstract setting immediately. For instance, the construction in III 7.25 to

7.26 of the y-curvature reduction of a Lie algebroid Aft derived from a Lie

groupoid ft and corresponding to a connection y in Aft, may be extended to abstract

transitive Lie algebroids without difficulty. The only point in III 7.25-7.26

where ft is used is to ensure that Lft is an LAB.

Likewise, the definitions of the exterior covariant derivatives in III§5 and

propositions III 5.10 and III 5.11 are valid without change, in any transitive Lie

algebroid.
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§2. The cohomology of Lie algebroids

This section constructs the cohomology of an arbitrary Lie algebroid with

coefficients in an arbitrary representation and gives interpretations in degrees 2,

1 and 0.

The definition 2.1 is in terms of a standard resolution of de Rham, or

Chevalley-Eilenberg, type. This definition, as well as being the simplest, is the

closest to the geometric applications. We prove in 2.5 and 2.6 that when A is a

transitive Lie algebroid with adjoint bundle L, the cohomology spaces#*(L,p ,E) are

the modules of sections of certain flat vector bundles H*(L,p ,E). This is a

generalization to all degrees of 1.16 and is proved using a generalization of the

calculus of differential forms on a manifold, and the results of III§7. In 2.7 and

2.8 we calculate Cft*(Aft,p,E) for a Lie groupoid ft and any representation p of Aft, in

terms of the equivariant de Rham cohomology of an associated principal bundle.

In the second part of the section we interpret 3K (A,p,E) in terms of

equivalence classes of operator extensions of A by E. This is a straightforward

generalization of the corresponding extension theory of Lie algebras, but we have

given at least sketch proofs of most results, since there is no readily available

account of the Lie algebra theory in the detail which is required for the geometric

applications. In Lie algebra cohomology, as in other cohomology theories of

algebraic type, there is little interest in specific cocycles or in specific

transversals for extensions: one Is there only interested in cohomological

invariants. In Lie algebroid cohomology, however, transversals are (at least in the

applications to geometry) infinitesimal connections and cocycles are, in degree two,

curvature forms, and, in degree three, the left-hand sides of Bianchi identities,

and the focus of geometric interest is usually on specific transversals or

cocycles. It is for this reason that the explicit definition 2.1 is the best for

our purposes.

In this section we treat only extensions by abelian (totally intransitive)

Lie algebroids; that is, by vector bundles. The general case, which includes the

most important applications, is treated in §3. If P(B,G) is a principal bundle with

abelian structure group then

is an extension of TB by the trivial vector bundle B x j ; if G is compact and B is

simply-connected then the cohomology class of —«• in jfl (TB, B xfl) =
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H, (B,Q) is the sum of the Chern classes of the component S0(2)-bundles of P. In
deRh u
the case where G is not compact and IT B is arbitrary, the class of
TP 1/2 ~ 2 V
-^ in A (TB, B xjj) = HdeRh(

B»£p m ay still be regarded as a characteristic

class of P(B,G). The question of the relationship of the results of this section

and of §3 to the extension theory of Lie groupoids and principal bundles will be

taken up elsewhere.

This section closes with a proof that the cohomology ̂ *(A,p,E) coincides

with that defined, on the level of the modules of sections, by G.S. Rinehart (1963).

The definition of the cohomology of Lie algebroids has been given many times

previously, under a variety of names. See, for example, Palais (1961b), Hermann

(1967), Nelson (1967), and N. Teleman (1972), However, much of this work was done

at the level of the module of sections and was only concerned with the algebraic

formalism. The first major result in this area was the Poincare-Birkhoff-Witt

theorem of Rinehart (1963), which enabled Rinehart to define Lie algebroid

cohomology as derived functors of Honu, v(B x R, - ) . Rinehart's results were

sheafified by Kamber and Tondeur (1971).

The results and constructions of this section from 2.4 on, in particular

their establishment within the geometric context of smooth vector bundles are due to

the author, and first appeared in Mackenzie (1979).

Until 2.4, let A be an arbitrary Lie algebroid on a base B. It is not

assumed that A is transitive. Let p: A •• CDO(E) be a representation of A on a

vector bundle E.

Definition 2.1. The standard complex associated with the vector bundle E and the

representation p of A is the sequence C (A,E), n > 0, where C (A,E) denotes the

vector bundle Altn(A;E), and the sequence of differential operators

dn: TCn(A,E) > rcn+1(A,E) which is defined by

df(x1,...,xn+1) = I (-i)r+i
P(xr)(f(x1,...,xn+1))

r<s
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for f e rcn(A,E) and X ,...,Xn+1 e TA.

The cohomology spaces ;#,n(A.P.E). or $ n(A,E), are the cohomology spaces

of this complex, namely #n(A,E) = % n(A,E)/«2?n(A,E), where

#n(A,E) = ker d: Tcn(A,E) + rcn+1(A,E) and >?n(A,E) =

im d: rc^^A.E) - rcn(A,E) for n > 1, «8°(A,E) = (0), //

It is routine to verify that d = 0. When A is totally intransitive (so

that it is a vector bundle together with a field of Lie algebra brackets), the

operators d are C(B)-linear. This is easy to check. Hence in this case, each

d induces a vector bundle morphism C (A,E) + C (A,E), also denoted

d . It is not true, however, that in this case the d must be of locally constant

rank, and so the images and kernels may not be sub bundles,. This is so even if A is

an LAB. Examples are easy to construct, using the same device as in III 1.28.

For a general Lie algebroid A, with q + 0, the maps

dn: rcn(A,E) + rcn+1(A,E) are first-order differential operators, and do not induce

morphisms of the underlying vector bundles.

Thus the Jil (A,E) are quotients of infinite-dimensional real vector spaces,

and are at this stage rather formless. However for a transitive Lie algebroid A, we

will show in §5 that the ̂ f (A,E) are computable.

When B is a point and A a finite-dimensional real Lie algebra, the^C (A,E)

clearly reduce to the Chevalley-Eilenberg cohomology spaces (see, for example,

Cartan and Eilenberg (1956, XIII§8)). When A is the tangent bundle TB and p is the

trivial representation of TB in a product vector bundle B x v (see III 2.10),

y^ (TB, B x V) is clearly the real de Rham cohomology space H, ,(B,V). In 2.7 we
deRh

will calculate Jtl (Aft,p^,E) for a Lie groupoid Q, and a representation p^ induced

from a groupoid representation p: ft -• n(E).

Definition 2.2. (i) The Lie derivative 9 : rcn(A,E) +' TCn(A,E) for X e TA,

is defined by

i i...,X )) - I f(X ...,[X,X ],...,X ).
X l n 1 n 1 rn

Here f e rcn(A,E) and X £ TA, 1 < r < n.

(ii) The interior multiplication i • rcn+1(A,E) •»• TCn(A,E), for

X e TA, n > 0, is defined by



CHAPTER IV 200

i (f)(X ,...,X ) = f(X,X ,...,X ),
X 1 n 1 n

for f e rcn(A,E), X e TA, 1 < r < n. //

0 , i and d satisfy a set of formulas identical in form to those which hold
X X

in the calculus of vector-valued forms on a manifold. Those which are used in the

sequel follow.

Proposition 2.3: (i) ix(uf) =
 ul

x(
f>» l

u X
( f ) ^ u l

X
( f ) a n d V * Y = " W f ° r

X,Y e TA, u e C(B), f e TCn(A,E);

(ii) 6v(uf) = u6v(f) + q(X)(u)f for X e TA, u e C(B), f e rc
n(A,E);

(iii) 8 (f)(X_,...,X ) = u6 (f)(X.,...,X )
uX 1 n X 1 n

n
+ I (-l)r"1q(X)(u)i(f)(X1,...,Xn)
r-1

for X,X1,...,Xn e TA, u e C(B), f e TC
n(A,E);

(iv) V , Y ] = e x
6 \ - e Y » e x f o r x , Y e rA;

(v) 6V = i • d + d°iv for X e TA;XX. X

(vi) 9o d = d»0v for X e TA.
X. X

Proof: Standard. //

With the definition of wedge-product given in §5, (iii) can be written

6uX( f ) = u 9 X ( f ) + d u- l
X
( f )»

where du is taken with respect to the representation q of A on B x R.

Proposition 2.4. Let L - ^ A -SU TB be a transitive Lie algebroid on B. Then

for X e TA and f e rcn(L,E), the Lie derivative ®x(f) is in rc
n(L,E), the

map 6 : rcn(L,E) •• rcn(L,E) is in rCDO(Cn(L,E)) and X I--*- 8 defines a representation
n

of A on c (L,E).
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Proof; For the first statement, note that

n
9 (f)(V ,...,V ) « p(X)(f(V ,...,V )) - I f(V ...,ad(X)(V ),...,V )
X l n 1 n 1 rn

for v e PL, X e TA, f e rcn(L,E). The remaining assertions follow from 2.3

In the cohomology theory of Lie algebras, 0 is a representation of a Lie

algebra Q on the associated spaces C (J)>V). In the context of general Lie

algebroids however, the map 0: TA > rcDO(Cn(A,E)) is not C(B)-linear, and

therefore cannot be said to be a representation. As in the case of

ad: X *-•• (Y h+ [X,Y]), TA->• rCDO(A), which 0 of course generalizes, this lack of

C(B)-linearity can be avoided by lifting 0 to the 1-jet prolongation of A. However

the action of A on C (L,E) suffices for our purposes.

Although 0 = i *d + doi is meaningless for the 0 of 2.4, its
X X X X

consequence, d°0 = 0 ©d, continues to be valid. This follows from 2.3(vi). From

this formula we have the following crucial result.

Theorem 2.5. Let L •*-+ A -%+ TB be a transitive Lie algebroid on B. Then the

coboundaries

d": Cn(L,E) + Cn+1(L,E)

are of locally constant rank, and consequently there are well-defined vector

bundles Zn(L,p,E) = ker dn, Bn(L,p,E) = im d*1""1 and Hn(L,p,E) =

Zn(L,p,E)/Bn(L,p,E) such that rHn(L,p,E) = # n ( L,p + , E).

Further, 0: A -• CDO(C (L,E)) induces a well-defined representation, also

denoted 0, of A on Hn(L,E).

Proof: Let y be a connection in A, and let y be the connection Qoy in

C (L,E). Then the equation 0©d = d * 0 for X e TA implies in particular

that 0^(x)(d(f)) =
 d<e

Y(X)(
f)) for X £ ^ B . f e rcn(L,E); that is, that

Yn+1(X)(d(f)) = d(yn(X)(f)). Thus d maps y* to Tn+ 1 and so, by III 7.13, d is of

locally constant rank.

That the representation 0 of A on Cn(L,E) induces a well-defined

representation of A on H (L,E) follows from this same equation 0 °d = d«0 ,
X X

X e TA. //
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Theorem 2.6. Continuing the notation of 2.5, for the representation 0 of A

on Hn(L,E) we have

Hn(L,E)L = Hn(L,E).

In particular, Hn(L,E) is a flat vector bundle, and 0 maps every connection

in A to a single flat connection, denoted V ' , in H (L,E).

Proof: Applying 2.3 to the Lie algebroid L and the representation p we have

0 = del + i »d, for V e TL.

Now take f e C (L,E) with df - 0. We have 0y(f) = d(i (f)) + 0 and so

6y([f]) = [0y(f)] = [d(iv(f))] = 0.

Thus [f] e Hn(L,E)L.

The remaining statements follow from applying 1.17 to

0: A -• CDO(Hn(L,E)). //

We hope that the proofs of 2.5 and 2.6 give the reader some amusement.

Thanks to 2.5 and 2.6 it will be possible, in §5, to consider the cohomology of TB

with coefficients in H*(L,E), and to relate the spaces J#*(TB,H*(L,E)) to the

cohomology of A.

In the case of the transitive Lie algebroid of a Lie groupoid, the Lie

algebroid cohomology is the equivariant de Rham cohomology of the corresponding

principal bundle.

Theorem 2.7. Let ft be a Lie groupoid on B and let p: ft •• n(E) be a representation

of ft on a vector bundle E. Then there are natural isomorphisms

where P = ft , G = ft, and V = E, for some chosen b e B.

Proof: This is an immediate consequence of A 4.13. //
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Corollary 2.8. If ft is an a-connected Lie groupoid on B and p: Aft •• CDO(E) is any

representation of Aft on a vector bundle E, then there are natural isomorphisms

where H is the structure group of the monodromy bundle p(B,H) of P(B,G). //

In particular, for a flat vector bundle E on B, and a flat connection V in

E,

IT B

the equivariant de Rham cohomology of the universal cover of B, constructed from

forms a) e A*(B,V) which are equivariant with respect to the holonomy action

of ir.(B) on the fibre type V. In this way Lie algebroid cohomology may be regarded

as a generalization of de Rham cohomology in which coefficients in local systems of

vector spaces are permitted.

Thus in the case of the Lie algebroids of Lie groupoids, the Lie algebroid

cohomology is a known invariant, though one which has only been extensively studied

in the case where the structure group is compact (see, for instance, Greub et al

(1976)). One of the strengths of the Lie algebroid formulation, however, is that it

is a cohomology theory of algebraic type, comparable to the cohomology theories of

Lie algebras and of discrete groups, and that what is significant from the point of

view of the algebraic cohomology theory is also significant geometrically. We will

spend much of the next three sections justifying this observation and developing its

consequences. The first step in this process is the interpretation of S% (A,E)

in terms of equivalence classes of extensions of A by E, and for this we need the

following general concept of curvature.

Proposition 2.9. Let A and A' be Lie algebroids on B, not necessarily transitive,

and let <J>: A + A' be a morphism of vector bundles over B such that qf0<|> = q. Then

(1) V X » Y ) = •<IX,Y]) - U(X),<KY)]

defines a map FA x TA •• TA' which is alternating and C(B)-bilinear, and thus defines
2

a section of Alt (A;A'), called the curvature of <J>.

For X,Y,Z e TA we have
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(2) #{[<KX),R.(Y,Z)] - R.([X,Y],Z)> = 0,

where vs> is the cyclic sum.

Proof: In the first paragraph only the C(B)-bilinearity is not clear, and it

follows by calculation. Formula (2) follows from the Jacobi identity

in TA1. //

The curvature map R : TB •£ TB •• L defined in III 5.1 for a connection

Y: TB •>• A In a transitive Lie algebroid is related to this R by R = j»R .

Equation (2) generalizes III 5.11, and may be called an abstract Bianchi identity.

Vector bundle morphisms <J>: A •• A' with q'*<j> = q will be called anchor-preserving

maps.

Proposition 2.10. Let 4>: A > A1 and i|>: A1 *• A" be anchor-preserving maps of Lie

algebroids. Then

Proof: Calculation. //

We return now to the conventions made at the start of this section: A is a

Lie algebroid on base B, not necessarily transitive, and p is a representation of A

on a vector bundle B.

Definition 2.11. An extension of A by the vector bundle E is an exact sequence

(3) E +±+ A1 -J* A

of Lie algebroids over B, where E is considered to be an abelian Lie algebroid.

A transversal in the extension (3) is a vector bundle morphism

X: A * A1 such that TT*X = id.. A back-transversal in (3) is a vector bundle

morphism X: A1 *• E such that Xo\ = id .

A transversal is flat if it is a morphism of Lie algebroids; equivalently,

if it has zero curvature. The extension (3) is flat if it has a flat transversal.

//

The definition of an exact sequence of Lie algebroids is given in III 2.14.
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As with connections (see the discussion following III 5.1) there is a

bijective correspondence between transversals x and back-transversals A, given by

(4) i«A + x*7r = idA,,

and a corresponding pair satisfy A*x = 0. Since IT is a surjective submersion and a

raorphism of vector bundles over B, transversals always exist. Any choice of

transversal determines an isomorphism of vector bundles A1 = A •© E.

From TT©X = id it follows that q'o x = q, so a transversal is automatically

anchor-preserving. From this and qoir = qf it follows that im(q) = im(qf)» Hence

A' is transitive iff A is transitive, and A1 is totally intransitive iff A is

totally intransitive.

For transversals x* A •*• A1 of (3), we will normally use as curvature the
2

map R : A «> A •• E with i«R = R . Note that R e TC (A,E).

Recall from III 2.16 that an extension such as (3) induces a
A1

representation p of A on E, which can be written as

X e TA, p e TE, for any transversal x»

Definition 2.12. Given the Lie algebroid A and the action p of A on E, the
A1extension (3) is an operator extension of A by E if p = P .

Two operator extensions E •»—-•• AS —+•• A, s = 1,2 are equivalent if there is

a morphism of Lie algebroids <J>: A + A over B (necessarily an isomorphism) such

that <|>«i = i and IT «<J> = IT . //

The set of equivalence classes of operator extensions is denoted by

0pext(A,p,E), or by 0pext(A,E) if p is understood. There is a natural bijection

between 3l (A,p,E) and (Ppext(A,p,E) described in the following proposition.

o
Proposition 2.13. (i) Let f e TC (A,E) be a cocycle, that is, let

S(p(X)(f(Y,Z)) - f([X,Y],Z)} = 0
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for all X,Y,Z e FA. Denote by A the vector bundle A -e E equipped with the

anchor q (X «> y) = q(X) , and the bracket

[X • y, Y * v] = [X,Y] * (p(X)(v) - p(Y)(y) - f( X,Y )}

on TA . Then A is a Lie algebroid on B and E -•—-• A — i * A is an operator

extension of A by E. (Here i_ : E •»• A ^ E and TT : A * E ->• A are the natural maps.)
f -

The transversal i • A •»• A has curvature R = f.

ll

(ii) Conversely, let E -•-•»• A! —*••*• A be an operator extension of A by E and
let x be a transversal. Then R is a cocycle, that is, d(R ) = 0, with respect to

X X
the coboundary induced by p. Further

R
§ : A X -• A1 , X * p H x(X) + i(y)

R
is an equivalence of E •*-•»• A X -++ A with E >—• A1 —•-• A, and ^ maps i^ to x»

(iii) Let g e TC^AjE); recall that

dg(X,Y) = p(X)(g(Y)) - p(Y)(g(X)) - g([X,Y])

for X,Y e TA.

Given any f e j j (A ,E) , t h e map

e : Af •»- A f + d g , X « p H X « ( p + g(X))

is an equivalence of extensions.

i TT

(iv) Conversely, if E •*•—> A —•*"»• A, s = 1,2, are operator extensions,

and <J>: A -• A is an equivalence, then for any pair of transversals Xi » Xo
1 2 1 1 2

for A , A , there is a unique g e TC (A,E) such that

namely g = Xo $ox , and dg = f - f .

1 £

Indeed each cochain g e TC (A,E) induces a permutation x h+ X of t n e

transversals in any operator extension E -••—• A1 -++ A. If x is a transversal,

then xS * X + i°g is another, and R = R - dg.
Y§ X
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Proof: A straightforward manipulation. //

The linear structure on A (A,E) may now be transferred to 0pext(A,E).

Recall that if A is totally intransitive, % (A,E) is a C(B)-module and is otherwise

merely an R-vector space. The multiplicative structure is given by the following

construction.

Proposition 2.14. Let E •*—*• A1 —••»• A be an operator extension of A by E.

Let E be a second vector bundle on B and p: A + CDO(E) a representation of A

on E. Then if <J>: E •> E is an A-equivariant morphism of vector bundles over B, there

is a unique extension E •*- + A —•-•• A of A by E which induces p and which is such that

there is a morphism of Lie algebroids <J>: A •*• A making

\ A
commute.

Proof: Choose a transversal x: A > A1 and define a bracket on F(A * E) by

[X • y, Y • v] = [X,Y] * (p(X)(v) - p(Y)(y) - <j>R (X,Y)}.

With this bracket and with anchor q(x ^ y) = q(X), A * E becomes a Lie algebroid

on B; denote it by A. It is easily checked that A is independent of the choice
l2 ~ *1

of X, up to isomorphism, that E •»——»• A —•••»• A is a p-operator extension, and that

X1 H* TT(X') 9 (J)X(X') has the properties required of ?. //

E -»•- + A —*-*- A is the pushout extension of E ••—•'A1 —••>• A along <j>.

It is difficult, and unrewarding, to give a proof of 2.14 without using 2.13.

Now, for an arbitrary Lie algebroid A, and an extension E •*-—• A1 -++ A, the

map E •*• E, y h+ ky, where k e R is a constant, is equivariant and the corresponding

pushout is the scalar multiple of [E ->—• A1 —••• A] e 0pext(A,E) by k. If A = L is

totally intransitive, and u e C(B) is a function, then E •• E, y h+ u(p(u))u is

equivariant, and the pushout extension similarly defines the C(B)-module structure.
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To define the addition on (Ppext(A,E) the construction of pullback extensions

is required. This construction can be given in greater generality than the

construction of pushouts.

Proposition 2.15. Let <J> : A + A and <J> : A •> A be morphisms of Lie algebroids over

B such that

im <\>l + im <j>2 = A f o r a l l x e B .
X X X

Then the pullback vector bundle

A = {X1 * X2 e A * A | $ (xp = <j> (X2)}

~ 1 2
(see C.5) is a Lie algebroid with respect to the anchor q(x 4> X.) = q (X ) = q (X?),
and the bracket

l X l « V Y 1 « V = [ X1> X 2] M X 2 ' Y 2 ] -

~ 1 2 1
F u r t h e r , t he r e s t r i c t i o n s t o A of the p r o j e c t i o n s TT : A • A + A ,

1 2 2 -
Tr : A ^ A •> A a re L ie a lgeb ro id morphisms over B, and i f A i s any o t h e r Lie

1 - 1 2 - 2
a l g e b r o i d on B and i p t A + A j i p r A + A a r e morphisms of L ie a l g e b r o i d s over B

1 1 2 2 - ~
such t h a t <j> o ̂  = <J> ° ^ , then t h e r e i s a unique L ie a l g e b r o i d morphism l̂ t A + A
such t h a t TT © ij) = ip , i\ 6 ty = ip .

Proof; The pullback vector bundle is defined in C.5. The remainder is

straightforward. //

~ 1 2
A is called the pullback Lie algebroid, and may be denoted A • A .

A
The direct sum Lie algebroid (III 2.18) is a particular instance. The second
paragraph of 2.15 embodies the pullback property. We will normally denote the

~ 1 ~ 2 ~ ~
maps A * A , A + A by <L , <t>, respectively.

Proposition 2.16. Let E •*—• A1 —••> A be an extension of A by E and let

<J>; A" > A be a morphism of Lie algebroids over B. Then

E +- •*• A —*-•*- A"

is an extension of A" by E, where i is y h+ I(M) • 0, and, further
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• A

A

commutes.

Proof: Routine verification. //

E •»—-• A —*••*- A" is called the pullback extension of E -•--• A1 —•-• A over <j>.

The addition on 0pext(A,E), known as the Baer sum, can now be defined in the

usual way (see MacLane (1975, pp. 113-114)): given operator extensions

E ••-* AS ->•• A, s = 1,2, form firstly E 4> E •»—• A1 * A2 -••+ A • A. If A is

transitive, the direct sums A * A and A * A are to be read as « ; if A is

TB
totally intransitive, the *'s are merely vector bundle sums over B; we do not need

any other case. Next take the pullback of this over the diagonal map A + A * A, and

lastly take the pushout of the result over the sum map E * E •• E. The details are

left to the reader.

The bijection /t (A,E) ++ ̂ Kpext(A,E) is now an isomorphism of vector spaces

for any Lie algebroid A, and of C(B)-modules when A is totally intransitive.

The zero element of P?( (A,E) corresponds, of course, to the flat extensions

of A by E. We refer to the extension A° constructed in 2.13(i) from the zero

cocycle as the semidirect product of A by E and denote it by A P< E, or by A * E

if p is understood.

Any transversal x in A * E has the form x(X) = X * g(X) for some

g £ TC (A,E), and x is flat iff dg = 0. Thus ̂ t (A,E) can be interpreted as the

space of flat transversals in A •* E modulo those flat transversals of the form

X(X) = X *• p(X)(y) for some p e rE.

More generally, recall from 2.13(iv) that in any operator extension

E •£-+ A' -5->- A of A by E a cochain g e TC (A,E) induces a permutation of the

transversals of A1 , namely x H* X = X + i°g» From the formula R = R - dg
X© x

it follows that the cocycles g e ̂  (A,E) are precisely those cochains whose

permutations preserve the curvature of transversals. If g is a coboundary
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dy, y e FE, then

(X + i«dy)(X) = x(X) •

= X(X) •

Thus we have

Proposition 2.17. Let E •*-—• A' —>•> A be an operator extension of A by E. Then

ft (A,P,E) may be realized as the space of those automorphisms A1 + A1 of the

form X1 —• X! + ig(irX'), where g is a vector bundle map A -• E, which preserve the

curvature of transversals of A1, modulo the space of automorphisms A1 -»• A1 of the

form X! --• X' + [X',i(y)], where y e FE. //

It is interesting to interpret this result for connections in a principal

bundle with abelian structure group.

Lastly we have the calculation of ^¥°(A,E).

Proposition 2.18:

^°(A,E) = {y e FE | p(X)(y) = 0 VX e FA}

- (FE)A. //

If A is totally intransitive then (FE) is a sub C(B)-module of FE. It need

not correspond to a sub vector bundle of E, since the rank of p need not be locally

constant. This is so even if A is an LAB.

For A not totally intransitive, (FE) is merely an R-vector space. For A

transitive, (FE) was calculated in 1.19.

We close this section by establishing that the cohomology defined in 2.1

coincides with that of Rinehart (1963). The importance of this is that Rinehart

gives a construction which yields a "universal enveloping algebroid" for a given Lie

algebroid and - proving a Poincare-Birkhoff-Witt theorem for it - obtains the

cohomology 2.1 as the derived functors of the appropriate Horn functor (op. cit.,

Theorem 4.2). Although the results presented here and in the next three sections

are best formulated in terms of the standard cochain complex 2.1, it may eventually

be necessary to relate it to a Lie groupoid cohomology defined as the derived

functors of a fixed-point functor (as in, for example, Mackenzie (1978)).
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The point which needs to be established is the equivalence of the two

definitions of module.

u

Let A be a Lie algebroid on B. Denote by A7 the vector bundle A •© (B x R).

Define a Lie bracket on r(A#) by

[X « f, Y * g] = [X,Y] « (q(X)(g) - q(Y)(f)).

(A is now itself a Lie algebroid, with anchor q (X * f) = q(X).)

Definition 2.19 (Rinehart (1963)). A C(B)-regular A -module is a vector bundle E on

B together with an R-linear map p: F(A ) * FE + TE which is a representation of

the R-Lie algebra T(A ) on the R-vector space TE, such that

(i) P(f#)(y) - fp(#)(n) ¥f e C(B), # e r(A#), p e l t ,

(ii) p(0 * 1) = id̂ ,. //

Proposition 2.20. Given a representation p of A on a vector bundle E, there is a

C(B)-regular A -module p: T(A ) « TE ->• TE defined by

p(X * f)(y) = p(X)(y) + fy.

Conversely, given a C(B)-regular A -module p, the map p: Tk * TE + TE,

(X,y) I—• p(X ^ 0)(y) defines a Lie algebroid representation of A on E.

The correspondences p «••• p are mutually inverse.

Proof: Note that p(0 * f)(y) = p(f(O ^ l))(y) = fy, by (ii) in 2.19. Given this,

the verifications are easy. For example,

p(X)(fy) = p(X • 0)(p(0

= p([X ^ 0, 0 • f])(y) + p(0 * f)(p(X «> 0)(y))

= p(0 • q(X)(f))(y) + fp(X)(y)

= q(X)(f)y + fp(X)(y). //

I am grateful to Rui Almeida for pointing out in 1982 the omission of (ii)

in 2.19 from the account given in Mackenzie (1979).



CHAPTER IV 212

§3. Non-abelian extensions of Lie algebroids and the existence of transitive

Lie algebroids with prescribed curvature.

We now present the classification theory of non-abelian extensions of Lie

algebroids, and its application to the problem of constructing a connection with

prescribed curvature form.

Given a non-abelian extension of Lie algebroids K -••—• A' -•*-•*• A, each

X1 e TA1 induces a Lie covariant differential operator V *-• i [X',i(V)] of K. In

the abelian case these operators depend only on 7r(X'); in the non-abelian case,

however, X" e TA1 with TT(X") = TT(X' ) will induce an operator which differs from that

induced by X' by an element of Fad(K) < FCDO[K]. The extension therefore induces,

not a representation of A on K, but a morphism 5: A + — A ( V \ w^ i c^ w e call,

following Robinson (1982), a coupling of A with K. This section begins with the

construction of —• •:• \- , which we call the Lie

differential operators, and denote by OutDO[K].

construction of —• •:• \- , which we call the Lie algebroid of outer covariant

Given a coupling E: A •• OutDO[K], there is a natural representation, p", of

A on ZK, and from 3.2 to 3.12 we are concerned to show that 5 defines an element

of /i (A,p~,ZK), called the obstruction class of S and denoted Obs(S). From 3.14

through to 3.19 we give the detailed construction of the coupling arising from a

(nonabelian) extension and prove (3.18) that for such a coupling the obstruction

class is zero. From 3.20 through to 3.31 we are concerned with establishing the

converse of 3.18. The main construction result is 3.20 which shows (3.22) that a

coupling S with obstruction class zero arises from an extension. From 3.23 through

to 3.31 we classify the extensions which induce a given coupling 5; the analysis

shows that /^ (A,p",ZK) acts freely and transitively on the set of equivalence

classes of H-operator extensions of A by K. In 3.32 to 3.34 we address the question

of semidirect (or flat) extensions, and note that not every coupling with zero

obstruction class arises from a semidirect extension; on the other hand there may

be several inequivalent semidirect extensions inducing the one coupling. The section

closes with a brief application of 3.20 to the construction of produced Lie

algebroids.

The cohomological formalism developed in this section is of a standard type,

and closely follows the theory of nonabelian Lie algebra extensions, as developed by

Hochschild (1954a,b), Mori (1953) and Shukla (1966). Some aspects of this formalism

have been noted before (Palais (1961b), Hermann (1967), Teleman (197 2)), but worked

on the level of the modules of sections rather than the Lie algebroids themselves.
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What is remarkable is that this cohomological apparatus yields results of

considerable geometric significance. From 3.20 we obtain a solution to the

algebraic half of a long-standing problem (Weil (1958), Kostant (1970)): When is a

2-form the curvature of a connection? From 3.20 it follows that an LAB-valued 2-
2

form R e A (B,L) on a manifold B is the curvature of a connection in a Lie algebroid

iff there is a Lie connection V in L such that Ry = ad R and V(R) = 0. In Chapter V

we will answer the question of when the resulting Lie algebroid can be integrated to

a Lie groupoid, in the case where the base is simply-connected.

The second major application of the results of this section is to Theorem

4.1 (see also Theorem 5.1) where the classification of nonabelian extensions is the

key to the proof that a transitive Lie algebroid on a contractible base admits a

flat connection.

In addition, the reader will probably be pleased to see how the standard

identities of infinitesimal connection theory arise naturally in cohomological

terms.

The results of this section first appeared in Mackenzie (1979). In the

present account, some of the proofs have been reformulated for clarity.

Definiton 3.1. Let K be an LAB on B. Then the quotient Lie algebroid

Der(K)/ad(K) -J.+ CDO[K]/ad(K) -%+ TB

is denoted by

Out(K) ->i+ 0utD0[K] -$-• TB

and elements of FOutDO[K] are called outer covariant differential operators on

K. //

Quotient Lie algebroids are defined in 1.11. That ad(K) = im(ad: K + Der(K))

is a sub LAB of Der(K) follows from 1.2. That ad(K) is an ideal of 0utD0[K] from the

formula

(1) [D,(j*ad)(V)] = (joad)(D(V))
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for D e rCDO[K], V e FK, which is proved by an easy manipulation of the Jacobi

identity. We now have

ZK

OutDO[K]

with both rows and columns exact.

From now until 3.31 we consider a single Lie algebroid A on B. The anchor

of A is denoted qA. It is not assumed that A is transitive.

Definition 3.2. A coupling of A is an LAB K together with a morphism of Lie

algebroids H: A •• OutDO[K]; we also say that A and K are coupled by H. //

This is what would once have been called an "abstract kernel for A"; the

present terminology comes from Robinson (1982). Every transitive Lie algebroid

L -•—• A —••• TB induces a coupling of TB to L, namely O°V for any connection

y: TB See 3.17 below.

Now fix a coupling S of an LAB K to A until 3.13. Since

fa: CDO[K] —•+ OutDO[K] is a surjective submersion, as a map of vector bundles over

B, there are vector bundle morphisms V: A + CDO[K], X I—• V , such that

t|<7 = E. We call V a Lie derivation law covering 5. (See 3.8 for the formal

definition.) Since q«tj = q it follows that q*V = q ; that is, V is an anchor-

preserving map. Therefore the curvature of V is a well-defined map

R_: A * A -• CDO[K]. Since ̂ °V = 5 is a morphism, it follows that ̂ °Ry * 0 and

so R^ takes its values in ad(K)£ Der(K); we denote this map A • A •• ad(K) by R^.

Now, as with H above, there are alternating vector bundle morphisms A: A * A > K

such that ad*A = R . This follows from momentarily considering Ru to be defined
2 2 2

on A A and lifting it from A A + ad(K) to A A -• K across the surjective vector
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bundle morphism ad: K -• ad(K). We call any alternating map A: A • A •• K with

adoA = Ry a lift of Ry.

H: A + OutDO[K] induces a representation of A on ZK, the centre of K. To

see this, let V be any Lie derivation law covering H. Then for X e TA, the operator

Vx: rK +• HC restricts to TZK + TZK, for if Z e TZK and V e IX then

[v,vx(z)] = vx([v,z]) - [vx(v),z]

- vx(o) - 0 = 0,

since Z is central. Write p(X) for the restriction of V to TZK •• TZK. Then

p defines a vector bundle map A -• CDO[ZK] = CDO(ZK) which is easily seen to be a Lie

algebroid morphism. If V is a second Lie derivation law for 5 then V* - V is in

T(ad(K)), for all X e TA, and therefore vanishes on TZK. Hence p is independent of

the choice of V.

Definition 3.3. The representation p: A + CDO(ZK) just constructed is called the

central representation of S and is denoted p~. //

Our concern now is to show that every coupling 5 of A to K defines an

element of ̂ 3(A,p",ZK). This will take us until 3.13.

Lemma 3.4. Let V be a Lie derivation law covering S and let A be a lift of

Rv. Then for all X,Y,Z e TA the element

<£{Vx(A(Y,Z)) - A([X,Y],Z)}

of TK lies in TZK.

Proof: Apply jo ad. We obtain, firstly,

j*ad(Vx(A(Y,Z))) = [Vx,(joad)(A(Y,Z))],
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by (1), and we have j©adoA = joRy = Rv by definition. So j°ad of the cyclic sura is

(^UVX,RV(Y,Z)1 - RV([X,Y],Z)}

and this is zero by the general Bianchi identity 2.9. //

Write f(X,Y,Z) for the element in the lemma. It is easily checked that f is

an alternating and C(B)-trilinear function of X,Y,Z e FA, and it therefore defines

an element of TC (A,ZK), also denoted f.

Lemma 3.5. df = 0 with respect to the coboundary induced by p.

Proof: This is a long but straightforward calculation, and requires no

ingenuity. //

So f e 25 (A,p,ZK). f is called the obstruction cocycle defined

by V and A for the coupling 5. We may write f = f(V,A).

Lemma 3.6. Fix a Lie derivation law V covering 5 and let A and Af be two lifts

of Rv, with corresponding obstructions f - f(V,A), f = f(V,Af). Then

A' - A = iog for some g e TC2(A,ZK) and dg = f' - f.

Proof: Since j«ad«(Af - A) = Rv - Rv = 0 there is a unique g: A O A -• ZK with

i«g = A1 - A. Since A1 and A are alternating, it follows that g is so. Thus

g e rc?(A,ZK). Now

i(f'(X,Y,Z) - f(X,Y,Z)) = 6 {Vx(icg(Y,Z)) - iog([X,Y],Z)}

= i(dg(X,Y,Z))

for X,Y,Z e TA. //

We now need to show that the cohomology class of f is independent of the

choice of V.

Proposition 3.7. Let V and V be two Lie derivation laws covering 5. Then

V = V + j©ad«£ for various maps I: A •• K, and
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Rv, - Rv - -ad(Vx(£(Y)) - Vy(£(X)) - £[X,Y] + [ £(X) , £(Y) ]).

Proof: The existence of I follows as before. For X,Y e FA we have

VKy, &-) \A.9I ) - v; . fx Yl X Y X Y

= (joado£)[X,Y] - [(joad©£)(X),V ]

- [V ,(joade£)(Y)] - [(j*ad*£)(X),(joad<»£)(Y)].

Using (1), this becomes

(>ad#£)[X,Y] + (j«ad)(Vy(£(X))) - (joad)(Vx(£(Y)0) - (j»ad) [£(X) , £(Y) ],

whence the result. //

This can be expressed more succinctly by extending the definition of the

exterior covariant derivative given in III§5. While we do this, briefly

disregard the coupling 5.

Definition 3.8. Let A be any Lie algebroid and let K be any LAB on the same base.

A Lie derivation law for A with coefficients in K is an anchor-preserving map

V: A -• CDO[K]. //

Definition 3.9. Let V be a Lie derivation law for A with coefficients in K. The

(exterior) covariant derivative induced by V is the sequence of

operators V: FCn(A,K) •* FCn+1(A,K) defined by

vcf)cx1,...,xn+1) i c i) yux,,.i,xn + 1)j
r=l r

+ I (-Dr+Sf([x x ],x ?.",x ) 4 //
r<s

The requirement that V be anchor-preserving ensures that the RHS actually is

C(B)-multilinear. There is a formula for V©V in terms of the curvature of the Lie

derivation law.

The equation in 3.7 can now be written
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Rv, - Ry = -ad(V(£) + [£,*]).

This clearly resembles III 5.12 and III 5.13. The general result is the following.

Proposition 3.10. Let A be a Lie algebroid on B and let L1 -»—• A' —••> TB be a

transitive Lie algebroid on B. Let <j>.,<!>9: A •• A
1 be two anchor-preserving maps and

write <{> = <f> + j'©£, where 1: A •• L1 • Then

where V: A * CDO[L'] is the Lie derivation law defined by j'(V (V1))

Proof: Identical to that of 3.7 or III 5.12. //

III 5.13 now follows by applying 3.10 to <j>2 = id and <J> = Y«q: A + A.

We return to the coupling H. Notice that the definition of f can now be

written f = V(A), and f thus measures the extent to which A satisfies the Bianchi

identity with respect to V.

Proposition 3.11. Let V be a Lie derivation law covering E and let A be a lift

of R . Let V be a second Lie derivation law covering 5 and write V = V + j©ac

where £ is a map A + K. Then

A' = A - (VU) + [£,£])

is a lift of R , and f(V!,Af) = f(V,A).

Proof: Certainly A1 is alternating, and ad«Af = Ry - ad(V(£) + [1,1]) = Ryl,

by 3.7. It remains to show that Vf(A') = V(A).

Now V is a linear operator, and so

Vf(A') - V(A) = V'(A) - Vf(VU) + [1,1]) - V(A).

For X,Y,Z e TA,

(V(A) - V(A))(X,Y,Z) = $ {(j«ad*JO(X)(A(Y,Z))}
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= (5 {[£(X),A(Y,Z)]>.

Similarly

V(V(£) + [£,£])(X,Y,Z) = V(V(£) + [£,£])(X,Y,Z)

[£,£])(Y,Z))h

First calculate V(V(£)). By regrouping terms and using the Jacob! identity

one obtains

V(V(£))(X,Y,Z) = -0{Rv(X,Y)(JL(Z))},

and since joad*A = R this cancels with the term (V'(A) - V(A))(X,Y,Z).

Next, by expanding the cyclic sum and using V ([V,W]) =

[Vx(V),W] + [V,Vx(W)] repeatedly, one obtains

V([£,£])(X,Y,Z) =& [V(£)(X,Y),£(Z)].

Lastly,

©{(joad«£)(X)((V(£) + [£,£])(Y,Z))}

= @ {[£(X),V(£)(Y,Z)]} +& {[£(X),[£(Y),4(Z)]]}.

The second term of this vanishes, by the Jacobi identity, and the first cancels

with V([£,£])(X,Y,Z).

Thus we obtain V'(A') - V(A) = 0, as desired. //

3.11 is a solid calculation, no matter how one approaches it. However in

the setting provided here, it is at least the case that V'(Af) - V(A) decomposes

into georaetrically significant groups of terms. This insight is not available in

Lie algebra cohomology, from where the calculation comes.

Putting 3.6 and 3.11 together, we obtain
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Theorem 3.12. Let A be a Lie algebroid on B and let K be an LAB on B. Let E

be a coupling of A with K. Then the cohomology class in 3l (A,p",ZK) of

f(V,A), where V is a Lie derivation law covering H, and A is a lift of R , depends

only on 5 and is independent of the choice of V and A. //

This class is called the obstruction class of the coupling S, and will be

denoted Obs(S).

The following observation will be important later.

Proposition 3.13. Let A, K and E be as in 3.12. Let V be any Lie derivation law

covering S, and let V be any cocycle in Obs(S). Then there is a lift Af of

Ry such that f(V,A') = f\

Proof: Let A be any lift of R , and write f = f(V,A). Then f and f are

2
cohomologous; choose any g e TC (A,ZK) such that f1 - f + dg. Define

A' = A + ieg; then ad«Af = ad*A = R y and 3.6 shows that f
1 = f(V,Af). //

* * * * * * * *

We now describe the coupling associated to a general (nonabelian) extension

of Lie algebroids, and its obstruction class. Until 3.19, let A be a fixed Lie

algebroid on B and let K be an LAB on B.

Definition 3.14. An extension of A by K is an exact sequence of Lie algebroids over

B

(2) K +-U A' -+- A,

as defined in III 2.14.

I IT

Two extensions of A by K, K •»—--• Ar — 5 + A, r = 1,2, are equivalent if there
1 2

is a morphism of Lie algebroids over B, <j>: A +• A , necessarily an isomorphism, such

that <f)*i1 = i2 and TT2
O <J> = TT̂  . //
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We define the concepts of transversal, back-transversal, flat transversal

and flat extension exactly as for extensions by vector bundles (see 2.11). The

discussion following 2.11 also applies, except that an extension (2) by a general

LAB need not induce a representation of A on K. Instead the representation formula

defines a Lie derivation law.

The example of an extension of Lie algebroids which is of most importance to

us is the extension L •*•—• A —*•• TB associated with a transitive Lie algebroid. All

the calculations of this subsection are formally equivalent to results for

infinitesimal connections. (See III§5.)

Fix an extension K ••-•• A' -++ A of A by K until 3.19.

Proposition 3.15. Let X' A + A1 be a transversal in K -•—• A1 —*-*• A. Then

(3) i(£

for X e TA, V e IX, defines a Lie derivation law for A with coefficients in K.

Proof: It need only be checked that VX: A + CDO[K] is anchor-preserving, and this
A* A

follows from q" © x = q • //

Lemma 3.16. With the notation of 3.15,

R = adoR .
yA. A.

Proof: For X,Y e TA and V e TK,

(X,Y)(V)) = tx[X,Y],l(V)] - [x(X),[X(Y),l(V)]] + tx(Y),[X(X),
VX

(by the Jacobi identity in TA')

= [R (X,Y),i(V)]

and the result follows. //

VX

Hence the composition A ->• CDO[K] — + + OutDO[K] is a morphism of Lie

algebroids. If x1* A •• A1 is a second transversal then x1 = X + i°I for some map

i: A -• K and VX = VX + ad I. Hence



CHAPTER IV 222

Definition 3.17. The coupling tjoV : A •*• CDO[K] , where x ̂ s anY transversal in the
1 IT '

Note that the choice of a transversal x determines both a Lie derivation

covering the coupling induced by the extensio

R • Thus each x determines an obstruction cocycle.

law V covering the coupling induced by the extension, and (by 3.16) a lift R of

Proposition 3.18. For every transversal x»

f(VX,Rx) = 0.

Proof: f(X,Y,Z) = & {v£(R (Y,Z)) - R ([X,Y],Z))} and, applying i this becomes
-̂ X X

G?{[X(X),RX(Y,Z)] - Rx([X,Y],Z)}

which is zero by the general Bianchi identity of 2.9. //

This equation, f(VX,R ) = 0, is called the Bianchi identity for x.

In particular, the obstruction cohomology class for the coupling detemined

by K •»—* A1 -++ A is zero.

The following result shows that every Lie derivation law covering the

coupling determined by an extension, arises from a transversal.

Proposition 3.19. Let V be any Lie derivation law covering the coupling determined
I 7T Y

by K -•-•*• A* —•"• A. Then there is a transversal x: A •• A1 such that V = V.

Proof: Let x1 by any transversal. Since t»V = i*VX , there is a map I: A -• ad(K)

such that V = V + jdl. Since ad: K •• ad(K) is a surjective submersion of vector

bundles, I can be lifted to I: A •• K. Define X = X1 + i°£« Certainly X is a

transversal, and for all X e TA and V e HC,

(>ado£)(X)(V))

as required. //
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Thus the nonzero elements of the obstruction class arise from having chosen
y

a Lie derivation law V and having then failed to choose the natural lift, namely

R , of R ; see 3.6. On the other hand, it is not true that if A is a lift of

V x —
R , and if f(V ,A) = 0, then A = R ; there are usually, for example, many closed
yX X
non-zero two-forms on a manifold.

We arrive now at the construction and enumeration of extensions

corresponding to a coupling which has obstruction class zero. The first result is

the basic construction principle.

Theorem 3.20. Let A be a Lie algebroid on base B and let K be an LAB on B.

Let V: A *• CDO[K] be a Lie derivation law such that^»V: A •• 0utD0[K] has zero

curvature, and let R: A * A •• K be an alternating 2-form on A with values in K.

Then, if

(i) Ry = adoR, and

(ii) the Bianchi identity V(R) = 0,

hold, then the formula

[X O V, Y «> W] = [X,Y] * {V (W) - V (V) + [V,W] - R(X,Y)}
X i

defines a bracket on T(A * K) which makes A -e K a Lie algebroid on B with respect to

the arrow q' = q°ff, , and an extension

l2 \
K -•—-• A1 —••• A

of A by K such that i : A + A1 is a transversal with V = V and R = R.
1 ll

Proof: This is a straightforward calculation. We verify the Jacobi identity as an

example.

Given X * V e TAf, r = 1,2,3, we have for the K-component of

• V , X * V ], X • V ] the formula
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- v

- [R(vy>v

The term & [[V ,V ],V ] vanishes by the Jacobi identity in K. The fifth

term can be rewritten as G? V (R(X ,X )), by cyclic permutation, and then cancels

with the last, by the Bianchi identity (ii). Rewriting the first three terms via

cyclic permutations, we have G? R^(X ,X )(V») and this is, by (i), equal to

G>[R(X ,X ),V ], and so cancels with the second-last term. The remaining terms

cancel by the equation Vx([V,W]) = [Vx(V),W] + [V,Vx(W)] for X e TA, V,W e IT, which

characterizes the elements of CDO[K]. //

We will treat the uniqueness of this construction in 3.23 below.

3.20 gives, in particular, the following construction principle for

transitive Lie algebroids with a prescribed curvature form.

2
Corollary 3.21. Let L be an LAB on B and let R e TC (TB,L) be an alternating 2-form

on B with values in L. Then there is a transitive Lie algebroid L +—• A -•»••>• TB and

a connection y in A with R = R iff there is a Lie connection V in L such that

(i) Rv = ad*R, and (ii) V(R) = 0. //

3.21 provides a solution to the algebraic part of a long-standing problem:

Given an alternating 2-form on a manifold B, when is it the curvature form of a

connection in a bundle P(B,G) over B? In the case of real-valued 2-forms this

problem is solved by the integrality lemma of Weil (1958); see also Kostant (1970).

Weil's result corresponds to the case of 3.21 in which L = B * R; note that 3.21 is

slightly stronger in that we require only some flat connection V with V(R) = 0,

whereas Weil requires R to be closed with respect to the standard flat connection

(see III 5.17 for the equivalence). In the case of non-abelian coefficients it is

obviously necessary for the 2-form to take values in an LAB, rather than in a single

Lie algebra, and this necessitates the introduction of the Lie connection V.
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The presence in 3.20 and 3.21 of the Lie derivation law V certainly makes

their application difficult. However V, and condition (i), are essential links

between the algebraic properties and the curvature properties of the desired Lie

algebroid. For example, if in 3.21 L is abelian, then it must be flat as a vector

bundle, in order for a transitive Lie algebroid L •»•—• A —»•->• TB to exist (by III

5.10(11)).

This phenomenon should be compared to the situation in III 5.15 where a

transitive Lie algebroid is constructed from a family of Maurer-Cartan forms,

subject to a cocycle condition and a compatibility condition which involve an

Aut(Q)-cocycle, which turns out to be a cocycle for the adjoint LAB. The Aut(O)-

cocycle in III 5.15 corresponds exactly to the Lie derivation law in 3.21, and

conditions (ii) and (iii) of III 5.15 correspond to conditions (ii) and (i) of 3.21.

The remaining part of this question on the realizability as curvature forms

of given 2-forms, concerns the integrability of the transitive Lie algebroid found

by the method of 3.21. This problem is solved,under the assumption that B is

simply-connected, in Chapter V.

Corollary 3.22. Let A be a Lie algebroid on B, let K be an LAB on B, and let

5 be a coupling of A with K. Then, if Obs(S) = 0 e X3(A,ZK), there is a Lie

algebroid extension

K •-•• A1 -++ A

of A by K, inducing the coupling H, namely that constructed in 3.20, using any Lie

derivation law V which covers H, and any lift A = R of R^.

Proof; This follows from 3.20 by applying 3.13 to the cocycle 0 in Obs(H). //

3.22 and 3.18 together show that a coupling 5; A •• 0utD0[K] arises from an

extension of A by K iff Obs(S) = 0 zjft 3(A,p~, ZK).

There are usually many distinct such extensions. We come now to the problem

of their description.

Proposition 3.23. Let K +-+ A' —••»• A be an extension of Lie algebroids, with K an

LAB. Then for any transversal x* A •> A1, there is an equivalence of this extension
i TT

with the extension K •>---• A * K —*••• A constructed via 3.20 from vX and R , namely
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£ : A * K + A' , X * V M- x(X) + i(V).

Proof: For example, that © preserves the brackets merely asserts that
X

[X(X) + i(V), X(Y) + i(w)] = X[X,Y] + l(V*(W) - V*(V) + [V,W] - R(X,Y))
X ^ Y X

for all X,Y e TA, V,W £ TK, and this is easily verified. //

In the terminology of MacLane (1963), 3.23 shows that every extension can be

given a "crossed-product" representation. In particular, the extension constructed

in 3.20 is determined up to equivalence by V and R.

3.23 is the correct uniqueness result for the problem of constructing

transitive Lie algebroids with a preassigned curvature form and adjoint connection.

However we will also need in what follows an enumeration of the extensions of A by K

in terms of 3£2(A,ZK).

From now until 3.31, let A be a fixed Lie algebroid on B, let K be an LAB

on B, and let H: A •»• 0utD0[K] be a coupling of A with K such that

Obs(H) = 0 e 3tf3(*,pa,ZK).

Definition 3.24. An operator extension of A by K is an extension K •*—• A' —••• A

which induces, via 3.17, the coupling 5. //

The set of equivalence classes of operator extensions of A by K is denoted

by ©pext(A,H ,K) , or by0pext(A,K) if S is understood. We will show that

^]fi(A,p~,ZK) acts freely and transitively on 0pext(A,H,K). It will then follow

that (ypext(A,5 ,K) can be put in bijective correspondence with yfi (A,p",ZK),

by the choice of any extension as reference point.

**f 2
The first step is to define an action of X (A,ZK) on the class of all

operator extensions.

Definition 3.25. Let K ••-•»• A' -*-»• A be an operator extension, and let g be

in X (A,ZK). Then the action of g on the extension yields the extension

K ••-•»• A 1 -!-• A

where A1 = Af as vector bundles, the maps i and IT are the same in both extensions,

the anchors q1: A1 ->• TB and q1 : A' •»• TB are equal, and the bracket , ,
So I » Jg on



227

is given by

[X,Y] = [X,Y] + lig(TTX,irY).
g

The cocycle condition for g ensures that [ , ] obeys the Jacobi identity.

Since the values of g are in ZK < K, the maps i and IT remain morphisms with respect

to the new structure, and the coupling is unchanged.

Proposition 3.26. Continue the notation of 3.25. If x: A •»• A' is a transversal

for A1, then it is also a transversal for A1, and the two Lie derivation laws

A ->• CDO[K] are equal. The curvatures of X are related by

ig
x = R x - l-g.

Proof: Easy calculation. //

In particular, K +-+ A' —••> A is an operator extension. Clearly

% \ • A ^ -

Proposition 3.27. Let x he a transversal in an operator extension

K ->•-*• A1 -•»•-»• A, and let £: A •• K be a map. Then

Proof: This is formally identical to III 5.12. //

In particular, if I takes values in ZK then

From this we deduce that the action of ;£ (A,ZK) factors to an action o f # (A,ZK).

Proposition 3.28. Let K •*-—> A1 ~•-• A be an operator extension, and let

h £ TC (A,ZK). Then K ••—• A' —•* A is equivalent to K ••—• Af —••• A.

Proof: Let x he a transversal of A'. Regarded as a transversal of A' , it has

curvature R - iodh (by 3.26). So, by 3.27, the transversal x + i*i°h in A'

has curvature R . Since h takes values in ZK, the Lie derivation law determined
X

by x + i«ioh in A' is the same as that determined by x in A1. So we have two
dh
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extensions, A1 and A' , with two transversals, x and x + i«i*dh, respectively, which
dh

have the same curvature and Lie derivation law. It now follows from 3.23 that the

extensions are equivalent. //

The equivalence A1 •»• A' is e,: X ^ X - ( i«i«h) (TTX). Briefly,
dh h

e = id - h»ir.
h

We therefore have an action of 'hi (A,ZK) on the class of all operator

extensions. It is easily checked that the action sends equivalent extensions to

equivalent extensions, so we in fact have an action ofjfi (A,ZK) on (/pext(A,K).

We now prove that this action is free, and transitive.

Theorem 3.29. Let K ••-•• A1 -5+ A be an operator extension, and let g e 2? (A,ZK) be

a cocycle, and suppose that there is an equivalence (|>: A1 *• A1. Then g is
1 ^

cohomologous to zero, g = dh, and <j> = e f where h e TC (A,ZK) is the cochain

determined by h = -X<><j>ox for any transversal x and associated back-transversal X.

Proof: From 3.26 it follows that

iog = R - Rg
6 X X

for any transversal x» Now by exactly the same calculation as in III 5.13, we

obtain

RX(TTX,TTY) = v£x(AY) - V*y(XX) - X[X,Y] + [ XX, AY]

for X,Y e TA'.

Similarly, working in A^ with the same transversal x» and recalling from

it the two

are equal, we get

3.26 that the two Lie derivation laws for x, with respect to A1 and A1,

Substituting these in the equation for i*g, we get

(i©g)(TTX,TTY) = V* (XY
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- (X - A<f>)[X,Y] + {[XX,XY] -

I s X - X<j> e q u a l t o 9TT f o r any map 0: A *• K? I f i t i s , t h e n (X - X<j>)x

= 9TTX = 6 and s i n c e Xx = 0 , i t f o l l o w s t h a t 9 = -X<j>x and X - X<|> = -X<f>xir. W r i t i n g

now h = - H x we have

(iOg)(TTX,1TY) = V^ChTTY) - V^ChTTX) - hTr[X,Y]

hTrX, X<f>Y + hTTY] - [X((>X,X<J>Y]}

^ x V^ChTTX) - hTT[X,Y] + [hTTX,hiTY] }

+ {[X<f>X,h7rY] + [hwX,X<j>Y]}.

Set irY = 0. Then the LHS and a l l terms on the RHS except the l a s t , van i sh .

So [hTTX,X<f>Y] = 0 for a l l X e TA1 and Y £ im( r ) , and since IT i s onto A and \°<\> i s

onto K (for X i s a su r j ec t ive submersion), t h i s proves tha t h takes values in ZK.

The equation for i*g now reduces to (i«g) (TTX,TTY) = dh(irX,iTY), which proves

that g = dh, s ince TT i s onto A.

After 3.28 i t was remarked tha t eh = id - i«i<>h«»ir. Neglecting the i , we

have

e = id + ieXo<j>eXoir
n

= id + ioXe<j>©(id - 1©X)

- id + i«X«<|> - 10X (s ince <|>oi = I and X»i = id)

= <|> ( s i n c e TT = TT*<}) and x*^ + 1°^ = i d ) . / /

I 7T

Theorem 3.30. Let K •*--••• Ar — £ + A, r = 1,2, be two operator extensions.
1 2

Let x, and x0 be transversals of A and A , respectively, which induce the same Lie
2 - -

derivation law (see 3.19), and define g e TC (A,ZK) by i»g = R - R . Then
Xi X9

n^ 2 1 2
g i s a cocycle, g e % (A,ZK), and <j> = 1 • \ + y° n, i s an equivalence (A ) +• A .

2 1 2̂ 1 g
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Proof: That R - R takes values in ZK follows from the assumption that

X X ^1 ^2
V l - V 2, since ad*R = R and adoR = R (by 3.16).

Xi Xi Xo X<j
1 v I L 1 L

Now

(i*dg)(X,Y,Z) = i«3 (p(X)(g(Y,Z)) - g([X,Y],Z)}

- Rv

- 6 {V 2(R (Y,Z)) - R ([X,Y],Z)},

x x2 x2

which is zero by the Bianchi identities for x, and x9 (compare 3.18).

To prove that <J) preserves the brackets, requires manipulations of a type

that must now be familiar. //

Putting together 3.25 to 3.30, we have

Theorem 3.31. Let A be a Lie algebroid on B, let K be an LAB on B, and let 5

co
"U 3

be a coupling of A with K such that Obs(S) = 0 e /H (A,ZK). Then the additive group

(A,p~,ZK) acts freely and transitively on(^pext(A,E,K). //

One may say that (/pext(A,E,K) is an affine space overlying the vector

space #2(A,p",ZK).

3.31 yields in particular a classification of transitive Lie algebroids up

to equivalence. This should be contrasted with the Chern-Weil theory. Classically

one tries to distinguish principal bundles by studying their connections.

Infinitesimal connections actually belong in the Lie algebroids and one shows that

two Lie algebroids are non-isomorphic by exhibiting a connection in one that cannot

exist in the other. This is usually done by means of cohomological invariants

derived from the curvature of all connections via the Weil morphism and in this

context Lie algebroids cannot be distinguished from their reductions: such studies

are topological, not geometric.

In view of the application of 3.31 in §4, some comments about semi-direct

extensions are in order.
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Definition 3.32. Let A be a Lie algebroid on B, let K be an LAB on B, and let

V: A + CDO[K] be a flat Lie derivation law; that is, let V be a representation of A

on K. Then the V-semidirect extension of A by K is the extension

K +--+ A * K — • + A

where A * K is the vector bundle A «> K with anchor qf(X * V) = q (X) and bracket
V

[X * V, Y • W] = [X,Y] « {V (W) - V (V) + [V,W]}. //
x Y

It follows immediately from 3,23 that every flat extension is equivalent to

a semidirect extension.

Not every coupling whose obstruction class is zero has a flat Lie derivation

law covering it. A characteristic example follows.

Example 3.33. Let ft be the Lie groupoid associated to the Hopf bundle
7 4 A Q^ x £ZC(2)

S (S ,SU(2)). Let H denote the coupling of TS with Lft = gTT7ov induced
buvz;

4
by Lft +•-•»• Aft —»••• TS • Then there is no flat Lie derivation law covering H; in

fact, Lft admits no flat Lie connection.

To see this, note first that ad: Aft -*• CDO[Lft] is an isomorphism, since

ad+: Lft •> Der(Lft) is fibrewise the adjoint representation of j*tt(2), and &U(2) is
7 4

semisimple. Now it is sufficient to observe that S (S ,SU(2)) itself admits no flat
4

connection, and this is elementary (since S is simply-connected, a flat connection

would trivialize the bundle). //

On the other hand, there may be nonequivalent semidirect extensions

associated with the one coupling.

o
Example 3.34. Let B be a manifold with H, (B) ̂  0, and let 0 be a nonabelian

ueKn u

Lie algebra with centre Z ^ 0. Define K = B xQ, Let V be the standard flat Lie

connection in K and let I: TB > K be a 1-form such that

A = (V°U) + [1,1]) = (6£ + [1,1]) is closed, but not exact.

Let A° denote the semidirect extension TB « K and let A' denote (A°) .,

in the notation of 3.25. Then A1 is flat, for it is easily seen that

X(X) = X • £(X) defines a flat transversal. Thus, by 3.23 Af is equivalent to the

semidirect extension corresponding to VX = V° + joado£. But, by 3.29, A' is not

equivalent to A , for -A is not exact. //
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A complete interpretation of sit- in Lie algebroid cohoraology would require a

notion of similarity for couplings, according to which couplings would define the

same obstruction class iff they are similar, and a notion of effaceability for

elements of /ft , which would characterize those realizable as obstructions. Compare

Hochschild (1954b). These matters may have a geometric significance of their own,

but we have not considered them here since they are not necessary for the results of

§4.

We close this section with a concept of produced Lie algebroid. This

construction should be compared with II 2.21 (see also the comments in III 7.30).

Theorem 3. 35. Let L •*—*• A —••• TB be a transitive Lie algebroid on B and let

<j>: L •• Lf be a morphism of LABTs over B. Suppose that there exists a representation

P : A > CDO[L'] such that

(i) p = adfo<{>: L + Der(L'), where ad1 is the LAB adjoint Lf -• Der(Lf); and

(ii) 4> is A-equivariant with respect to the actions ad and p of A on L and

L1.

Then there is a transitive Lie algebroid Lf *~• A1 —•"• TB and a morphism of

Lie algebroids <J>: A + A! such that (4>) : L + V is equal to <j>, and such that

p = ad'o<|>, where ad1 is now the adjoint representation A1 -»• CDO[LV]* Further, A1 is

uniquely determined up to equivalence by these conditions.

Proof: Let y be a connection in A and define on the vector bundle TB • Lf a bracket

structure by

[X « V , Y * W1] = [X,Y] • (p(YX)(W) - P(YY)(V) + [V1 ,Wf ] - •£ (X,Y)}

where X,Y e TTB, V ,Wf e TV. It is easily checked that this makes TB « L1 a

y

transitive Lie algebroid on B; denote it by A . Further, X H qX * <|>u)X is a Lie

algebroid morphism A •• A \ where u> is the back-connection in A corresponding to y.

The required properties are easily verified.

If L1 •»•—• A' -*-)- TB is another transitive Lie algebroid and ?: A -• A1

a morphism with the required properties, then $ : AY -• Af, X • V1 *--• <j>YX + V

may be checked to be an equivalence. (Note that p = ad'«<f> ensures that
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The remark following 1.14 shows that every base-preserving morphism of

transitive Lie algebroids is of the form constructed in 3.35. The remarks following

II 2.23 apply equally in the case of Lie algebroids.

Note that (ii) is, in part, a requirement that <j>: L •• L1 , regarded as a

map B •*• Hom(L,Lf), be constant in the same sense in which one may say that the

morphism <J>: Gft + Gftf arising from a morphism of Lie groupoids is constant because

<\> commutes with inner automorphisms.

Using this as a model, the reader may like to give a construction of a

produced Lie groupoid, given

. _ . — . . .

M

and suitable compatibility conditions on <j>.

§4. The existence of local flat connections and families of transition

forms*

This section is concerned with a single result, and its immediate

consequences.

Theorem 4.1. Let B be a contractible manifold and let L •*•—• A —••* TB be a

transitive Lie algebrold on B. Then A admits a flat connection. //

This result first appeared in Mackenzie (1979); the proof given now is a

revision. 4.1 is an infinitesimal analogue of the well-known result that a

principal bundle - or Lie groupoid - on a contractible base admits a global

section. The principal bundle result is achieved by contracting the base, and using

the homotopy classification of bundles; the proof of 4.1 achieves a similar end by

using the cohomology theory of §3. From 4.1 it will follow that the construction of

a transitive Lie algebroid from a family of transition forms (III 5.15) gives a

classification of all abstract transitive Lie algebroids.

We begin with some observations which apply to any transitive Lie algebroid

L ••—• A —••> TB on an arbitrary manifold B.
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Definition 4.2. Let L ••—• A —••• TB be a transitive Lie algebroid. Then the

a-connected Lie subgroupoid of II[L] which corresponds to ad(A) < CDO[L] is denoted

Int(A), and called the Lie groupoid of inner automorphisms of A, or the adjoint

groupoid of A. //

For any connection "Y in A, the adjoint connection V takes values in ad(A),

and so, by III 7.6, may be said to reduce to Int(A).

Now assume that B is contractible. The idea of the proof is roughly as

follows: Since B is contractible, it is presumably true that Jti (TB,ZL) = (0).

Hence there is only one equivalence class of operator extensions of TB by L. So if

we can show that there is an operator extension of TB by L which is flat, then the

given Lie algebroid, being equivalent to it, must also be flat.

To carry out this idea, two matters must be arranged rather carefully,

tly,

(

Firstly, in order to obtain ̂ t (TB,ZL) = (0), it Is necessary to realize

(TB,ZL) as the de Rham cohomology of B. Since B is contractible, it is certainly

true that ZL is isomorphic to the trivial bundle B x Z ; it must also be shown that

the representation of TB on ZL transports to the trivial representation. Since B is

simply-connected, this can be achieved by III 5.20.

Secondly, in order to obtain a flat Lie algebroid equivalent to the given

one, it must be shown that the coupling TB •• 0utD0[L] of the given Lie algebroid is

covered by a flat Lie connection TB > CDO[L] (see 3.32 to 3.34). Although L is

isomorphic as an LAB to a trivial bundle B *Q , one cannot apply III 5.20, for it is

not known that the given Lie algebroid has an adjoint connection which is flat.

Neither can one apply III 5.20 to the coupling itself, for there is no known general

construction of a Lie groupoid whose Lie algebroid is 0utD0[L]. (This is so even in

the case of Lie algebras.) However, all these difficulties can be circumvented

simultaneously.

Consider, then, a transitive Lie algebroid L -•--• A -*•»• TB on a contractible

base B. We may as well assume from the outset that L is a trivial LAB B x D , Since

Int(A) is a Lie groupoid on the contractible base B, it is trivializable;

equivalently, it admits a global decomposing section a: B •*• Int(A), , for some b e B.

From a we obtain, as in III§5, a global morphism 6: B * B •• Int(A) and a flat

connection 0^ in ad(A).

Since ad(A) < CDO[L], we may also consider 8^ to be a flat Lie connection

in L = B * D . Therefore, by III 5.20, there is an automorphism

ip : B x Q •* B xD which maps 6^ to the standard flat connection V . That is,
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(1) K ^

for X e TTB, V: B *• 0 .

Let y: TB + A be a connection in A. Since V and 8^ are both connections in

ad(A), there is a map i: TB •• B xQ such that

(2) VY = 0^ + ad*£.

Our intention is to transform (2) into VY = V° + ad»JtT by using (1).

Define a new embedding of L = B x D into A by jf = joi|>

Lemma 4.3. Let B be an arbitrary manifold and L +^.+ A -9-»- TB a transitive Lie

algebroid on B. Let i/>: L -• L be an LAB automorphism of L, and let jf = joi|>

Then for any connection y: TB •• A, the adjoint connections V and V '

induced in L by the two Lie algebroids L -•--• A - ^ TB and L -^—> A -$+ TB, are

related by

Proof; For X e TTB and V: B +
— -

Returning to the proof of 4.1, we have from (2) that

V^(v) = 6^(X)(V) + U(X),V].

Therefore

<J>(V̂ (V)) - (<J>«9*)(X)(V) + iKU(X),V])

and therefore by the lemma, and equation (1),
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Since ty is surjective, this establishes that

(3) Vr'Y = V° + ad(A')

where V = tyol.

We now work exclusively with B xj -J—• A -9-» TB. Equation (3) implies

immediately that, firstly, the representation of TB on B xz induced by A is the

trivial one, and, secondly, that the coupling H of TB with B xD induced by A

admits V as a Lie connection covering it.

We therefore have 'H 2(TB,V°,B * Z ) - HdeRh(B'5^ = (0) and S ° ' by 3#31j

is a unique equivalence class of 5-operator extensions of TB by B *n . Since

2 admits V as a co\

operator extension

2 admits V as a covering connection we can, by 3.32, construct the semidirect

B xD -•—•• TB t* (B X Q ) -•••-• TB,

and it must be in the same equivalence class as B xO ->**—• A -+•• TB. So there is an

isomorphism of Lie algebroids TB <* (B x 0) -• A, and A therefore admits a flat

connection. This completes the proof of 4.1. //

The proof has actually established that A is isomorphic to a trivial Lie

algebroid TB •* (B x Q ) . This stronger formulation can in any case be deduced from

4.1 by an application of III 5.20.

Consider now a transitive Lie algebroid L •**•+ A -++ TB on an arbitrary base

B. Given any cover {U.} of B by contractible open sets, there is an isomorphism of

Lie algebroids1 over U

In this sense, 4.1 has established that transitive Lie algebroids are locally

trivial.

S.: U x Q -• L is an LAB chart; denote it by ty . Denote by 6 the flat

connection X »--• S^X • 6) induced in k^ by S ^ We refer to the 81 as local flat

connections in A. Exactly as in III§5, we define transition forms x±. by
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for every nonvoid U .. (Note that the x . are not, strictly speaking, defined in

terms of the 6 alone.)

Proposition 4.4. x.. £ A (U..,0), defined above, is a Maurer-Cartan form.

Proof; Since 9 and 9J are two flat connections In A , it follows from III 5.12

that J

(Here V is the covariant differentiation induced by the flat Lie connection

61 i
V .) Now, by expanding out the bracket-preservation equation for S , It easily

follows that

for X e TTU , V: U •• g .

Since I = ty,° X.., the Maurer-Cartan equation for x.. follows. //

Exactly as in III§5, we obtain the compatibility equation

X U ^ O O ) - ai;j(X(V)) + [x^ (X) .a^ (V) ] = 0,

where a : U + Aut(Q) are the transition functions for the atlas {^ } of L.

We have thus established a converse to III 5.15 - that every transitive Lie

id generates a family of transition forms x.. and an

that the three conditions of III 5.15 are satisfied, namely

algebroid generates a family of transition forms x.. and an LAB cocycle {a .} such

(i) each x.. is a Maurer-Cartan form,

(ii) X i k = X i . + a i j ( x j k ) whenever U i j k ^ 0 ,

(iii) A(a±.) - adoXi. for all U±. * 0.

If {6': TU + A ) is a second system of local flat connections with

{ { ] } is an LAB atlas withrespect to the same open cover, and {^': U. x {] + L }
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<K(X(V)) f o r X e m ^ , V: U t - ^ g , t h e n , w r i t i n g

6' = 0. +

and

we obtain

(5a) 6m1 + [ m ^ m j = 0,

(5b) A(n ) = ad»m ,

(5c) X|. = n± {-n^ + xi- + a^m },

(5d) a!!.

(compare equations (10) of III§5).

Definition 4.5. (i) Let L •»—• A —*•+ TB be a transitive Lie algebroid on B. A

system of local flat connections {8 : TU •»• A^ } and an LAB atlas

{i|*.: U x D -> L, } are compatible if

holds identically; we then refer to the 6 and iK collectively as a compatible

system of local data.

(ii) Let P be a Lie algebra and let B be a manifold. A system of transition

forms (x. . e A (U ,t])} and an LAB cocycle {a..: U. . + Aut(jj)} for some open

cover {U.} of B, which satisfy equations (i)-(iii) above are called a system of

transition data on B with values in9
(iii) Let D be a Lie algebra and let B be a manifold. Let (x >a )

u ij ij
and {x'.,a' .} be two systems of transition data on B with values in Q and with
respect to the one open cover {U.} of B. Then (x ,,a..} and {xf.»a|.} are

1 j-3 1J ij i 1J
equivalent if there exists a system of Maurer-Cartan forms m e A (U.,D) and a

system of functions n : U ->• Aut(q) such that (5b), (5c), (5d) are satisfied. //
i i u

Evidently systems of transition data which arise from the one Lie algebroid,

or from equivalent Lie algebroids, are equivalent.
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Proposition 4.6. Let (x..»a .} and {x!.»a|.} be two equivalent systems of

transition data on a manifold B with values in a Lie algebra Q and with respect to the

same open cover. Then the Lie algebroids constructed from {x..»a..} and {x!.»a!.}

are equivalent.

Proof: Let m e A (U.,q), n : U •• Aut(g) be the data establishing the

equivalence. Let A and A' denote the Lie algebroids constructed via III 5.15

from (x..»a } and (x!.,a|.}.

Define <j>: A1 •• A locally by

(i, X * V) ' I--)- (i, X * (m. (X) + n (V)));

it is easily verified that this is well-defined, and gives the desired

equivalence. //

Clearly one may modify 4.5(iii) and 4.6 to take account of systems of

transition data defined with respect to different open covers, and one may take an

inductive limit; we leave the working-out of this to the reader.

Examples of transition forms may be obtained easily, by taking the right-

derivative of transition functions of known examples of Lie groupoids. For example,

with ft the Lie groupoid of SU(2)(S2,U(1)) and charts defined by stereographic
2 TSU(2) 2

projection in the usual way, the transition form for S x R •»—• • / / —•+ TS

is essentially the Maurer-Cartan form for U(l). Transition forms for CDO(E),

CDO[L], CDO<E>, etc., can be constructed directly from transition functions for the

bundles E, L, etc. This method was actually used by Teleman (1972, §6) to construct

CDO(E).

Using local flat connections one can prove a stronger version of 1.6 which

is of independent interest.

Theorem 4.7. Let <j>: A •• Af be a morphism of transitive Lie algebroids over B. Then

there is an open cover {U.} of B and isomorphisms

S. : TU. ^ (U. x n ) •> A , Sf : TU •© (U x P ') •> A1

such that (S!) o (f>oS is characterized (as in III 2.4) by the zero Maurer-Cartan
form and a map U. •> Hom(D,Q') which is constant.
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Proof: Let {U.} by any cover by contractible open sets, and let {S.} be given
1 i *"

by 4.1. Denote by 0 and i|>. the flat connections and LAB charts associated
i i^ i

with s . . Define 6' = <f>©6 ; then 0f is a flat connection in Af . Now the adjoint
l . U .

01

connection V is a flat Lie connection in a trivializable LAB i» on a simply-

connected base U ; by an obvious modification of III 5.20 there is an LAB chart

iK: U x D1 + L' which maps the standard flat connection V to V . Denote by

S!̂  the isomorphism Tl^ «> (V± x 0 ' ) -• A^ defined by ty'± and 0' .

We now have a morphism of trivial Lie algebroids

(S|)"1o(j)«»Si: TU± • (U. x j) -• TU± ^ (U±
 x g ' ) ;

denote by f.: u. xfl •*• U. xfl' its restriction (̂ ') o <j> o lp . To determine thef.: u. •*• U. xfl' its restriction (̂ ') o <j> o lp .

r (Sf) j s calculateMaurer-Cartan form for (Sf) o <j>os , calculate

Thus the Maurer-Cartan form is zero.

Now the compatibility equation for oo = 0 and f is

X(f.(W)) - f±(X(W)) = 0

and, by B§2 equation (6), this implies that the Lie derivatives X(f ) of f as a

Hom(Q,Q')-valued map on U , are zero. Since U is connected, it follows that f is

constant. //

This is the proof given in Mackenzie (1979). A similar proof can be given

for 1.15.

The following is an abstract reduction theorem.
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Theorem 4.8. Let L •*•-+ A —••• TB be a transitive Lie algebroid. Then if A has a

connection y whose curvature R takes values in a sub LAB K which is stable under
Y "̂
V , then A has a system of transition forms taking values in the fibre type of K.

Proof: Immediate from III 7.25 and 4.1. //

§5. The spectral sequence of a transitive Lie algebroid.

For a transitive Lie algebroid L ••--• A --•-• TB and an arbitrary

representation of A on a vector bundle E we construct a natural spectral sequence

^WS(TB,Ht(L,E)) =>^(n(A,E) which gives the cohomology of A in terms of those of TB

and L. The construction follows closely the construction of the spectral sequence

of an extension of Lie algebras, due to Hochschild and Serre (1953), and is at the

same time a generalization of the Leray-Serre spectral sequence of a principal

bundle in de Rham cohomology as constructed by, for example, Greub et al (197 6).

The construction of this spectral sequence was originally motivated by a

problem in groupoid cohomology. In Mackenzie (1978) a cohomology for locally

trivial groupoids is constructed. This cohomology has the characteristic property

that it classifies only those extensions E -»—• ft1 —••»• ft which admit a global

transversal ft •»• ft1 , and on this account it is called rigid; it is nonetheless what

is generally known as a continuous cohomology theory. Such extensions are

determined by their restriction to the vertex groups and it is shown that the rigid

cohomology is in fact naturally isomorphic in all degrees to the continuous

cohomology of any vertex group.

For the case of coefficients in vector bundles, this construction actually

suffices (op.cit., Theorem 4). For coefficients in general group bundles, however,

more general extensions exist and one desires a cohomology which will classify all

extensions which are, in a suitable sense, locally trivial. (We will detail

elsewhere why this is an interesting question.)

In approaching a general cohomology theory for locally trivial groupoids,

one expects that a vertex group extension will correspond to a plurality of groupoid

extensions; one must also consider the possibility that not all vertex group

extensions will lift to a groupoid extension. One also expects that certain

groupoid extensions will arise from the cohomological structure of the base

manifold. This section addresses the corresponding questions in the theory of

transitive Lie algebroids, as a first-order approximation and guide to the situation
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for locally trivial groupoids. Thus we study the images and kernels of the

restriction and inflation maps: given an extension of transitive Lie algebroids

E +--• A1 ~»••• A, its restriction is the induced extension of the adjoint bundles,

E +-+ Lf —•*• L; the inflation map constructs certain extensions E ••—• A1 -—•->• A from

transitive Lie algebroids on B with adjoint bundle E . The images and kernels of

these maps have natural expressions in terms of the spectral sequence.

The question of the image of the restriction map is an infinitesimal version

of a previously studied question (for example, Greub and Petry (1978), Haefliger

(1956)): when can a principal bundle P(B,G) be lifted to a group H given as the

domain of a surjective morphism H -•••• G? In groupoid terms this is the problem of

lifting a vertex group extension K +-+ H —••»• G, to a groupoid extension. In 5.15 we

obtain one simple criterion for the lifting to be always possible on the Lie

algebroid level. This technique will be developed elsewhere.

A second major reason for the study of this spectral sequence is that it

provides an abstraction and algebraization of the Leray-Serre spectral sequence of a

principal bundle in de Rham cohomology. Because the construction is algebraic, and

because coefficients in general vector bundles are permitted, it is possible to

apply techniques developed for the Lyndon-Hochschild-Serre spectral sequence for an

extension of discrete groups, or of Lie algebras, to the de Rham spectral sequence

of a principal bundle. In this section we give only a single and elementary

instance of this, 5.10. In a future paper we will take this process further.

The results of this section are from Mackenzie (1979); in a few cases the

statement of results has been sharpened.

Definition 5.1. Let A and A1 be Lie algebroids on the same base B and let

p: A •> CDO(E) and p1 : A1 ••• CDO(E') be representations of A and A'. Then a change of

Lie algebroids from (A,p,E) to (A'.p^E1) is a pair (<M) where <f>: A -»• A1 is a

morphism of Lie algebroids over B and ip: E? *• E is a morphism of vector bundles over

B, such that

K p ' U W X u 1 ) ) = p(X)(<Kli'))

for u1 e E1, X e A. //

A change of Lie algebroids induces a morphism of cochain complexes

(•,*)*: Cn(A',E') + Cn(A,E) f h+ *«f 'o <|>n
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and hence morphisms (<|>,i|;)*: # n ( A f ,Ef ) ->-#n(A,E). If A and Af are transitive,

then (<j> 9ty) is also a change of Lie algebroids and induces morphisms

(4>+,i|0*: Hn(Lf ,Ef) + Hn(L,E). If E = E' and ip = id we write <f> , <J>* for

# , (•>id)*.

r o i d L +-•»• A -•*•»•Associated with a given transitive Lie algebroid L +-•»• A -•*•»• TB and

representation p: A •• CDO(E) there are two natural changes,

(j,id_): (L,p+,E) -• (A,p,E) and (q,£): (A,p,E) -• (TB,p,EL). Here p is the
L

representation of TB on E induced by p (see 1.17). These induce maps

j*:^n(A,p,E) - rHn(L,p+,E) and q* = (q,s)*: #n(TB,p,EL) -^"(A.p.E)

which, following MacLane (1963), we call the restriction and inflation maps

of (A,p,E). Note that j**q* = 0. Our chief concern is with the kernels and

cokernels of these maps.

For n = 2 the restriction and inflation maps have natural definitions in

terms_ of extensions. Given a p-operator extension E ••—• A1 —••• A, the extension

E +—> Lf —•••»• L is a p -operator extension of L by E and for any transversal

X: A •*• A1 with cocycle R , the map x • L -*• Lf is a transversal of IT and has cocycle
# - + ^

j (R ). (Note that x is defined by virtue of q'ox = q.) It is easy to see that
this defines a map^pext(A,p,E) •• F0pext(L,p ,E) which represents j* modulo 2,13.

We call

diagram

We call E •»•—•> Lf —-»-•• L the restriction of E +-•*• A' -••-»• A. There is a commutative

q'

Similarly the inflation map q* can be realized in terms of

0pext(TB,p,E ) •• ©pext(A,p,E). Given an extension E ->—• J —••• TB, construct the

pullback extension (2.16)
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TB

and then the pushout (2.14)

or the steps may be interchanged. We call E •>—• J —•+ A the inflation of the

transitive Lie algebroid E ••—»• J —••• TB. It is easy to see directly that the

restriction of the inflation E •*—*- J -•*••*• A is semi-direct; in this sense the

extension E •>—• J —••• A has no algebraic component to its curvature and we will

therefore also call it a geometric extension of A by E. An extension

E ••—• A1 -++ A whose restriction is semi-direct will be called a restriction semi-

direct, or RSD, extension. Not all RSD extensions are geometric; see 5.14 below.

The quotient space ^m ^ is given by the term E ' of the spectral sequence.

For the image of j* there is first of all the following result.

Proposition 5.2. j*:^n(A,p,E) •• rHn(L,p+,E) takes values in (THn(L, p+,E) ) A ,

where A acts on Hn(L,E) via the Lie derivative 6 of 2.5.

Proof: Observe that j o 0 = 0 ©j : rcn(A,E) •• TCn(L,E) for X e TA. Here the 0V on
————— XX X

the left is defined in 2.2 and that on the right is the action of A on C (L,E)

defined in 2.4. It follows that for f e ^ n ( A , E ) ,

ex(j
#(f)) = j#Ox(f))

j (d«ix(f)) + 0 by 2.3(v)

and so 6x(j*[f]) = [0].
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For n = 2 the action G can be transported to an action of A on the vector

bundle Opext(L,p ,E) via 2.13. Since 0 = 0 (by 2.6) the equation

8X(E ••—• L
1 —••• L) = 0 may be interpreted as signifying that the Lie algebra

extension E •*—+ L1 —*-+ L , as a function of x e B, has zero derivatives in all
x x x

directions q(X) e FTB. Thus 5.2 implies that a necessary condition for an

extension E -•-+ L1 —••• L of the adjoint bundle L to be the restriction of an

extension of A is that the Lie algebra extensions E ••—* L1 —••• L be constant with
& x x x

respect to x, where constancy is taken to refer to 0. As in 1.13, this constancy is

an abstraction of equivariance with respect to actions of adjoint type. See also

III 7.30.
2 A

There are two further conditions necessary on an element of (FH (L,E))

before it can be guaranteed to lie in the image of j*. These are most naturally

formulated in terms of the spectral sequence, to which we now turn.

Our references for spectral sequences are Cartan and Eilenberg (1956),

MacLane (197 5) and Greub et al (1976). We deal with the spectral sequence of

a canonically bounded descending filtration; thus F C 2 F C , F C = C and

F C = (0). We use an explicit approach; thus E ' = Z ' /B * where

Z^' = {f e CS+t | df e F s + rC s + t + 1 }, B ^ = dZ^
+ 1' t + r' 2 I Z^}''"1 for

r > 1, and B ' = F C . The isomorphism E ' •• H ' (E ' ) induced by the

inclusion Z ' £ Z ' is denoted a * . Such a spectral sequence is strongly

convergent (Cartan and Eilenberg (1956, XV.4)); the filtration

FSHn(C*) = im(Hn(FSC*) -• Hn(C*)) is also canonically bounded and the

isomorphism ES> = —ri—-rrr— is, on the cochain level, the identity map.

F8 HS (C*)

Here E®>t: = Z ^ ' V B ® ^ where Z®'* = {f e FsCs+ t | df = 0} and

B ^ = (FSCS+tO dC^-S + Z^1'*"1.

Note that ES> = ES* = E^' for r > max{s,t + 1 } . The edge morphisms are

denoted by eR: E ^
0 -+> E ^ C HS(C*) and ep: ^(C*) -••»• E°

>t: >--̂  E ^ . The

transgression relation E* /N^ E2 ' is denoted tg . For n = 1 it is a well- and

fully-defined map, namely do' . If E ' = (0) = E ' then d ' is an isomorphism

z n+Z n+Z n+l
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, , . n+1,0 n+1,0 0,n 0,n
and the composite Eo —•"• E , —• E , +-+ E_ may be considered a Cartan

n n n

map K with tg as inverse relation.

Let L *•-•• A -5> TB be a transitive Lie algebroid and let p: A + CDO(E) be a

representation of A,

We will filter the cochain complex FC*(A,E); to cut down on notation,

denote rcn(A,E) by Tn(A,E). Define FSrn(A,E) - {f e Tn(A,E) | f(Xj Xfl) = 0

whenever (n - s + 1) or more of the X are in ker q}. Then FSTn(A,E)2

FS+1rn(A,E), F°rn(A,E) - rn(A,E), Fn+1rn(A,E) = (0) and, by convention,

F F (A,E) = (0) for s > n + 1. This is the standard filtration on an exact sequence

of Lie algebras (see Hochschild and Serre (1953)) and is also of the same type as

the filtration associated with alj -DGA (Greub et al (1976, 9.1)).

Define a
8 > t : FSrS+t(A,E) -• rS(TB,Ct(L,E)) by

aS>t(f)(X1,...,X )(V.,...,V.) - f(jV.,...,jV JX.,...,YX )
1 S I u 1 t l S

for any connection y: TB + A. It is easy to see that a * is independent of the

choice of y and has kernel F T (A,E). It is also surjective; to see this,

define

eS > t: TS(TB,Ct(L,E)) - FSrS+t(A,E)

by

eS»t(f)(X1,...,Xs+t) - ^

where co: A + L is any back-connection and the summation is over all permutations of

{l,...,s + t}. It is straightforward to verify that aS>t(eS>t(f)) = f.

Therefore, a ' quotients to an isomorphism a ' : E ' • T (TB,C (L,E)).

Proposition 5.3.

s,t
s,t dO

Eo
s,t s,t+l

rS(TB,Ct+1(L(E))

commutes.
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Proof: Take f e Z*ft = FSrS+t(A,E). We have to show that a
S't+1(df)(X.,...,X )

g ^ l S
is equal to d(a * (f)(X1,...,X )), for all X ,...,X e TTB.

Take V1,...,Vt+1 e FL. Expanding out aS't+ (df) ( X p ... ,Xg) (V^ ... ,Vt+1) ,

we get

I 1 + 1 + . r . , v t + 1 , Y X 1 , . . . , y X s )

I (-Di+]f([v.,v.],v,...,v jx ...jx)
j<t+1 3

+ I (-l)i+tp(YXi)f(V1,...,Vt+1,YX1,..\,YXs)

+ l<l<j<s ( " U f ( l i X i ^ l f V l V t + 1 ^ ^

t+1 s

Here each term in each of the last three summations vanishes, for each terra has (t + 1)

arguments in FL and f e F F (A,E). The first two terms can be rewritten as

t+1
I (-1) P+(Vi)(a

S)t(f)(X1,...,Xs)(V1,...,Vt+1))

Ki<j<t+1 l s i j 1 t+1

and are therefore equal to d(a ' (f)(X ,...,X ))(V ,... ,V . ) , as required. //

In the case of Lie algebras, Hochschild and Serre (1953) have an elegant

device by which to simplify this proof, but it cannot be properly formulated in the

case of transitive Lie algebroids.

s t s t * *
Identifying E.' with H * CEn' »̂ w e n o w ^ a v e isomorphisms
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1 * 1 > » •

Following through the identifcations, if f e Z.' represents a chosen element

of E ' , then f is in F T (A,E) and a * (f) e T (TB,C (L,E)) takes values in

TZt(L,E); the cohomology class [aS jt (f) (X ,... ,X )] e rH^L.E) is

Proposition 5.4.

-8+l,t
El

a ; . t | a

rS+1(TB,Ht(L,E))

commutes.

Proof: Similar to the proof of 5.3. //

Thus a * induces isomorphisms E ' + **̂  (TB,H (L,E)). Given

f e Z ^ S FSrS+t(A,E) representing [f] e E®'*, the class a®**([f]) is represented

by the cocycle which to (X ,... ,X ) assigns the cohomology class in TH (L,E)

represented by a S > t(f)^,...,X g).

Theorem 5.5. For a transitive Lie algebroid L ••--• A -++ TB and representation

p: A •• CDO(E), there is a natural convergent spectral sequence

CH S(TB,Ht(L,E)) =>^n(A,E).

Proof: Only the naturality remains to be described. If

(<f>,ip): (A,p,E) -»• (A',p',Ef) is a change of transitive Lie algebroids, then

($,i|/) : r*(A',E!) ->• T*(A,E) preserves the filtrations and so induces a morphism of
* * * *

spectral sequences E^' (A',E!) •• E^' (A,E). Also, there is a change of Lie

algebroids (id ,((f) ,i|0*) from TB -• CDO(H*(L,E)) to TB -> CDO(H*(Lf ,E')). It is now

straightforward to show that the induced morphisms ̂ S(TB,Ht(Ll ,E') ) ->• ̂ S(TB,Ht(L,E) )

commute with the morphisms of the spectral sequences, and similarly on the E^ level.
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Remark. If K •»•—• A1 —••• A is an exact sequence of arbitrary Lie algebroids, then

there is a similar spectral sequence C^S(A,Ht(K,E)) =>p^n(A',E) for any

representation of A1 on a vector bundle E.

Proposition 5.6.

and

•> (rHn(L,E))A

~T 0,n

E2

Proof: Take [f] e En>° with f e Z*'0. Then f e FnTn(A,E) and

df e Fn+2rn+1(A,E) = (0). So f e £n(A,E) and [f] e 5Mn(A,E) is ^([f]). On the

other hand, a^'° °

q (a11* (f))(X1,... ,Xn)

YqX = X - jo)X and f e F T (A,E) vanishes whenever n - n + 1 or more arguments are in

j(L), it follows that q#(an>°(f)) = f.

5 ^
is represented by a

n > °(f), which lies in #n(TB,EL). Now

... ,YqXn) for X̂ , e TA, and since

The second half is proved similarly. Note that 2*1 (TB ,Hn(L,E))

(rHn(L,E))TB and this is equal to (FHn(L,E))A by 2.6. //

We can now express the images and kernels of q* and j* in terms of the

spectral sequence. The image of q* is E M ' = F Jl, (A,E) and this, for n = 2,

characterizes the geometric extensions of A by E. Similarly the kernel of j*

is F Jd (A,E), so the RSD extensions of A by E are precisely those in

F yl (A,E). Of course F Vi (A,E) "2 F JfL (A,E) and the quotient, which represents

the failure of RSD extensions to be geometric, is isomorphic to E ' .
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Lastly, the image of j* is isomorphic to E j and so E^' represents those

extensions of L which can be lifted to extensions of A.

For n = 2 these E^ spaces reduce: E^' = E3' , Ej = E3 * , and

E«' 2 - E 4 > 2 - I n turn> E 3 > 0 i s t h e cokernel of d^'1: E° j l - E2'°, while E*'1 is the

kernel of d*'1: E* E°'20 and E°'2 is the kernel of d3'
2: E° > 2 •• E ^ 0 . Thus'2: E° > 2

is the kernel of d 3 : E

these spaces are all accessible in terms of d and d .

The situation is summarized in the following diagram.

Geometric extensions
RSD

extensions

We now calculate d ' , r > 0, when the action of L on E is trivial. For

this we need the concept of pairing of spectral sequences. We summarize briefly the

details.

Let A be an arbitrary Lie algebroid and let p , p , p be representations of

A on vector bundles M, N, P. Then M and N are paired to P if there is a bilinear

vector bundle map M * N •*• P, denoted/v , such that

(1) P P(X)(M A V) = p
M(X)(y)Av + yAp

N(X)(v)

for all X e TA, y e TM, v e TN.

If M and N are paired to P and K is an ideal of A, then there is an induced

pairing
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Cm(K,M) • Cn(K,N)

defined by

(2) (fAg)(Xl,...,Xm+n) = ^ - I V

where the sum is over all permutations on {l,...,m + n}. Here the representation of

A on Cm(K,M) is by the Lie derivative 2.2 - if A is transitive then K, being an

ideal, must be a sub bundle of the adjoint bundle L of A and so, by 2.3(iii),

8: A •• CDO(Cm(K,M)) is indeed a representation of A.

As for differential forms, we have

(3) d(fAg) = dfAg + (-l)
mfAdg,

where f e TC (K,M), g e TC (K,N). There is therefore an induced pairing

Hm(K,M) « Hn(K,N) -> Hm+n(K,P),

still denoted byA .

Now consider a transitive Lie algebroid L •»—• A —••• TB. Applying the above,

re pairings C

There is also a map

there are pairings Cm(L,M) « Cn(L,N) •> Cm+n(L,P) and Hm(L,M) * Hn(L,N) •• HnH"n(L,P).

Cm(A,M) • Cn(A,N) > C ^ U . P ) ,

defined as in (2), which is bilinear and satisfies (3). Here the vector bundles do

not (generally) admit representations of A and (1) has no meaning. We will call this

map the formal pairing induced by the pairing M • N -• P.

In particular there is a formal pairing

CS(TB,Hm(L,M)) • CS'(TB,Hn(L,N)) - CS+S'(TB,Hm+n(L,E))

and, applying a form of (3), there is a bilinear map

' (TB,Hm+n(L,E) ).

Proposition 5.7. Let L -•—• A -++ TB be a transitive Lie algebroid, and
M N P

let p , p , p be representations of A on vector bundles M, N, P. Let E(M), E(N),
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E(P) denote the corresponding spectral sequences. Then

Fsrm(A,M)AF
s'rn(A>N)SF

s+s'rin+n(A)p)

and

s,t . s' ,t' s+s',t+t' , .
E2' (M) x E 2 ' (N) • E 2 * (P)

^"(TB.H'a.M)) «^''(IBlH
t'(l1l)) ^ ^ • # S + S ( TB> + t (L,P) )

st'
commutes, where the bottom row is the map described above multiplied by (-1)

Proof: Exactly follows Hochschild and Serre (1953); one proves the corresponding

result at the E~ level and then follows through the formation of the homologies.

We also need two elementary observations. Fix a transitive Lie algebroid

L •»•—• A —••• TB and a representation p: A + CDO(E).

Lemma 5.8. Let L •»—• A -•••»• TB be the quotient Lie algebroid

A , = A/[L,L] (see 1.1 and 1.11), and letfc : A •• A t denote the natural
ab ' ab

projection. Then each connection y: TB + A maps to a connection h°y in A
+ - 2 / ab

whose curvature R, = a o R belongs to ̂  (TB,L ) and which represents the

cohomology class of L ••--• A —••• TB.
ab ab

Proof: Immediate from 2.13. //

Denote the class of L , •»—•• A . —••• TB in %l (TB ,L v) by R , .
ab ab ab ab

Lemma 5.9. Let L be any totally intransitive Lie algebroid and let E be a vector

bundle on the same base. Then, with respect to the zero representation of L on E,

H^L.E) = C(L , ,E).
aD

Proof: The coboundary d: C (L,E) -• C (L,E) is zero and the next coboundary,

d: C (L,E) -• C (L,E) is df(X,Y) = -f([X,Y]). From the first formula it follows

that H (L,E) = Z (L,E) and from the second it follows that TZ (L,E) consists of
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those maps TL -• TE which vanish on T[L,L] = [TL,rL]. Hence the result. //

Theorem 5.10. Let L •*-+ A —•-• TB be a transitive Lie algebroid and p a

representation of A on a vector bundle E for which E = E. Then the map

corresponding to d ' is given by

~L/2
where R e Ji (TB,L , ) is the class characterizing L , ••—• A , —••> TB and the

ab ' ab ^ ab ab

pairing is that induced by H (L,E) * L/[L,L] + E via 5.9.

Remark: The condition E = E forces E to be flat.

Proof: Let f e ̂ n(TB,Z1(L,E)) represent F. Then {o^yl) (F) is represented by

en>1(f) e Tn+1(A,E), where

n n+1

Therefore (a^+2>o d2>1o(a2>1) )(F) is represented by an+2>°(d(en'*(f))), and this

reduces to

I (-i)i+j((-i)nf(x.,...,x , 9)(<4YX.,YX.]))
... 1 n+l 1 j

since all other terms in d(e * (f) )(YX. ,... ,yX ) involve OJ<»Y, and woy
_ l n+z

Now u)[yX. ,yX.] = -R (X, ,X.) so, recalling the definition of the pairing
I i J Y i J

H (L,E) • L , •• E, the sum

(-if I (-l)1+J + 1f(X.,.\.\x .9)(Rv(X.,X,))

is seen to be the (value at (X.,...^ n) of the) cocycle representing
1 n+z

(-I)VR ,. //
A ab

0.

This result is a direct analogue of Theorem 8 of Hochschild and Serre (1953)

for extensions of Lie algebras. It decomposes d* into the pairing - which

concerns only the adjoint bundle L and the coefficient bundle E and may be regarded
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as a purely algebraic matter - and the class R , which is a topological
ab

invariant. Thus we have the following corollaries.

ary 5.11. (i) If

0 for all n > 0.

Corollary 5.11. (i) If L = [L,L] , for example if L is semisimple, then

d*'

(ii) If the abelianized Lie algebroid L , ••--• A t --•+ TB is flat,
n 1 ab ab

then d ' = 0 for all n > 0. //

The sequence of terms of low degree is (without any assumption on the

coefficients)

The transgression here is simply d ' and so if either of the conditions of 5.11 is

satisfied, it follows that ̂ H (TB,E) is injected into VA (A,E) and the space of

geometric extensions of A by E may be identified with ̂  (TB,E).

In the general case, the map (TH (L,E)) + 0pext(TB,E) can be interpreted

as assigning to suitable f e TZ (L,E) the pushout of L •>—• A —••• TB over

f: L -• E . These pushouts are those extensions E -»—• J -•»••> TB which, when

inflated, give the semidirect extension of A by E.

Corollary 5.12. If E = E and either condition of 5.11 is satisfied, then the space

of geometric extensions of A by E is isomorphic to ${• (TB,E). //

Corollary 5.13. If E = E and either condition of 5.11 is satisfied, then the space

of RSD extensions, modulo the space of geometric extensions, is isomorphic

to ^(TB.H^L.E)) - ̂ ( T B . C ^ L ^ . E ) ) . //

In general d * maps 2& (TB,H (L,E)) into %l (TB,EL); if the element of
"\ T

*)fl (TB,E ) is zero, then there is an extension of TB by E whose inflation is the

given RSD extension. This phenomenon may thus be considered a species of

obstruction theory.

The following example illustrates the circumstances in which E~' ^ 0.

Example 5.14. Let Q be a reductive Lie algebra with a one-dimensional centre,
[ 3 1

for example q|(n,R). Let B be a manifold with H, ̂ ( B ) = 0 and H, ̂ ( B ) ^ 0.
fl deRh deRh

Let A be a transitive Lie algebroid on B with adjoint bundle L = B xfl and let

1 1 ~
p: A + CDO(B x R) be the trivial representation q. Then E* =
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0 and

It is interesting that the Lie algebroids of the examples of Milnor (1958)

with g > 0 are instances. //

Concerning general criteria for an extension of the adjoint bundle L to lift

to an extension of A, we can at present only say that in addition to the condition
2 A

that E ••—• L1 —••• L lie in (FH (L,E)) , there are the two consecutive conditions

that d«' and d ' map the extension to the zero extension.

Proposition 5.15. Let L ->—• A —••* TB be an arbitrary transitive Lie algebroid and

let p be any representation of A on E. Then if JK (TB,H (L,E)) = 0 and

% (TB,EL) = 0, every extension of L by E which lies in (FH (L,E))A lifts to an

extension of A by E.

0 2
Proof: The space of such extensions has been identified with E, * and this is

isomorphic to the kernel of d ' : E ' + E ' . In turn, E ' is a quotient of

E ' and so is zero, and E * is the kernel of d ' : E2' -• E * . Now

2 1 0 2 ~ 0 2 ~ 2 A
E ' = 0 also, by hypothesis, so we finally have E * = E* = (FH (L,E)) .

The conditions of 5.15 are fulfilled if B is simply-connected and
2 3

H, , (B) = H, „, (B) = 0, or if B is simply-connected, L is semisimple and
deRh deRh * v J '

H, DV,(B) = 0. In particular, we have the following result.
deRn

Corollary 5.16. Let L •*•—*• A ~••• TB be a transitive Lie algebroid on a simply-

connected base B for which H, _, (B) = 0 and for which either H, nu(B) = 0 or L is
deRh deRh

semisimple. Let p be a representation of A on a vector bundle E. Then if

V •—*" Jj f "•*•"*" fl ̂"s a n °P e r a t o r extension of the fibre type of L by the fibre type of

E, there is an operator extension E ••--• A' —•-• A whose restriction E •»—• L1 —>-> L

has fibre type V -•—••' —••• D .

2 A ~
Proof: Notice that, because B is simply-connected, we have (FH (L,E)) =

H2(D,V)9 = H2(Q,V) by 1.19 and 2.6. //
v u

For the case where IT B £ 0, the comments in III 7.30 apply.
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Concerning the multiplicity of lifts possible for a given E •»—• L1 —••• L,

this is measured by ker j , which can in principle be constructed from

Eo* and Eo' ; when E = E and one of the condtions of 5.11 is satisfied, we have
2 0 11

seen that these spaces reduce to E * and E J •

These techniques will be developed further elsewhere.

For the Lie algebroid of a Lie groupoid, this spectral sequence is closely

related to the Leray-Serre spectral sequence in de Rham cohomology of the associated

principal bundle.

Let ft be a Lie groupoid on B, and let p: ft •• n(E) be a representation

of ft on a vector bundle E. Choose b e B and write P = ft, , G = ft, , V = E, .

There is a natural action of ft on H*(Lft,E). Each £ e ft induces a change of

Lie algebras (as in 5.1) (Ad£~ ,p(£)) from (pg?)*: L ^ L r * E n d ( E s P t o

fp ÎJ.*. Lft! _ + End(E „). (See III 4.15 for the necessary formula.) Hence £
Olcj * ' (Xc; CLc,

induces an isomorphism (Ad^"1,p(O)*: H*(Lft,E) -• H*(Lft,E)g , and it is routine to

verify that this defines a smooth action. In particular, G acts on H*(D,V) and it

follows from II 4.9 that H*(Lft,

Note that this bundle is flat.

follows from II 4.9 that H*(Lft,E) is equivariantly isomorphic to p x H*(fl ?v)

In A 4.13 it is shown that the cochain complex TC*(Aft,E) is naturally

isomorphic to the G-equivariant de Rham complex A*(P,V) and it follows (2.7)

that ̂ *(Aft,p^,E) = H, (P,V) . The following result is now immediate.

Theorem 5.17. Let P(B,G) be a principal bundle and let G act on a vector space V.

Then there is a natural convergent spectral sequence

If B is simply-connected then the E term simplifies to

H ! m,(B>Ht(R»v)) = H ! nu(B) • 1^0? ,V). If in addition G is compact then
d eRn pU d eRn ^ **, *•

H J ^u(p,v> = H5 m.(P»V) and H (0,V) = H, „. (G) • V and we obtain the standard
deRh deRh u deRh

Leray-Serre spectral sequence in de Rham cohomology.
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For the Leray-Serre spectral sequence of a principal bundle with compact

group, there is an extensive and deep theory (see Greub et al (197 6)). It seems

reasonable to expect that for general groups, the equivariant spectral sequence 5.17

will admit generalizations of the structure theorems already established in the case

of compact groups.

The most fundamental result one wishes to prove is that the spectral

sequence collapses from E2 on when A. admits a flat connection. For the Leray-Serre

spectral sequence of a principal bundle with compact group, or of a 0-DGA with D

reductive, this is a deep result (Greub et al (1976, 3.17)). It depends strongly on

the fact that when Q is reductive the primitive elements in H*(fl ) are precisely the

universally transgressive ones and that, using the Weil homomorphism, the problem

can be reduced to showing that the transgressions are zero. The Weil homomorphism

for a transitive Lie algebroid has been set up by N. Teleman (197 2) but it remains

to be seen if it is worthwhile to rewrite more of the theory ofQ -DGA1s in terms of

transitive Lie algebroids.

We close this section with some brief comments on cases in which the Lie

algebroid spectral sequence collapses to a Gysin sequence. Let L ->—• A -•»••»• TB be an

arbitrary transitive Lie algebroid and let p be any representation of A on a vector

bundle E.

Assume firstly that H (L,E) = 0 for n > 2. Then the sequence of terms of

low degree can be continued

#1(TB,H1(L>E))

n-1,1

• Jl (TB,E ) • ••• .

This is essentially Theorem 7 of Hochschild and Serre (1953). When E = E,

5.10 applies and the identification of d^' with (-l)n-AR shows that R , may
L n at) at)

- in this case - be regarded as a generalization of the Euler class of a circle

bundle: Suppose that E = E = B * R with p the trivial representation, and also

assume that H (L, B x R) = B x R. By 5.9, this last assumption is equivalent
to L/[L,L] = B x R. Now R , epfl (TB, B x R) = H, DV,(B) and the pairing. ab deRn
H (L, B x R ) 4 > L b + B x R i s reduced to the multiplication R x R ->- R.
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Also, tg : (TH (L, B x R ) ) +'£1 (TB, B X R) becomes R -• H (B), t I-+ tR , and
1 1 deRn » E D

so R is the image under tg of a generator of (TH (L, B x R ) ) . It may thus be

considered to be the Euler class of L ••-•• A —••• TB (compare Greub et al (1973,

6.23)).

Secondly, assume that H (L,E) = 0 for n = 1,2. By the Whitehead lemmas for

Lie algebras^ this is the case for semisimple L. We then have

^ (TB,E ) = 'Jd (A,E), so that all extensions are geometric, and an exact sequence

#3(TB,EL) +3-+#
3(A,E) Ji* (rH3(L,E))A -£*-• ̂ 4(TB,EL) -3-+^

4(A,E).

If, in addition, H (L,E) = 0 for n > 4, then this sequence can be continued, and it

then includes the Gysin sequence for SU(2)-bundles.



CHAPTER V AN OBSTRUCTION TO THE 1NTEGRAB1LITY OF TRANSITIVE LIE ALGEBROIDS

For many years the major outstanding problem in the theory of differentiable

groupoids and Lie algebroids was to provide a full proof of a result announced by

Pradines (1968b), that every Lie algebroid is (isomorphic to) the Lie algebroid of a

differential groupoid. This problem was resolved recently in the most unexpected

manner by Almeida and Molino (1985) who announced the existence of transitive Lie

algebroids which are not the Lie algebroid of any Lie groupoid. (It is easily seen

(III 3.16) that a differential groupoid on a connected base whose Lie algebroid is

transitive must be a Lie groupoid.) The examples of Almeida and Molino (1985) arise

as infinitesimal invariants attached to transversally complete foliations, and

represent an entirely new insight into the subject.

We now construct a single cohomological invariant, attached to a transitive

Lie algebroid on a simply-connected base, which gives a necessary and sufficient

condition for integrability. The method is from Mackenzie (1980), which gave the

construction of the elements here denoted e^.^ and the fact that if the ê -̂ . lie in

a discrete subgroup of the centre of the Lie group involved, then the Lie algebroid

is integrable. (In particular, a semisimple Lie algebroid on a simply-connected

base is always integrable.) However in Mackenzie (1980) the author believed that

sufficient work would show that the e^.^ could always be quotiented out.

With the discovery of counterexamples to the general result by Almeida and

Molino (1985), it is easy to see that the e ^ ^ form a cocycle; it should be noted

that Almeida and Molino independently made this observation for the corresponding

elements in Mackenzie (1980). The method now yields a cohomological obstruction to

the problem of realizing a transitive Lie algebroid on a simply-connected base as

the Lie algebroid of a Lie groupoid.

A construction related to that given here was announced by Aragnol (1957).

This reference was pointed out by Professor Molino, after the completion of the work

recorded here.

The results of §1, taken together with those of those of IV§3, give

necessary and sufficient conditions for an LAB-valued 2-form to be the curvature of

a connection in a principal bundle, providing that the manifold on which the form is

defined is simply-connected. These results thus generalize - and reformulate - a
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classical result of Weil (1958) (see also Kostant (1970)) on the integrality of

Chern classes. The case of real-valued forms was also noted in Almeida and Molino

(1985).

§1. Results

Throughout this section, all base manifolds are connected. We call a Lie

algebroid A integrable if there is a differentiable groupoid ft such that Aft = A.

In III§5 we showed that the right derivatives A(s..) of a cocycle

{s..} for a Lie groupoid ft are transition forms for the Lie algebroid Aft of ft. Then

in IV§4 we showed that an abstract transitive Lie algebroid A on an arbitrary base B

admits a system of transition forms X..» Our problem now is the following: Given

an abstract transitive Lie algebroid A and a system of transition forms X.., is it

possible to integrate the x.. to functions s# # which obey the cocycle condition? If

this can be accomplished, then the resulting Lie groupoid will have A as its Lie

algebroid, by the classification theorem III 5.15.

Consider, therefore, a transitive Lie algebroid L •>—• A —•-• TB on an

arbitrary (connected) base B. Let D denote the fibre type of L, and let {U.} be a

simple open cover of B.

By IV§4, there are local flat connections 0.: TU. •• A and LAB charts
6. i i U.

*r u i x 3 * Lu such that V X
1 ( V V ) ) = V x ( v ) ) identically- Let xi. e A (ur,<p

and a. . : U. . •*• Aut(Q) be the resulting system of transition data. From IV§4 we have

(1) 6xtj + [Xij,Xij] = 0, whenever U £ 0,

(2) X., = X.. +a..(x., ), whenever U.., £ 0,
ik ij ij jk ijk

(3) A(a
i.)

 = ad°Xi., whenever U £ 0.

Let G be the connected and simply-connected Lie group with Lie algebra!].

From (1) and the simple-connectivity of U-jj , it follows that there are functions

s. . : U. . •• G such that A(s..) = X..; such functions are unique, up to right-

translation by constants. From equation (8) of B§2, it follows that
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ado Ms ±.) = adox^ = ACa^

where the first and last A refer to the group Aut(g)> and so, by the uniqueness

result just referred to, there are elements <J> . e Aut(Q) such that

(4) ,tj M A d o s ^ V ^ .

If the at. take values in Ad(G) = Int(g) < Aut(JJ), the equation A(Adosi#) = ACa^)

may be solved with respect to Ad(G), and it will be possible to take <j> = id in

(4). We now show that this can be done whenever B is simply-connected. The key is

the following general result, which is a refinement of IV 4.1.

Theorem 1.1. Let L •»—•• A —••* TB be a transitive Lie algebroid on an arbitrary

base B. Let ip: U •• Int(A), be a decomposing section of the Lie groupoid Int(A)

over a contractible open set U. Let i|> also denote the chart U x Q > L obtained

by regarding Int(A) as a reduction of II[L] . (Here £) = L .) Then there is a local

flat connection e: TU •• A . such that V = i|>.(V°).

Proof: The decomposing section \\>: U •• Int(A), induces, as in III§5, a local flat
b

connection K: TU •• ad(A) . By equation (8) of III§5, applied to ft = Int(A), the

induced chart

ad(q) •• ad(L)
U

maps v to V . Here Ad refers to the Lie groupoid Int(A): note that

Ad(iJOx: ad(g) + ad(Lx), for x e U, is T ( I ^ x ) ) l d : T(Int(g))ld + T(Int(Lx))id

and since I is linear, it is its own tangent and so
T \X )

for <J> e ad(q).

v
Choose any connection y in A; since the adjoint connection V and

are both in ad(A) we can write

(5) VY =

for some I e A (U,Q). Equation (5) shows that iK.(V ) and V cover the same coupling
Y1 oand so, by IV 3.19, there is a connection Y': TU •• A such that V = il> (V ). It

U *
remains to show that there is a flat such connection.
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Let A' be the semidirect extension TU * L , where V = VY = ^(V°). Now A'

^ ^and k^ both define elements ofgJpextCTU,^) and since ^(TI^ZI^) = H^eRh(U,j) = (0)

(by the contractibility of U, as in IV§4) it follows that A' and A are equivalent.

Thus there is an isomorphism <f>: A* + A such that

TU

commutes. Define 6: TU -»• k^ by 9(X) = <|>(X * 0 ) . Then 6 is a flat connection and

<|>(0 4> V (V))

So V = V = ^(V ), as required. //

It is interesting to note that the full force of the classification of

extensions by^t and ji, is used in this proof.

We can now make a fresh start. Assume that B is simply-connected. Given

any simple cover (u^) of B we obtain decomposing sections ^ r U^ "*" IntCA)]-, and, from

Theorem 1.1, local flat connections 6i with (^i)*(V°) = V *. Proceeding as before,

we now have a : U. •*• Int(A),. Since Int(A) is a-connected and B is simply-
ij ij b b

connected, it follows that Int(A) is connected. It is therefore equal to Int(n), and

so to Ad(G). Now the equation A(Ad«s ) = A(a .) may be solved with respect to the

group Ad(G) and we have * = Ad(gt ) for gi# e G. So, redefining s as s±±g±*>
 we

have

(6) •l j
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— 1 ~
Consider the map s s s : U •• G for a nonvoid U. . Using formulas (1) and (2)
in B§2 and the cocycle equation (2), we have

Since U , is connected, i t follows that s., s ^ s ^ is constant; denote its value

by e i j k . Clearly e i j k e ZG, for Ad(e.jk) = a . ^ J a . . - id . In fact, {e.jk} is a

Cech 2-cocycle. For if U £ 0, then

-1 -1 -1 -1 -1 -1 -1
ejkJleik£eij£eijk Uk£Sj £SjkKsikSi£Sk£Ksj JlSi£SikSjk; *

Interchanging the first two bracketed terms, this becomes

Now the second bracketed term is e e~ and is central, so we can interchange
ij £ ijk

s with it, and the expression then collapses to the identity.
jk

v 2 ~
Thus we have e = {e } e H (B,ZG). It remains to prove that e is well-

ijk
defined. This requires a little care. Let {T|>* : U. •»• Int(A),} be a second section-

i l b
atlas for Int(A) with respect to the same open cover. Write i|>' = i|> n where

b ~b ~
n i : Ui "*" Int^A^b = I n t ^ 3 ^ = AdCG)- L e t ̂ e p b e a s e c o n d family of local flat

connections, compatible with {i|>| }• Write 0' = 0 + ̂  o m . Then, repeating

equations (5) of IV§4, we have

(7a) 6mi + [m±>m±] = 0,

(7b)

(7c) X^ = ̂ { - n ^ + ̂  + a
ij°

m
j>»
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(7d) a ' j = n ^ a . . n j .

Since m i s a Maurer-Cartan form, we can integrate and get r , : IT. + G with

A(r ) = m . Then A(Ad«r ) = ad»A(r#) = adorn# = A(n.) so there ex is t s <j> e AdG

such that n# = (Ad»r )<J># • Writing <\> = Adg and redefining r# to be r . g . , we now

have

(8) n± = Adori.

Now, by using equations (1) and (2) of B§2, one easily sees that 7(c) is equivalent

to

so there are elements c. . e G such that

Applying Ad to this equation, we find that c.. £ ZG. It is now straight-forward to

verify that

ijk ijkv jk ik iy

and so {ej^} and {ei#k} represent the same element of fi (B,ZG). It is also

straightforward to show that this element is well-defined with respect to the

x. 2 ~
inductive limit. There is thus a well-defined element e e H (B,ZG), independent of

the choice of section-atlas for Int(A), We call e the integrability obstruction of

A on account of the following theorem.

Theorem 1,2. Let L ->—• A —•"• TB be a transitive Lie algebroid on a simply-connected

base B. Then there is a Lie groupoid £1 such that Aft = A iff e lies in H (B,D) for

some discrete subgroup D of ZG.

Proof: (=>) This requires some work. First note that ft may be assumed to

be ct-connected, and it then follows that Ad(ft) = Int(Aft). Choose b e B and denote

ft by G; since B is simply-connected and ft is ot-connected, G is connected. Let G

denote the simply-connected covering group.

Choose an atlas {o^: U^ -»• ft^} for ft. Then {i^ = Ada^} is an atlas for

Ad(ft) = Int(Aft). Let 8i denote the local morphism Ui * Ui -• ftyT defined in III§5.

Then, by (8) of III§5, (8^)* is compatible with \\>^, and so we can use {^^,(8^)^} to
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define e. Write x.. = A(s..) where s..: U.. •• G. Note that the s.. are the would-

be cocycles found from Aft, whereas s # # are the actual cocycles for ft. Now

A(pos ) = X. . = A(s..), where p: G -• G is the covering projection.

So pas;. = si.wi# for some element w.. e G. Now, applying Ad to this and noting

that Ad°s.. = a., and Adopos.. = Ados' = a (equation (6) of the construction), we

find that w^. e ZG. Now the covering projection p maps ZG onto ZG, by general Lie

group considerations, and so we can write w.. = p(w..) where w.. e ZG. Now redefine

s.. to be s..w.. and we have

(Note that this redefinition does not affect condition (6), since w.. is central.)

Now

P(eljk)

SjkSikSij

1 e G

so e takes its values in the discrete subgroup ker(p) of ZG.

(<=) Assume that e e H (B,D) for a discrete subgroup D of ZG. Define G = G/D

and let p be the covering projection. Let s..: U.. •> G be the system of maps which

define a representative (e } for which e £ D. Define s = pos . Then

{s..: U.. + G} satisfies the cocycle condition s s.,s = 1 e G; let ft be
lj lj jK. ik ij

the resulting Lie groupoid. The Lie algebroid Aft has transition forms

A(s ) = p*° A(s ) = A(s,.) and so, by 111 5.15, is isomorphic to A. //

In particular, if the centre of P is trivial, then ZG itself is discrete:

Corollary 1.3. Let L •»—• A —••• TB be a transitive Lie algebroid on a simply-

connected base B, with semisimple adjoint bundle L. Then A is integrable. //

For the construction of nonintegrable transitive Lie algebroids from

transversely complete foliations, see Almeida and Molino (1985).

Weil (1958) (see also Kostant (1970)) proves that a closed, real-valued 2-

form on an arbitrary manifold is the curvature of a connection in a C*-bundle

(where C* is the group of nonzero complex numbers) iff the 2-form is integral. His
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proof is largely an application of the isomorphism between de Rham and Cech

cohomology. Our construction of e and proof of Theorem 1,2 is in certain respects a

generalization of Weil's proof; however our proof does not use, even implicitly, a

global connection in the Lie algebroid. The differences between the two proofs

merit exploration.

Putting Theorem 1.2 together with IV 3.21, we obtain

Theorem 1.4. Let B be a simply-connected manifold, and let L be an LAB on B. Let R

be an L^valued 2-form on B. Then R is the curvature of a connection in a principal

bundle P(B,G) with P *? = L iff

(1) there exists a Lie connection V in L such that R = adoR and V(R) = 0;

and

v 2 ~
(2) the integrability obstruction e e H (B,ZG) defined by the transitive Lie

/2
algebroid corresponding to V and R, lies in H (B,D) for some discrete subgroup D

of ZG. //

If L is abelian (and B is simply-connected), then V must be flat, L must be

trivializable, and there is a trivialization B x V = L which maps the standard flat

connection in B * V to V (see III 5.20). Thus in this case, the Lie algebroid is

determined uniquely by the closed 2-form R (IV 2.13) and the connections in that Lie

algebroid with curvature R are determined by^H^TB, B x v) = H* _. (B,V) = 0
deRn

(IV 2.17). There is therefore a uniquely determined Lie algebroid with a connection

having curvature R and, when the Lie algebroid is integrable, there is a unique

principal bundle up to local isomorphism. This includes a result of Kostant (1970).

If L is not abelian, or if B is not simply-connected, then uniqueness in

this strong sense fails. The appropriate results can be obtained by following back

through the results of IV§3.

There are two differences between Weil's result and the specialization of

Theorem 1.4 to L = B x R. Firstly, we allow R to be closed with respect to any flat

connection in B x R; if B is not simply-connected, this is a genuine

generalization. Secondly, we do not insist that [R] e H. (B,R) = fi (B,R) be
d eRn

integral, but allow it to take values in any discrete subgroup ocZ, a e R, of R.

v2 ~
This is explained by the fact that e e H (B,ZG) is not an isomorphism

invariant of a transitive Lie algebroid, but only an invariant up to equivalence.

(Compare the classification of principal bundles P(B,G) by 8 (B,G).) Let
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A -̂ •> TB be an abelian transitive Lie algebroid and let a be a nonzero real

number. Define <j>: L -• L by <|>(V) = aV. Then <j> is an isomorphism of LAB's and

L +j££+ A -&•• TBis a second Lie algebroid, isomorphic to L -J-+ A -9-»- TB under

id: A •• A,

L > 1 > A -—» TB

TB

If y is a connection TB •• A and R is its curvature form with respect to the first

Lie algebroid, then its curvature form with respect to the second is — R. Clearly

one Lie algebroid is integrable iff the other is so. If e is the integrability

obstruction of the first Lie algebroid, then - e is the integrability obstruction of

the other. The fact is that integrability is a notion invariant under isomorphism

whereas the integrability obstruction is an invariant only up to equivalence.

Note that once a transitive Lie algebroid is known to be integrable, it has

a natural adjoint bundle, arising from its presentation as Lft -•—• Aft —*•->• TB or as
P x •* TP
—--"- •»•—• -— —•-• TB, and the curvature of any connection y: TB -• A is then well-

defined. However, for an abstract transitive Lie algebroid L •»-•»• A —•-• TB, the

curvature of a connection y: TB •• A depends not merely on A -+-• TB but on the choice

of L.

This nuisance could be avoided by rephrasing the question as follows:

Given L ••—• A —••> TB and a connected Lie group G with Lie algebra the fibre type of

L, is there a principal bundle P(B,G) with Atiyah sequence A? The answer would then

be: Iff the class e. e $ (B,ZG), defined with respect to G rather than G, vanishes.
G

Work on the question of the representation of 2-forras as the curvature of

general, non Riemannian connections has also been done by Jacobowitz (1978) and

Tsarev (1983). I am grateful to Iain Aitchison for the reference to Tsarev's work.

The integrability obstruction is essentially a feature of the cohomology of

Lie groupoids. If M is a Lie group bundle on B, one may ask whether there is a Lie

groupoid M •*-*• Q —•-• B x B with respect to a certain notion of coupling of B x B

with M. This question is resolved by an intrinsically defined version

of e e 1T(B,ZG) (where G is the fibre type of M) in the same way as the obstruction

class of IV§3 resolves the corresponding question for Lie algebroid extensions. In

this respect, the integrability obstruction is related to the obstruction classes
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found by Greub and Petry (1978). The general theory underlying these constructions

is dealt with in a coming paper.

§2. Epilogue

The construction of the invariant e, and the cohoraology theory of Chapter TV

on which it depends, grew out of a strategy, developed by the author in the mid-late

1970's, for proving the integrability of transitive Lie algebroids by generalizing

the cohomological proof of the integrability of Lie algebras due to van Est

(1953,1955b). 1 believe it will be of interest to describe this process and, by so

doing, to set this particular integrability result in the context of the ongoing

evolution of the group concept.

The result which asserts the integrability of Lie algebras is

commonly referred to as Lie's third theorem. This theorem has a long

and continuing history in modern mathematics, corresponding to the

evolution of the group concept from its first rigorous formulation to the point

where it is again capable of being applied to the study of partial differential

equations. Concerning Lie groups in the now standard meaning of the term, prior to

the work of van Est (1953,1955b) there were essentially two different methods of

proving Lie's third theorem. One method, which I will call the structural

proof, first uses the Levi-Mal'cev decomposition to reduce the problem to

the two separate cases of solvable and semi-simple Lie algebras.

Lie's third theorem for these two cases is straightforward: the solvable case is

reduced, by virtue of the chain condition, to the case of 1-dimensional Lie

algebras, where the result is trivial; in the semi-simple case, the adjoint

representation is faithful and the result follows from the subgroup/subalgebra

correspondence for a general-linear group. (For details, see, for example,

Varadarajan (1974, 3.15).) This proof is essentially a rigorous reformulation of

Cartan's 1930 proof, in which Cartan was chiefly concerned to complete a proof of

Lie's, valid only when the adjoint representation is faithful. The other method,

for which we know no classical reference, integrates the given general Lie algebra

directly to a Lie group germ, and must then show that this Lie group germ can be

globalized. For the integration step, see, for example Malliavin (1972, pp. 232-4),

or Greub et al (1973, pp. 368-9); the globalization may be accomplished by the

method of P. A. Smith (1952) - note that this depends on the fact that TT (G) = (0)

for a (semisimple) Lie group G. We will call this second method the geometric proof

since it depends on ir (G) = (0)> rather than on the structure theory of Lie
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algebras.

We have described the two proofs so as to stress that Lie's third

theorem is an integration result; so it was to Lie (for example, Cohn (1957,

Chapter V)), and so it remains. The geometric method divides the proof into an

'integration' step which yields a local group, and a 'globalization1 step which

depends on a deep topological result; the structural proof uses deep results of Lie

algebra structure theory to reduce the integration to that of the subgroup/

subalgebra correspondence - that is, to the Frobenius theorem. (Similarly Ado's

theorem, an even deeper result from the structure theory of Lie algebras and itself

depending on the Levi-Mal'cev decomposition, can be used for the same purpose.)

Having noted the element of integration present in both proofs, note also that the

other major steps in the two proofs are formally analogous: The existence of Lie

subalgebras depends on the semi-directness of the extension resulting from

quotienting the Lie algebra over its radical; that the extension is semi-direct

follows from the second Whitehead lemma (and the first, via the theorem of Weyl;

see, for example, Varadarajan (1974, 3.14.1)), and the second Whitehead lemma, that

is, H2(0,v) = (0) for semisimple n, may be regarded as analogous to TT (G) = (0) for

semisimple G, the condition which is crucial for the globalization step of the

geometric proof.

To describe van Est's proof, it is necessary to first summarize the results

from which he deduces Lie's third theorem.

van Est (1955b) in a note reformulating earlier results (1953,1955a)

constructed two convergent spectral sequences

(I) HS(G,V) » H^eRh(G) => H
S+t(g,V)

(ID HS(G,V) » H*[eRh(G/K) => H
S+t(g,l(,v)

for a Lie group G and a representation of G on a vector space V. Here H* (M)
a eKn

denotes the de Rham cohomology of the manifold M, H*(G,V) denotes the smooth

Eilenberg-MacLane cohomology, and K is a compact subgroup of G with Lie algebra

|C£*Q* Both spectral sequences arise from double complexes in the standard

manner; the double complex for (II) is a K-variant subcomplex of that for (I).

When G is connected and K is a maximal compact subgroup, G/K is

diffeomorphic to a Euclidean space (the Iwasawa decomposition) and the second

spectral sequence therefore collapses to isomorphisms H*(G,V) - H*(0,K,V). This
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result was reproved in a more modern context by Hochschild and Mostow (1962) and was

generalized extensively in the 1970's to model pseudogroups on R (see, for example,

the surveys of Lawson (1974, §6), and Stasheff (1978, §7)).

We are exclusively concerned with the first spectral sequence of van Est,

In the first paper of the series (1953), van Est noted that for a Lie group G with

HdeRh(G) = HdeRh(G) = ( 0 ) a s i m i l a r collapse leads to H2(G,V) * H2(tj ,V). Now in

general IT (G) = (0) (Browder (1961)), and so if G is connected and simply-connected
1 2

the Hurewicz theorem gives H (G) = H (G) = (0) and so one has
d eRh d eRh

2 B 1
H (G,V) - H (q,V) or, equivalently, Opext(G,V) - Opext(q,V) under the map which

assigns to v ••-•• G -5+ G the differentiated extension V -»—•• h —•+[}. Hochschild

(1951) proved that Opext(G,V) - Opext(q,V) for connected and simply-connected G,

by use of Lie's third theorem; van Est now shows that the process can

be reversed: any Lie algebra h is an extension 2 ••—»• n -->•-> adfj and thus defines an

2 L

element of H (R»?) where the representation of Q = ad ft on 7 is the trivial one.

With G the universal covering group of Int(n), represented trivially on the vector

space 2 , he thus obtains an extension 2 ••—• H —*•• G with h the Lie algebra of H.

Since H is an extension of a connected and simply-connected Lie group by a vector

space, it is itself connected and simply-connected. Thus Lie's third theorem is

proved.

Once again the integration step has been reduced to the subgroup/

subalgebra correspondence for a general linear group, van Estfs procedure thus uses

the (deep) topological fact that ^ ^ = (0) for any Lie group G but avoids the

direct consideration of local groups needed for the geometric proof, and uses no

deep result of Lie algebra theory.

A clear analysis of the importance of IT (G) = (0), and other relevant points

is given in van Est (1962). For other, more general, forms of the group concept,

theorems of "Lie third theorem" type have since been proved (for example,

Goldschmidt (1972), Ngo and Rodrigues (1975) (Lie equations and transitive Lie

algebras), Pommaret (1977)). These results also represent a combination of

cohomology and integration.

The author's original strategy to prove the integrability of transitive Lie

algebroids was to construct a cohomology theory for Lie groupoids by means of which

a straightforward generalization of van Est's spectral sequence (I) and of the

ensuing argument, could be given. Much of this argument does hold for Lie groupoids

and Lie algebroids. For example, given a transitive Lie algebroid, the exact
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sequence ZL +—*• A —•••• A/ZL = adA exists, and, by III 6.1, adA can be integrated to

the Lie subgroupoid Int(A) of n[L]. The induced representation ad(A) •• CDO(ZL)

cannot be said to be trivial, since there is no concept of trivial representation

unless ZL is trivializable as a vector bundle, but the representation does integrate

to Mint(A) > n(ZL).

The crucial problem therefore is to construct a satisfactory cohomology

theory for Lie groupoids. A cohomology theory for locally trivial topological

groupoids with coefficients in vector bundles was presented in Mackenzie (1978), and

the corresponding constructions for Lie groupoids can be given and follow the same

pattern. It is proved in §7 (op. cit.) that this cohomology, called the rigid

cohomology, classifies all extensions (satisfying some natural weak conditions) of

locally trivial groupoids by vector bundles.

Nonetheless this theory was not adequate for the application to the

Lie third theorem. If L ->-—• A -•»••• TB is an abelian Lie algebroid on a simply-

connected base then ZL = L and Mlnt(A) = B x B, and the problem is to find a Lie

groupoid ft on B with Aft = A. The rigid cohomology can only deal with groupoids

which are extensions L •>-* ft --•-• B x B and all such groupoids are trivializable.

The explanation is, of course, that the coefficient bundle ZL must itself be

integrated, and a cohomology theory which will classify all extensions of Lie

groupoids by Lie group bundles is needed. It is now reasonably clear how to do

this, but for the integrability question, a full cohomology theory is not needed.

Out of this strategy the existence of transition forms (Mackenzie (1979);

see IV 4.1 and Theorem 1.1) and the construction of the elements e..i in Mackenzie

(1980) emerged, and it is interesting to observe that these results themselves

divide into the same two steps. Namely, for adjoint Lie algebroids the problem is

(comparatively) easily solved - for every transitive Lie algebroid A the adjoint

ad(A) is integrable by III 6.1 - and the problem is to lift this across

ZL >—* A — » adA. Further, in Theorem 1.1 and IV 4.1, the existence of the required

flat connections is easily established on the adjoint level; the difficulty is in

lifting these connections to the given Lie algebroid. It is this lifting process

which the cohomological apparatus describes.
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This Appendix is an account of the Atiyah sequence of a principal bundle,

and its use in the elementary aspects of connection theory. The Appendix is

independent of the main text, and requires no knowledge of groupoids; it is assumed

that the reader is familiar with the accounts of connections and their curvature

forms in Kobayashi and Nomizu (1963) or Greub et al (1973).

What is now known as the Atiyah sequence of a principal bundle was first

constructed by Atiyah (1957), and was, from the first, used to construct

cohomological obstructions - originally to the existence of complex analytic

connections. In the case of real differentiale bundles, it provides a neat

encapsulation of the two definitions of a connection, and a conceptually clear and

workable definition of the curvature form. These are the only points with which we

are concerned here. Beyond this, the concept of Atiyah sequence - and its

abstraction, the concept of transitive Lie algebroid - has a multiplicity of

virtues; see Chapters III, IV and V.

The main purpose of this Appendix is to provide a lexicon for the

correspondence between the infinitesimal connection theory of III§5 and the standard

theory of connections in principal bundles. For this reason, most of this Appendix

is devoted to establishing the correspondence between the Atiyah sequence

formulation of connection theory and the standard theory; the actual definitions of

connections and their curvature forms are extremely concise. To the best of my

knowledge, this is the first detailed account of this correspondence to appear in

print.

Throughout, the Lie algebra of a Lie group is equipped with the right-hand

Lie bracket [ , ] R , which is the negative of the usual bracket. This is necessary

for the groupoid theory of the main text, but is in any case more logically

consistent: it is a curious anomaly of the standard presentations of principal

bundle theory that right-invariant vector fields are used on the bundle space, but

left-invariant vector fields are used to define the Lie algebra of the structure

group. This is especially curious in the case of homogeneous bundles G(G/H,H). A

brief resume of the right-handed formulation of the elementary formulas of Lie group

theory is given in Appendix B.

There are thus some sign-changes in this account and it is partly for this

reason that we have given the curvature calculations in §4 in full detail.
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§1 is a brief resume on principal bundles and associated fibre bundles, for

reference throughout the text. In §2 we desribe, in general, the process by which
TP

the vector bundle — + B corresponding to a principal bundle P(B,G) is found; this
G

construction includes the construction of associated vector bundles. In §3 the

Atiyah sequence of a principal bundle is constructed, and its full structure as a

transitive Lie algebroid is delineated. The case of homogeneous bundles G(G/H,H) is

treated. In §4 the two definitions of a connection and the definition of the

curvature of a connection are given, and their correspondence with the standard

account is established. Two examples of working with the Atiyah sequence in

specific problems are given.

§1. Principal bundles and fibre bundles.

This section is a brief resume of standard material (see, for example,

Kobayashi and Nomizu (1963)) together with a few definitions (TGB,LGB) which belong

to the same circle of ideas.

Definition 1.1. A Cartan principal bundle is a quadruple P(B,G,ir) where P and B are

spaces, G is a topological group acting freely on P to the right through P x G •* P,

(u,g) H-* ug, and IT: P •* B is a surjective map, subject to the following conditions:

(i) the fibres of TT equal the orbits of G, that is, for u,v e P, the

statement TT(U) = ir(v) is equivalent to3g e G: v = ug;

(ii) the division map 6: P x p -• G, (ug,u) I-* g, resulting from (i), is

continuous. Here P x P = {(v,u) e P x p | TT(V) = ir(u)} has the subspace topology;

(iii) IT: P -• B is an identification map. //

Note that IT is automatically open, since TT (TT(U)) = LJ Ug for any U S P.

geG

For this more general concept, in which local triviality is not assumed, see

Palais (1961a). (I am grateful to Iain Raeburn for this reference.) Its main virtue

for us is that it includes all homogeneous spaces of topological groups by closed

subgroups.

Example 1.2. If G is a topological group and H is a closed subgroup, then G(G/H,H,/fcr)

is a Cartan principal bundle, where H acts on G by right multiplication, and

fc: G ->• G/H is g J~> gH. We call it a homogeneous bundle. //

Definition 1.3. A morphism of Cartan principal bundles, from P(B,G,TT) to

Pf(Bf ,Gf ,TT'), is a trio of maps F: P •• Pf, f: B > Bf , <J>: G + G' where F and f are
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continuous and <j> is a continuous morphism, such that ir'of = foir and

F(ug) = F(u)<j>(g) for u e P, g e G. If B « B' and f

and <j>: G •»• Gf constitute a morphism over B. //

F(ug) = F(u)<j>(g) for u e P, g e G. If B « B' and f = id_, we say that F: P •»• Pf

D

Definition 1.4. Let P(B,G,TT) be a Cartan principal bundle. It is locally trivial

if there is an open cover {U } of B and continuous maps a : U -• P such that

The a are called local sections of IT, or of P(B,G,TT). Each a induces an
i ^r _ i

isomorphism from u x GCU^G) to TT (U )(U ,G), namely a (id,id) where

a (x,g) = cri(x)g. We will call the collection {a : V± •»• P} a section-atlas

for P(B,G,ir).

The maps s : U •• G defined by a (x)s .(*) = a (x) or, equivalently,

by s .(x) = 6(a (x),a (x)), are the transition functions for P(B,G) corresponding to

the section-atlas {a }.

Definition 1.5. A principal bundle is a quadruple P(B,G,IT) where P and B are

spaces, G is a topological group acting effectively on P to the right through

P x G •»• P, (u,g) f—• ug, and TT: P -• B is a surjective map, subject to the following

conditions:

(i) the fibres of ir equal the orbits of G,

(ii) there is an open cover {U } of B and continuous maps a : U + P

such that -no a = id . //

It is easily verified that a principal bundle is a Cartan principal bundle.

A morphism of principal bundles is defined as in 1.3.

Definition 1.6. A fibre bundle is a triple (M,p,B) in which M and B are spaces

and p: M •• B is a continuous surjection with the property that there is a space F,

called the fibre type of M, and an open cover {U.} of B together with

homeomorphisms ^ : U± x F •• p (Ui> such that ^(^(x.a)) = x, for x e u a £ F,

and such that the maps U •• Homeom(F) defined by

are continuous. Here Homeom(F) is the group of homeomorphi sms F •• F with the g-

topology of Arens (1946), and i|> denotes the restriction of \\> to

F > {x} x F > M x = p-1(x).
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A morphlsm of fibre bundles from (M,p,B) to (M'jp^B1) is a pair of

ous maps F: M > MT, f: B •• B1 such that pf«F = f«p.

we say that F is a morphism of fibre bundles over B. //

continuous maps F: M > MT, f: B •• B1 such that pf«F = f«p. If B = B1 and f = id ,
B

The continuity condition on the maps U + Homeom(F) is necessary because in

general it is not true that the g-topology of Arens coincides with the compact-open

topology. However if F is locally compact, Hausdorff and locally connected, then

the two topologies coincide and the continuity condition may be dropped. This

suffices for the application in the text (II 1.13).

Proposition 1.7. Let P(B,G,TT) be a principal bundle and let G x F •• F be an action

of G on a space F which is locally compact, Hausdorff and locally connected. Define

a left action on G on the product space P x F by g(u,a) - (ug~ ,ga) and
P x F

let M be the orbit space — - — . Denote the orbit of (u,a) e P x F by <u,a>, and

define a map p: M + B by p(<u,a>) = TT(U) . Then (M,p,B) is a fibre bundle.

Proof: Charts for (M,p,B) are given by ty (x,a) • <a (x),a>. //

(M,p,B) is called the associated fibre bundle for P(B,G) and the
P x F

action G x F •• F. The standard notation for M - — - — is E(B,F,G,P).

Proposition 1.8. Let P(B,G,TT) be a principal bundle, and let G x F •*• F and

G x F 1 + Ff be actions of G on two locally compact, Hausdorff and locally connected

spaces F and F1. Let f: F -• F1 be a G-equivariant map; then

~ P x F P x F'
f: — G ~ " * ~ " G ^ ' <u,a> I-+ <u,f(a)>

is a well-defined morphism of fibre bundles over B.

Proof: Ea sy. //

Not all morphisms of associated fibre bundles are of this form. A criterion

for them is given in II§4.

Proposition 1.9. Let P(B,G,TT) be a principal bundle and let M - P * F be an
G

associated fibre bundle. Then if <j>: P •• F is G-equivariant in the sense that

<Kug) «• g <|>(u), for u e P, g e G, the formula

M(x) = <u,<J>(u)> where ir(u) = x,



APPENDIX A 276

defines a (global) section of M. Every section of M is of this form.

Proof: The first statement is easy to verify. Conversely, given a section

\i: B -• M, each u e P determines an element (|>(u) of F by the condition

y(x) = <u,<J>(u)> where x * TT(U) .

It is easy to verify that <j> is equivariant. //

Let CCPjF)" denote the set of G-equivariant maps P •»- F. Then 1.9

establishes a bijective correspondence r ( — g — ) •* C(P,F) which we will usually

denote by I I K y.

Definition 1.10. Let P(B,G,TT) be a principal bundle. A reduction of P(B,G) is a

principal bundle P1 (B,G* ,TT' ), on the same base B, together with a morphism

F(idfi ,<f>): P'(B,G') -• P(B,G) for which <|>: G
1 •> G and F: P' •> P are injections. //

The concept of reduction is the concept of subobject appropriate to the

study of principal bundles. One may accordingly define a notion of equivalence for

reductions, similar to that for submanifolds or Lie subgroups.

In the situation of 1.10 one also says that P'(B,Gf) is a reduction of

P(B,G) to Gf.

Proposition 1.11. Let P(B,G,ir) be a principal bundle and let <\>: G ->• H be a morphisra
P x H

of topological groups. Let Q = — g — be the associated fibre bundle with respect

to the action G x H + H, (g,h) !-•»• <j>(g)h. Then Q(B,H,p) is a principal bundle with

respect to the action Q x H •»• Q, (<u,h>,hf) I—• <u,hhf> and projection

p(<u,h>) = TT(U).

Proof: Straightforward. //

P X W

The principal bundle Q = — - — (B,H) is usually called the prolongation or

the extension of P(B,G) along <j>. Both these words have alternative meanings within

bundle and groupoid theory, and we propose to call Q(B,H) the produced principal

bundle, or the production of P(B,G) along <(>. This term is suitably antithetical to

"reduced", and may also remind the reader of the process in elementary geometry

where one continues a line in an already existing direction, without adding anything

which is not already implicit.

If F in 1.7 is a vector space V and the action of G on V. is linear, then the
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p x V.
associated fibre bundle — ~ — is a vector bundle, in an obvious way, and is

usually denoted E.

Definition 1.12. A topological group bundle, or TGB, is a fibre bundle (M,p,B) in

which each fibre M = p (x), and the fibre type F, has a topological group

structure, and for which there is an atlas {^:U x F •• M } such that each

ty. : F •• M , x e U ., is an isomorphism of topological groups.

A morphism of TGB's from (M,p,B) to (Mf,pf,Bf) is a morphism (F,f) of fibre

bundles such that each F : M * M* is a morphism of topological groups. //

If the space F in 1.7 is a topological group H and G acts on H through

topological group automorphisms then the associated fibre bundle is a TGB. For

example, given any principal bundle P(B,G), the group G acts on itself by inner-

automorphisms; the resulting TGB — g — is sometimes called the gauge bundle in

the physics literature. We will call it the inner group bundle or inner TGB.

The preceding results are all valid in the case of c°° differentiable

manifolds. There are some simplifications: firstly, there is no analogue of

"Cartan principal bundle" since the analogue of the topological concept of

identification map is the concept of submersion, and a submersion automatically has

local right-inverses. Secondly, there is no need in 1.6 for a separate condition on

the maps U , -• Homeora(F), since all manifolds are locally compact, locally connected

and Hausdorff. The analogue of a TGB is of course called a Lie group bundle and the

name is abbreviated to LGB.

§2. Quotients of vector bundles by group actions.

Throughout this section P(B,G,TT) is a given principal bundle.

•a

Proposition 2.1. Let (E,p ,P) be a vector bundle over P, on which G acts to the

right

E x G •> E, (£,g) I-+ Cg

with the following two properties:

(i) G acts on E by vector bundle isomorphisms; that is, each map £ H* £g,

E + E is a vector bundle isomorphism over the right translation R : P + P;

(ii) E is covered by the ranges of equivariant charts, that is, around each

uQ £ P there is a iT-saturated open set TJL - TT (U), where U S B is open, and a vector
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bundle chart

for E, which is equivariant in the sense that

Kug,v) - <Ku,v)g V* u e V, v e V, g e G.

Then the orbit set E/G has a unique vector bundle structure over B such that

the natural projection^: E -»• E/G is a surjective submersion, and a vector bundle

morphism over IT: P •• B. Further,

E 3 — H E/G

E E/Gv \ l p
P ^ B

is a pullback.

FIC E
We call (E/G,p ,B) the quotient vector bundle of (E,p ,P) by the action of

G.

- E/G
Proof. Denote the orbit of £ e E by <£>. Define p = p : E/G •>• B by

p(<£>) - 7r(pE(^)); it is clear from (i) that p is well-defined. We will give

(E/G,p,B) the structure of a vector bundle by constructing local charts for it,

which will simultaneously give the manifold structure for E/G (see Greub et al,

1972, §2.5).

Firstly, make each E/G| " P " (x), x e B, into a vector space: if <£>,

<n> e E/G| then p E (O, pE(n) lie in the same fibre of P so 3! g e G such that

P (n) • p (̂ )ĝ  Define

<O + <n> = <Cg + n>

and, for t e R,

It is easily verified that these operations are well-defined and make E/G| a vector

space. The restriction H of P to E •• E/G| (X = TT(U) ) is clearly linear; it is
In i u 'x

in fact an isomorphism. For if 5,n e E and <^> = <n> then 3 g e G: n = E,g and, by

(i), it follows that u = ug. So g = 1 and n = £.

Given x e B, choose u e TF (x ) and let î s 2c x V •• E ^ be an equivariant

chart for E defined around u . Assume, by shrinking?^ if necessary, that Uis the
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range of a chart U x G • % for P(B,G), so that there is a section a : U. •• #. & P.

Define

,/G
Ui

Then ,/G
x : V •• E/G| X is the composite

*i,a (x) ^a (x)
v f E ^ ( x )

/G I
and is thus an isomorphism. If y, : U. x V •* E/G|TJ is another chart constructed in

the same way from an equivariant chart i|>, for E and a section a of P, then it is

easily seen that

Thus the charts {y } define smooth transition functions x H (i{/ )~ o (y ) and
I i,x j,x

so, by the reference quoted above, there is a unique manifold structure on E/G which
— /G

makes (E/G,p,B) a vector bundle with the i\> as charts.

We next prove that a: E -• E/G is a surjective submersion. Let 1(1: l([x V. > E

be an equivariant chart for E, let "o: U + V be a section of P, and ij/G: U x V •»•

the chart for E/G constructed as above. Then

^1

commutes, for if (u,v) e ^ x v, then / G ( ( T T x idv)(u,v)) = <^(a(Ti(u)) ,v)> =

<Kug,v)> (for 3 g e G: ug = cr(Tr(u))) = <<Ku,v)g> = <*(u,v)> =jf(Mu,v)). Since

TT x id^ is smooth, and a submersion, it follows that lj is smooth, and a submersion.

It is clear that poo= irop , so fa is a vector bundle morphism. Since a is an

isomorphism, u e P, it follows that (w,TT) is a pullback (see C.2).

The uniqueness assertion follows from the facts that there is at most one

manifold structure on the range of a surjection which makes it a submersion (e.g.,

Greub et al, 1972, §3.9), and at most one vector space structure on the range of a
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surjection which makes it linear. //

Proposition 2.2. (i) If (E,pE,P) is a vector bundle over P(B,G) together with an

action of G on E which satisfies the conditions of 2.1, and (Ef,p ,M) is any vector

bundle, then given a vector bundle morphism <J>: E •*- E1 over a map f: P •• M such that

<K€g) * • (£) V- £ e E, g e G, and f(ug) = f(u), V u e P, g e G, there is a unique

vector bundle morphism

E/G

E/G

,/G

-* E'

such that <j> • and f =

E E*

(ii) Consider vector bundles (E,p ,P) and (Ef,p ,Pf) over principal bundles

P(B,G) and ?'(B\G*) f respectively, together with actions of G and G
f on E and Ef,

respectively, which satisfy the conditions of 2.1. If *: E •• E' is a vector bundle

morphism over a principal bundle morphism F(f,<J>): P(B,G) -• P'CB'jG1) which is equi-

variant in the sense that $(£g) • $(€)$(g)» V £ e E, g e G, then there is a unique

morphism of vector bundles

E/G

E/G

-t EVG'

E'/G1

Bf

such that '«$.

Proof: We prove (ii) only; (i) is a special case of (ii).

Define $/ G
: E/G -• EVG

1 by <£> !--• That $/G is well-defined and

fibrewise linear is clear. Clearly $ ©fa = tjfo$ So since fa
f«* is smooth, and t is

is smooth. That . #
/G via

fop is immediate, andsurjective submersion,

since tj is onto, the condition $ °O - nf*$ determines $ uniquely.

Remarks 2.3. (i) This quotienting process includes the construction of an
P x V

associated vector bundle — r — • for a representation p: G > GL(V-) of G on a vector
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space V- Namely, let G act on the product bundle E = P x v over P by

(u,v)g = (ug,p(g )v); this action clearly satisfies (i) of 2.1. If cr: U + P is a

section of P and |: U x G -^1/= i (U) is the associated chart t|>(x,g) - a(x)g, then

it is easy to verify that the chart t( x V. > E defined by

U x
(x,g,v) !--• (x,g,p(g" )

E

id

U x G x V

is equivariant. (Although E -• P is a trivial bundle, it does not admit global

equivariant charts in general.)

Clearly the quotient vector bundle E/G •• B coincides with the associated
P x V

vector bundle — - — •> B of 1.7.
G

(ii) The construction 2.1 and the universality property 2.2 can easily be

extended to equivariant actions of G on general fibre bundles over P. If this is

done, then the construction includes all associated fibre bundles P x F •*• B. //
G

Proposition 2.4. Let (E,p,P) be a vector bundle over P together with an action of G

on E which satisfies the conditions of 2.1. Denote by TGE the set of (global)

sections X of E which are invariant in the sense that

X(ug) = X(u)g V u e P, g e G.

Then TGE is a C(B)-module where fX = (f*»ir)X, ¥. f e C(B), X e TGE, and the map

X I-+ X, T(E/G) -• TGE

""1(X(u) = (tju)""
1(X(TTU))

is an isomorphism of C(B)-modules with inverse

TG

where X(x)

X h+ X, TGE • T(E/G)

(u)) = <X(u)> (any u e

Proof; X H X is the C(B)-morphism b # : T(E/G) •• FE of C.3. It is easily checked

that, in fact, X e T E. Given X e r E it is clear that X is well-defined, and since

X*w = box and w is a surjective submersion, X is smooth. It is straightforward to

check that X H X and X f-+ X are mutual Inverses. //
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This result can of course be localized: if U - IT (U) is a saturated open

subset of P, where U C B is open, then the same formulas for X, X define mutually

inverse C(U)-isomorphisras between r (E/G) and r (E).

§3. The Atiyah sequence of a principal bundle.

Throughout this section, P(B,G) is a given principal bundle.

Proposition 3.1. (i) The action of G on the tangent bundle TP + P induced by the

action of G on P, namely

Xg = T(Rg)u(X), X e T(P)u,

satisfies the conditions of 2.1.

(ii) The action of G on TP •• P restricts to an action of G on the vertical

subbundle T P •> P, and this action also satisfies the condtions of 2.1.

Proof: (i) It is clear that G acts on TP by vector bundle isomorphisms. To

construct equivariant charts for TP, let <\>: U x G + % = TT~ (U) be a chart for P(B,G)

in which U is the range of a chart 6: Rn -• U for the manifold B. Now T(U) = U x Rn

and T(G) = G x tt , so T(<|>): T(U) x T(G) •• T(P)^/ can be regarded as a map

(U x G) x (Rn xn ) -• T(P)-, and, identifying U x G with % by <J>, this gives the

required equivariant chart.

(U x G ) x (R
n

Precisely, define

(x,g,t,X) h+ T(<|>) v(T(6) (t), T(R ) (X))
U j g ) 6 L(x) 8 1

and define \\>: Ii x v -• T(P)y (where V> = Rn X Q ) as the composition of ((j)"1 x id ) and

this map. To show that Kuh,v) " ^(u,v)h, it suffices to show that

gh)(Y» T ( R gh ) (X)^ = T ( R h } ^T(<l>) (x K)
(Y> T ( R,gn; gn x n ^ ( x > g ) U,g)

where Y e T(U) , and this is the derivative of the identity <|>(x,R (g)) - R (<J>(x,g)).

(ii) That T(R ): TP -• TP sends T^P to T^P follows from TT^R = it. In the
8 ir a/ ~ 8

notation above, an equivariant chart for T P over U = U x G is the composite of
fl x id with

u
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(U * G) x 0 -• T (P)#/

(x,g,X) h- T(*) (0 T(R ) (X)). //
vx»8/ x 8 i

Note that in both cases the identification of T(G) with G * O must be made

using right translations.

IT CL

The inclusion map T P ~ TP is manifestly equivariant so, by 2.2(ii), it
T P TPinduces a morphism —*— •• —TT of vector bundles over B, which is clearly anG

injection and which we also regard as an inclusion.

On the other hand, from TTOR = TT it follows that T(TT) © T(R ) - T(TT)
g ug g u u

where u e P, g e G, so by 2.2(i) it follows that the vector bundle morphism

TP
 T W > TB

IC TP
quotients to a map IT. • T(ir) : —— -> TB which is a vector bundle morphism over B.x G

It is clear that TT^, like T(TT), is fibrewise surjective and so general vector bundle

theory (e.g., Greub et al, 1972, 2.23) shows that TT̂  is a surjective submersion.

Alternatively, it is easy to see that TT̂  is given locally by

%, — - - — • «..U

T(6)

(x,t,X) » (x,t)

where the notation is that of 3.1.

TP T P 7T
The kernel of IT : — --•> TB is clearly —r- , since T P •*• P is the kernel of

G
T P TP *

T(TT): TP -• TB, and so we have proved that — = — •»--• —— —•••»• TB is an exact sequence

of vector bundles over B.

This may be regarded as the Atiyah sequence of P(B,G) but in practice it is
T^P

generally easier to work with a slight reformulation in which — p — is replaced by
p x ̂

the bundle — — » - + g associated to P(B,G) by the adjoint action of G on 0 .
G U
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Proposition 3.2. The map j: — ^ 3 - +--• --- induced by

P x IJ > TP, (u,X) H> T(mu) (X)

P xfl
(where m : G •>• P, g h+ ug) is a vector bundle isomorphism over B of — ~ - onto
TT
 u G

T P C T P

Proof: We regard ——-3- + B as the quotient of the trivial bundle P xp -• p over

the action (u,X)g - (ug,Adg~ X) (see 2.3(i)). That the map P xO -• TP is smooth can

be seen by reformulating T(m ) (X) as T(m), . (0 ,X ) , where m: P x G + P is the

action. Thus P xn -• TP is the composite

P x n -• TP x TG
 T ( m ) > TP

where P > TP is the zero section and D - T(G). •• T(G) the inclusion. It is clearly

a vector bundle morphism over P.

Now T(mu ) (Adg"
1X) = T(m oi ^ ) (X) and it is easy to check that

mu o I ̂  = Rom^. Thus (ug,Adg X) is mapped to T(R ) (T(mu) (X)), which proves

that P xn -• TP is G-equivariant and so quotients, by 2.2(ii), to a vector bundle

morphism over B

£-GJL*"lf > <U»X> H* < T K >

which we denote by j.

u

That T(m ) (X) e T P, ¥ u e P, X eD follows from the fact that irora is

constant. On the other hand, P xp + T P S TP is clearly injective (because each

m is so) and since T P and P xn have the same rank, namely dim O, it follows that

P x D -• T^P is a fibrewise isomorphism. Clearly j inherits this property. //

The map P x D •*• TP is of course the "fundamental vector field" map

(u,X) h+ X*(u) of Kobayashi and Nomizu (1963, p. 51). We shall occasionally use

their notation, in which case j(<u,X>) - <X*(u)>.

Summarizing, we have proved

P x P \ TP 1[*
Proposition 3.3. —r~- +**•+ —— —-•-• TB is an exact sequence of vector bundles over
__________________ Q Q
B. //

P x Q
The bundle —r^-*- + B is called the adjoint bundle of P(B,G).

G •
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Remark 3.4. The reader may like to check that T P -•-+ TP —••• TT*TB is an exact

sequence of vector bundles over P, where ir*TB is the pullback and IT is the map

X f-* (U,T(TT) (X )); that TT*TB admits a natural G-action, satisfying the conditions
u u u TT*TB ~ TP
of 2.1, that T is equivariant and that — r — = TB and that the map -—•--•-• TB

~ G G
induced by IT is TT^. //

We proceed now to define a bracket of Lie algebra type on r(——); with this

additional structure the exact sequence of 3.3 will be the Atiyah sequence of

P(B,G).

From 2.4 we know that r(-—) is isomorphic as a C(B)-module to T TP. Now
G

X e TTP is in T TP precisely if X is R -related to itself for all g e G. It

therefore follows that r TP is closed under the bracket of vector fields and so we

can define a bracket on r(——) by

rx YI — rx YI x Y e r [ 1.
G

The bracket on r(-—) inherits the Jacobi identity from the bracket on TTP,

and also the property of being alternating. For f e C(B),

[X,fY] = [X,(foTr)Y]

= (f«Tr)[X,Y] + X(fofr)Y.

Recall that a vector field # on P is called ir-projectable if there is a vector

field y on B such that # is 7r-related t o ^ , that is, such that T(TT)UG£(U)) =J/(ff(u)),

¥ u e P, or, equivalently, such that^(f°ir) =^(f)°ir, ¥ f e C(B). (See, e.g.,

Greub et al, 1972, 3.13.) It is clear from the definition of TT̂  that X e TGTP is

TT-related to TT^(X) e ITB and so

X(fOTT) = 7T^(X)(f)OTT.

We therefore have,

[X,fY] = (feir) [X,Y] + (TT^(X) (f )<>TT)Y

so

(1) [X,fY] = f[X,Y] + ^(X)(f)Y, X,Y e T ( ^ ) 9 f e C(B).

A bracket on the module of global sections of any vector bundle A over B,

which has the property (1) with respect to a morphism TT̂ : A -• TB, can be "localized"

to sections over any open subset of the base. (See III 2.2.) In the present case

the resulting bracket IV (~) x r f f ) -• r (—-) ( U £ B open) is easily seen to be
G TP

equal to that obtained by transporting the bracket on r TP to r (—•) via the
C(U)-isomorphism T (^) + TG TP. * ( U )
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From the fact that X is ir-related to IT. (X) it also follows that, for

X,Y e r ( — ) , [X,Y] is TT-related to [ir̂ (X) ,T*(Y)] so since [X,Y] = [X,Y] is also

it-related to i^([X,Y]), and IT is onto, it follows that

(2) ["*(X), (̂ |)

TP
From (2) it follows that the bracket on r(—) restricts to a bracket on

For, given V,W e r ( ^ L ) , ^([jV,jW]) = [ ** jV, ir* jW ] - [0,0] = ° and so
P QP x Q

there exists a unique section [V,W] of —£•*- such that

(3) [j(v),j(w)] = j([v,w]), v,w

This restricted bracket is of course also alternating and satisfies the Jacobi

identity. And, for f e C(B),

so, since TT̂ O j = 0, it follows that

(A) [V,fW] = f[V,W], f e C(B), V,W e

Thus the bracket on r ( — Q - ) , unlike that on r ( — ) , is actually a

tensor field, and therefore restricts to each fibre. Since each fibre

isomorphic to Q, the question arises as to whether the bracket in G *S

induced by that in D .

Proposition 3.5. For V e r( G )* denote by V e C (P,Q) the corresponding equi-

variant function P •*• D . (See 1.9.) Then

is

fvlwi(u) = [V(u),W(u)]R, V,W e r(-^2-), u e P

where the bracket on the RHS is the right-hand bracket inn .
u

Remark: This result may be expressed as follows: Equation (4) implies that, for

V,W e r(P *" ) and x e B, [V,W](x) = [V(x),W(x)]x where [ , ] x is the restriction

of [ , ] to
p

Proposition 3.5 now states that

[<u,X>,<u,Y>]x = <u,[X,Y]R>

for u e TT~ (x), X,Y e D . That this bracket is well-defined follows from the fact

that Adg is a Lie algebra automorphism for all g e G.

Proof: First note that j(V) e TGTP is
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u h+ T(mu) (V(u))

and that this vector field has a global flow, namely

<J>t(u) = u exp tV(u), t e R, u e P.

(Proof: That — <j> (u) I = T(m ) (V(u)) is immediate; for the group law
dt t o u -

<j) o <j) = <j> w e have

4» (<j> (u)) = u exp sV(u) . exp tV(u exp sV(u))

= u exp sV(u) . exp tAd(exp sV(u) )V(u)

= u exp tV(u) . exp sV(u)

So

Now by using the equivariance of V in a similar manner to the proof of the group

law, it can be shown that <l>t
oin. ( } ~ m an(* s o tn*-s l a s t expression is actually

- - | - (T(m ) (W(<j>_ ( u ) ) ) | = T(m ) (- j - W ( u exp-tV(u)) | )
t U l " t U l t °

= T ( m ) r_ i L Ad(exp tV(u))W(u)| )
u ^ dt 'o ' '

•«-»\ "

We therefore have

T(m

and the result follows.

P x R

It may seem odd that the bracket on r(—~"-J should correspond to the right-

hand bracket infl, especially since, for fundamental vector fields, [A*,B*] •

([A,B]L)* (Kobayashi and Nomizu, 1963, 1.4.1). However the fundamental vector field
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map fl •»• IT p and j: r( "-) -• r T P are not the same; a fundamental vector field

A* is invariant iff A e 0 is stable under AdG, that is, iff ir(u) »—• <u,A> is a well-
p x L

defined section of —£-**- . 3.5 may seem more reasonable when it is recalled that
p x Q

r(—--2-) is embedded in TTP a s trie s e t of right-invariant vertical vector fields;
p X B

it is only natural then that the bracket on r( =-) should be the right-hand one.

This is particularly evident in the case of homogeneous bundles G(G/H,H) - see

Example 3.9 below.

In the remainder of this Appendix we will use only this right-hand bracket

on the Lie algebra of a Lie group and we now drop the subscript fR'. For a brief

summary of standard formulas, reformulated for this bracket, see B§1.

We can now make the

Definition 3.6. The exact sequence of vector bundles

together with the bracket structures on r(—) and r( 2_) defined above, is the

Atiyah sequence of P(B,G). //

We will use the various properties of the brackets, which have been

developed above, without comment in what follows. They reflect, of course, the fact

that the Atiyah sequence is a Lie algebroid on B in the sense of III 2.1.

We will often need the following description of the flows of right-invariant

vector fields.

Proposition 3.7. (i) Given X e TGTP and u e P there is a local flow {<j> } for X

around u defined on a ir-saturated open set % = TT" (U), U S B open, for which

<J> (ug) = • (u)g, ¥ u z%% g e G and t.
t t

(ii) Given X e TGTP with local flow {$ } as in (i), the vector field TT.(X)
t *

on B has local flow i|> on U determined by ty © TT = TTO* .Yt 3 t t

(iii) For V e r (P * * ), the vector field j(V) e r°TP is complete and has the

global flow <|>t(u) = u exp tV(u).

Proof: (i) Let {6 } be a local flow for X defined on an open (?SP around u ;
• t « o
write U = TT(0) and % = TT (U). It is easy to verify that, for any given g e G,
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{R *<|>t*R _]_} is a local flow for X on u?g. By the uniqueness of local flows it

follows that {<f>t} and {R "(jĵ R _]_} must coincide on @C\Q%. We can thus extend

(|>t smoothly to the whole of (JL = (J 0g and a repetition of the argument now
geG

shows that R ° <f>t«>R _i = (J) for all g e G and t.

(ii) is straightforward and (iii) was proved in the course of 3.5. //

The proof of (i) of course shows that any local flow for X which is defined

on a TT-saturated open set commutes with right-translations. We call such a flow a

saturated local flow.

Lastly, we describe the morphism of Atiyah sequences induced by a morphism

of principal bundles F(id,<f>): P(B,G) + PT(B,G') over a fixed base B. It is easily

checked that TF: TP •• TP1 satisfies the conditions of 2.2(ii) and so induces a

morphism F* TF : —*r •*• —QT- of vector bundles over B. It is also straightforward

to check that F* P' *"'F : " •

of vector bundles over B, and that

, <u,X> h-+ <F(u) ,<f>̂ (X)> is a well-defined morphism

commutes. Now TF: TP + TP1 preserves the Poisson bracket in the sense that if

X £ TCP and X1 £ TTP1 are F-related, and Y and Y' likewise, then [X,Y] and [X1,Y']

are F-related. Since, for X £ !*(—), X1 £ r(—^-), it is easily verified that X

and X1 are F-related iff X! = F^(X), it follows that

(6) X,Y e v(^).

brackets.

TP TP1
Definition 3.8. F*: —Q- •• —Q-T in (5) above is called the morphism of Atiyah

sequences induced by F(id,4>). //

TP
Note that TT^: — •*- TB is in fact the morphism of Atiyah sequences induced

by ir(id,k): P(B,G) > B(B,{1}) where k: G ->• {1} is the constant morphism onto the



APPENDIX A 290

trivial group.

Example 3.9. Let H be a closed subgroup of a Lie group G and consider the

homogeneous bundle G(G/H,H). Its Atiyah sequence is

(7)

where j(<g,X>) = <T(L ) X> and TT (<X>) = T(TT)(X). There are two alternative
8 l *

formulations of this sequence.

Firstly, the vector bundle isomorphism G xn •> TG, (g,X) h-+ T(L ) (X),

respects the right actions of H and so quotients to a vector bundle isomorphism

«L' —rr*~ "*" ~w » where —«-^" *s the bundle associated to G(G/H,H) through the
H rl ' n °

adjoint action of H onD . Likewise there is a vector bundle isomorphism

J(; G X ^ft"*) + T(G/H) defined by <g, X +(l> P+ T(TTOL ) (X), where H acts on the

vector space D/f7 by h(X + h ) = AdhX +h . We will show that M is injective; that

it is well-defined and a smooth and surjective vector bundle morphism are easily

verified. Suppose <g, X +f? > and <g', X1 +h > have T(TT<>L ) (X) = T(TTOL ,) (Xf).

Then ir(g) = Tr(g' ) so 3 h £ H: g' = gh. Now TT = n<»R so we have
h"1

T(TT) {T(R ) O T ( L .) (X1) - T(L ) (X)} = 0.
8 ti gh g h 1 8 1

Thus T(L ) {AdhX1 - X} is vertical. But L is precisely the map m (in the notation
8 1 8 8

of 3.2) so AdhX1 - X e IT . This shows that

<gf , Xf + h > = <g, AdhX1 +\j> = <g, X +h>

as required. Compare Greub et al, 1973, 5.11.

Thus the sequence of vector bundles (7) can be written as

(8)

where J1«g,X>) = <g,X> and qi«g,X» = <g, X +h>.

Secondly, the vector bundle morphism G x q -• (G/H) X Q , (g,X) ĥ - (gH,AdgX)

over TT: G -• G/H respects the action of H on G x D and so induces a vector bundle

morphism —g-«- -• (G/H) xn $ which is easily seen to be an isomorphism. Thus (7)

can also be written as

(9) 5-lfl. +J.+ (G/H) x g -4-, T(G/H)
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where J2(<g,X>) = (gH,AdgX) and q2(gH,X) = T(TT©R ) (X). Again compare Greub et

al, 1973, loc. cit. g l

It would be interesting to have formulae for the bracket on Y[——J in terms

of (8) or (9). It is certainly not the case that the bracket on r((G/H)x/2 )

transported from r (—) via the composite isomorphism (gH,X) H-• <T(O,(X)> is

induced by the pointwise bracket [(gH,X),(gH,X!)] = (gH,[X,X!]). (If this were so,

then whenever G were abelian the bracket on Y {—-) , and therefore the Poisson

bracket on rT(G/H), would be identically zero.)

See also 4.18. //

Many other examples of the Atiyah sequence of a principal bundle may be

obtained from Chapter III.

§4. Infinitesimal connections and curvature.

The first advantage of the Atiyah sequence concept is that it allows the

standard definitions and basic properties of infinitesimal connections and their

curvature forms to be presented quickly and clearly, in an algebraically natural

manner. The correspondence between the two standard definitions of a connection is

seen to be a particular case of the correspondence between right- and left-split

maps in an exact sequence; curvature is seen to measure precisely the extent to

which a connection fails to preserve Lie brackets; associated connections, the

Bianchi identities and the structural equation appear in a clear and natural

algebraic manner. This approach also shows that infinitesimal connection theory

should be regarded not so much as a theory about principal bundles as about their

first-order approximations - the Atiyah sequence or Lie algebroid.

The account given here is a fairly rapid rehearsal of the Atiyah sequence

approach as it applies to the most basic and general concepts of infinitesimal

connection theory. At each stage the correspondence of this formulation with the

standard one is established. The reader may wish to continue this programme by

rewriting further parts of infinitesimal connection theory in terms of Atiyah
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sequences.

Until 4.18, P(B,G,TT) is a principal bundle.

The standard account of connection theory begins by defining a connection as

a distribution Q on P which is G-invariant (that is, Q = T(R )(Q ), u e P, g e G)
IF, ug g u

and horizontal (V u e P, T(P) = T (P) * Q ). In terms of the Atiyah sequence,

this corresponds to the

Definition 4.1. An infinitesimal connection, or simply connection, in P(B,G) is a
ipp
—

rnp ipp

vector bundle morphism y: TB •*• —^ which is right-inverse to ir̂ : — •• TB; that is,
for which TM> y = id. //

For suppose we start with a G-invariant horizontal distribution Q. The G-

invariance implies that the action of G on TP restricts to an action of G on Q and

it is straightforward to show that Q admits equivariant charts; in the notation of

3.1, the chart

(u,t) W- hKu,t,0)

(where hX is the horizontal component of X e T(P) ) is equivariant. So the
TT u TP T^P 0

decomposition TP = T P 4» Q quotients to the decomposition — = -^— * % • Now
TP T P 0

ir. : i— + TB is surjective and its kernel is ~ ~ > so the restriction TT • -̂  •> TB
G G 0 TP

is an isomorphism of vector bundles over B. We define y: TB •• — ^ — to be its
G G

inverse.
• TP

Conversely, given y, we define Q to be the preimage under a: TP —•+—=• of
TPi f f l y C - , (Note that im y is a sub vector bundle since Y, being fibrewise

injective, is of constant rank.) That Q is a horizontal and G-invariant

distribution is easily verified.

Although the "distribution definition" of a connection is usually given pre-

eminence by being stated first, practical work is usually done in terms of

connection forms*.

Definition 4.2. A back-connection in P(B,G) is a vector bundle morphism
p xQ p x T, TP

+ — _ £ _ which is left-inverse to j: —r^- + ~ ; that is, for which
\J G G

id. //

It would be natural to call co a connection form, except that this could be
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confused with the ordinary usage of the term.

A connection form, in the usual sense, is a form w e A (P,*}) for which

a>ug(T(Rg) X) = A d C g ' V ^ X ) ¥ X e T(P)u, u e P, g e G, and u>(A*) - A, V A ej .

uThe firstuof these conditions states that u>, regarded as a map TP + P xg , preserves

the actions of G on TP and P xtt, and so quotients to a map u> : —g- + — ^ — • The

second condition now implies that co' • j = id.

TP P x fl •••
Conversely, given a back-connection <D: — +—-~- , define a): TP •*• P xD by

w (X) « AP X°)~1(o)(<X>)), where l a " is the projection P x q -• P *8 . Now a> is
IPxB •> iTP i PxD

smooth because b 3ou - coofa , and fa " is a submersion; that it is a connection

form is easily verified.

That there is a bijective correspondence between connections and connection

forms now follows from the well-known

Proposition 4.3. Let E1 +^+ E -5* E" be an exact sequence of vector bundles over a

common base B. Given a right-inverse p: E" *• E of TT there is a unique left-inverse

X: E -• E' of i such that

(1) i«X + POTT = id .

E

Conversely, given a left-inverse X of i, there is a unique right-inverse p of u

such that (1) holds.

In either case X»p = 0 and E" -•—• E -•>-»• E1 is an exact sequence. //

The pair of maps X, p is called a splitting of the exact sequence. X may be

called the left-split map and p the right-split map.

Note that the existence of connections in principal bundles now follows from

the general result that a fibrewise surjection of vector bundles over a fixed base

has a right-inverse.

Before dealing with curvature we need a result concerning associated

connections in vector bundles.

p x V
Suppose first that E = — * — is the vector bundle associated to P(B,G) via

a representation g I—• (v h> gv) of G on a vector space V.

Lemma 4.4. If y e TE and X e T^) then X(y) e C(P,V) is G-equivariant.
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Proof; Let {<j> } be a saturated local flow for X defined in a neighbourhood of

u e P (3.7(i)). Then, for all g e G,

x(y)(ug) -|j-ft*t(
u8))l0 "It

 5 ( V u ) 8 ) lo "?t 8"1 ? (Vu ) )lo " &~1*&M>

as required. //

We denote the section of E corresponding to X(y) by X(y).

TP P x V
Definition 4,5. The action of -=£• on E - — g — - is the map

r(SE.) x ITE • ne, (x,y) h+ x(y). //

TP P * V
Proposition 4.6. The action of -g- on E - — g — has the following properties.

Here X.X^Xj e r(~-), y,^,^ e rE, and f e C(B).

(i) (Xt

(ii) (fX)(y) - f(X(y))

(iii) X(yx + y2) = X(yx

(iv) X(fy) = fX(y) +

(v) [Xlf

(vi) The value of X(*y) at a point x e B depends only on the value of X at x

and the values of y in a neighbourhood of x.

Proof; (i)-(v) are trivial; we prove (iv) as an example: Recalling that

?y - (foir)y, fX - (foTr)X and X(foir) - 7r̂ (X)(f)oTr, we have X(fy) - X((f*Ti)y)

- (f»7r)X(y) + X(f«7r)y - "fxCu) + ir^xTcf)!^, whence the result.

(vi) follows from the corresponding result for Lie derivatives, or can be

proved from (ii) and (iv). //

Using 4.6, the following result is immediate:

Proposition 4.7. If y is a connection in P(B,G) and E is an associated vector

bundle, then

V^(y) - (YX)(y), X e ITB, y e rE
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defines a linear connection V in E, called the connection in E induced by y, II

That this definition coincides with the usual definition of the induced

connection in an associated bundle follows from Kobayashi and Nomizu 1963, III 1.3.
p x 4

In the case of the induced connection in —-p^- , there is an alternative formula.
Ox

Proposition 4.8. The action of —g- on —g-*- is given by

Proof: If {(J> } is a saturated local flow for X (3.7), then <Mm, (u) - m ,

¥ u e P, and a modification of part of the proof of 3.5 shows that

[X,T(V)](u) = T(mu) (X(V)(u)), ¥ u e P. But T(mu) (X(V)(u)) = j(X(V))(u) and so

the result follows. //

Corollary 4.9. If y is a connection in P(B,G), then the induced connection VY in

P £$ is given by

j(vv<v)) • [TX.jV], X e ITB, V e r(P ̂ 3 ). //
A. Vj

This connection may be called the adjoint connection of y*

We now proceed to study curvature.

TP
Definition 4.10. Let Y: TB + —r^ be a connection in P(B,G). The curvature of y is

the skew-symmetric vector bundle map

P *5
R : TB * TB -• -
Y G

defined by j(R^(X,Y)) - Y[X,Y] - [YX,YV]. //

To prove that this is indeed the standard curvature form in disguise

requires some preparation. First recall some terminology:

Definition 4.11. (Kobayashi and Nomizu, 1963, §11.5; Greub et al, 1973, §§3.15,

6.6.) Let p be a representation of G on a vector space V.

A form 0 e Ar(P,V) is called equivariant or pseudotensorial of type (p,V) if

R*(<fr) ** P(g )«<J>, ¥ g e G. The set of equivariant r-forms on P with values in V is

denoted Ar(P,V)G.
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A form (j> e A (P,V) is called horizontal if, at any given point u e P,

<1>(X..,... ,X )(u) = 0 whenever one or more of the X (u) is vertical.

A form <|> e Ar(P,V) is called basic or tensorial of type (p,V.) if it is both

equivariant and horizontal. The set of basic r-forms on P with values in V. is

denoted A^(P,V). //

Note that the concept of a horizontal form does not depend on the presence

of a connection.

Proposition 4.12. (i) There is a bijective correspondence between equivariant r-

forms <J> e A (P,V) and skew-symmetric vector bundle morphisms <£: • (~"pO * — n — *

corresponding pair <f>, <J> are related by the diagram

(2)

P x V

1*
P x V

PxV

(ii) There is a bijective correspondence between basic r-forms $ e A (P,V)

w-symmetric vector bundle

<j>, <(> are related by the diagram

and skew-symmetric vector bundle raorphisms j>: * TB •• . A corresponding pair

(3)

PxV

P x V

Proof: Let G act on -*rTP •»• P by (X-
1 1

+ X )g
r

X, g • ••• • X g.
1 r

It is

straightforward to show (using 3.1(1)) that this action satisfies the conditions of

2.1 and that tV),e vector bundle morphism -0 : • TP •»• • ("""F̂  quotients to an

isomorphism — g - = 0- (—̂ J. Given f e A (P,V) , regarded as <J>: • TP -• P x v, the

equivariance of <|> implies that It quotients (using 2.2(ii)) to a vector bundle
IC & TP P x V T TP P x V

morphism <j> : — ~ — + — - — . We let <J> be the equivalent morphism •# (—r) + — - — .
b G — G G
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Clearly <|> inherits skew-symmetry from <j> and satisfies (2).

Y /-TP ̂  P X V

Conversely, given a skew-symmetric vector bundle morphism <|>: -e (——J - • — - —
VI Y P X V iP XV

consider £•+ b : • TP -• — - z — . Since Q is a pullback over ir, there is a unique
r I P*V rL / P*V

vector bundle morphism <j>: -0 TP •• P x v such that P 0 <J> = ^ 0 * P. Since 17 is

fibrewise an isomorphism, 4 inherits skew-symmetry from <|>.

It is straightforward to check that these constructions are mutual inverses.

(ii) Let y be any connection in P(B,G). If $ e Ar(P,V)G is horizontal,
T^P

<)>(X1,...,X )(x) vanishes whenever one or more of the X.(x)'s is in im(j) • —r— .r r P x v
Therefore the vector bundle morphism 6 = (j>o-0 y: • TB + does not depend on the
choice of y. Clearly £ is skew-symmetric, since <J> is, and £o-e TT^ = ^ since each
X., - VtJZj) = MX.,) is in - ^ , where cu is the back-connection corresponding
i x i i G

to y.

T* P

Conversely, given a skew-symmetric vector bundle morphism g: -0 TB > —
T T T P P X V

consider *©• TT.: • (—) -• . T^is i s certainly a skew-symmetric vector bundle
r G

morphism and so induces, by (i), an equivariant form <f> e A (P,V.) which is

horizontal since (^••rirJk)(X-, ••. ,X )(x) vanishes whenever one or more of the

T^P
X (x)fs is in —•=— = ker TT^.

Again, it is straightforward to check that these constructions are mutual

inverses. //

Of course a special case of (i) was dealt with already in the case of

connection forms and back-connections.

Denote by Cr ( ̂  , P ^ V ) the vector bundle A l t r ( ^ , P ^ V ) whose fibres

TPare the alternating r-multilinear maps ^r —
G

p x

x G
, for x E B. Likewise

denote by Cr(TB, P ^ V ) the vector bundle Altr(TB, P * V ) . Then r c r ( ^ , P X V )

is naturally isomorphic to the C(B)-module of alternating bundle morphisms

T* /-TP "\ P X V

* (""p") * — n — ' * an(* "̂t *s triv:*-al t 0 check that the correspondence of 4.12(i)

becomes a C(B)-module isomorphism of rcr (— , — ~ — ) with Ar(P,V) , where the module

structure on Ar(P,V)G is f<|> = (f»Tr)<j>. Similarly, TCr(TB, P ^ V ) is isomorphic as a

C(B)-raodule to A 5 ( P , V ) .

It is well-known, and easy to check directly, that the graded module

A*(P,V) is closed under the exterior derivative 6. It follows that 6 can be

transferred to rc*(—- , — - — ) :
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Proposi t ion 4 . 1 3 .

Ar(P,V)°

I
rfTP P x V,

i
commutes, where the vertical arrows are the isomorphisms of 4.12(i) and, for

„ r/TP P x V.

r+1
I ("I

1=1
)±++ I (-i)±+U([x±tx.hx^.W.x

where

Proof: First note that, for any * e Ar(P,V)G, and X4 e r(^|), (2) implies that

<J>(X1,...,Xr) = f(X1,...,Xr) as functions P • V.

Now, for x. e r ( — ) , x e B, and any u e ir" (x),

-1) X1(0(X1,...,Xr+1))(x)

(x)

and the result is proved.

Note that we are using 6 as defined by Greub et al, 1972, §§4.3, 4.7,

without the factor of . •. used by Kobayashi and Nomizu, 1963, I 3.11.
2 2

Since 6 = 0, it follows that d = 0. Of course, d is the Lie algebroid coboundary
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of IV 2.1.

Now suppose that we have a connection Y in P(B,G), and let h: TP + Q<£, TP

be the corresponding "horizontal projection" (T<obayashi and Noraizu, 1963, §11.1).

Let h*: Ar(P,V) -• Ar(P,V) be the map dual to h, that is,

i , , r 1 > ...,hx r), x1 e rrp.

Clearly h* maps Ar(P,V)G into A^(P,V).

Lemma 4.14.

r.TP P x v> Y* r, P x V-,

commutes, where the vertical arrows are the isomorphisms of 4.12, and y* is the

map <f> f-> <|>«»Yr.

Proof: Take <j> e Ar(P,V)G; we must prove that h*(<|>) = Y * y ) . For X± e m ,

x e B, and u e TT" ( X ) ,

,Xr)(x) = h*(»)(YX1.... ,YXr)(x)

.,h(YiT(u))>.

Now for any X e TTB, we have YX e r(^) (see the discussion following 4.1)

so YX(u) e Q and so VI(YX(U)) = YX(u) . The expression therefore reduces to

and the result follows. //

Putting 4.13 and 4.14 together we have

Proposition 4.15. Let V^ - h*©6: Ar(P,V)G •»• A 5 + 1 ( P , V ) be the covariant exterior
B

derivative induced by the connection Q in P(B,G) C<obayashi and Nomizu, 1963, §11.5;

Greub et al, 1973, §6.12). Then
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Ar(P,V)G

rcr(TP. ( P ^ & , r c r . l ( T B > L ^ L )

commutes, where the vertical arrows are the isomorphisms of 4.12, J) is the map

TP
<t> *-* Y*(d<|>), and y: TB •• —- corresponds to Q. //

Notice that «8 is not precisely equal to either of the two exterior

covariant derivatives introduced in I1I§5.

We are at last able to show that the curvature R e TC f— , " 1
Y ^ G ' G J

defined in 4.10 does indeed correspond to the standard curvature form

0 = VQ(u)) e Ag(P,g).

1 C
Proposition 4.16. Let w e A (1̂ {)) be a connection form in P(B,G) and let

TP p xO

o): —£• + — ~ - be the corresponding back-connection in the Atiyah sequence of

P(B,G). Then

where y is the connection corresponding to oo.

Proof: It has just been proved that V̂ (a)) = o6Y(w) = Y*(da)), and SI - V̂ (o)) by

definition. So it remains to prove that R = Y*(da>). For X,Y e FTB,

da)(YX,YY) = YX(a)(YY)) - YY(O)(YX)) - CO([YX,YY])

= -W([YX,YY]) (since O>OY - 0)

= a)(Y([X,Y]) - [YX,YY])

= R (X,Y) (since woj = id). //

A "structure equation" for R can now be easily obtained.

Proposition 4.17. If y is a connection in P(B,G) and u> is the corresponding back-

connection, then
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Proof: For x,Y e rf-^-l,
————— G

j((do) - [o),u)])(X,Y)) = j(X(u>Y)) - j(Y(o)X)) - ju)[X,Y] - [jo)X,jo)Y]

- [X,j<*>Y] + [jwX,Y] - jo)[X,Y] - [jo)X,ju)Y] (using 4.8)

= [Y\X,ju)Y] + [X - Y^X,Y] - jco[X,Y]

- [Y%X,-Y^Y] + [X,Y] - jo>[X,Y]

= J(Ry(^X,Tr^Y)) (using j«u> + y ^ = id repeatedly),

from which the result follows. //

The minus sign in 4.17, compared to the standard equation ft = 6oo + [(0,0)], is

due to the use of the right-hand bracket infl . Notice, on the other hand, that this

is a different equation from III 5.13; the Lie algebroid coboundary d used here is

not the same as the covariant derivative D of III§5.

4.17 does not possess the importance in the Atiyah sequence formulation of

the theory that ft = du) + [o),o>] does in the standard treatment. The reason for this

is straightforward: the standard definition of curvature, ft = h*(do>), is difficult

to work with in both theoretical and practical calculations and the structure

equation is the usual means by which curvature is calculated. The "Lie algebroid

curvature" R is, on the other hand, very easy to work with for almost all

theoretical purposes, and it can easily be localized to a family of local 2-forms

in A (U.,0), U. C B, for computational work. (See III§5.) There is thus no need

for an alternative formula. Indeed if the term "structure equation" is to be used at

all in this presentation, it should perhaps be applied to the equation R = y*(du))

proved in 4.16.

We will not develop the general theory any further here since it has already

been covered in the abstract Lie algebroid context (Chapters III - V ) .

We conclude with two examples of how to work with the Atiyah sequence/Lie

algebroid formulation in "theoretical" problems.

Example 4.18. Consider a principal bundle P(B,H,TT) on which a Lie group G acts to

the left in the sense of Greub et al, 1973, §6.28: there are actions G * P •> P,

G x B •• B with respect to which ir is equivariant, and such that g(uh) = (gu)h

V g e G, u e P, h e H. Denote u |->- gu, P *• P by L and x H+ gx, B + B by t .
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Then G acts on the Atiyah sequence of P(B,H) in the following way. G acts

on ZJ by g<Xu> = <T(L ) Xu>, on TB by gXx = T(t ) (X%), and on ^^L- by
u x

g<u,X> = <gu,X>. It is easy to check that the projection of each of these vector

bundles is equivariant, and that j and TT̂  are equivariant. For g e G,

(t, )ic: rTB > TTB denotes the induced map of vector fields, (t ) ^

= T(# ) (X _ ) = gCXCg^x)), and (L )ie: TTP -• ITP denotes th'e corresponding map
g X g X mp rrip

of vector fields on P. Also denote by (L ) ^ the maps r(—) -• r(—J and

r(JP_ltL) + r(-^p-) defined by (Lg) *(x) (x) = g(X(g"
i(x)); it then easily follows

that (Lg)*X = (Lg)*(X) for X e ( ^ ) . Now

(4) (tg)*([X,Y]) = [(tg)*(X),(tg)*(Y)], ¥ X,Y e TTB;

from the corresponding result for (L ) ^ : FTP •• FTP we get

(5) (Lg)*([X,Y]) = [(Lg)*(X),(Lg)*(Y)], ¥. X,Y e r(I|)

and thus the corresponding result for (L ) * : r ( — ^ — ) -• r(—TT^-)-

Greub et al, 1973, loc. cit., define a connection (form) ca e A (P,ft) to be
TP

G-invariant if (L )*u> = u, ¥. g e G. We define a connection y: TB •• —̂ r to be G-
8 TP

equivariant if it is equivariant with respect to the actions of G on TB and — .
H

The reader may check that these two definitions are equivalent. We wish to show

that if y is G-equivariant, then R is also, that is

(6) RY(gXx,gYx) = gRy(Xx,Yx), ¥ g e G, X ^ e T(B)x> x e B.

To prove (6), let X,Y be vector fields on B with the given values at the

8*
chosen x e B. Then t ^(X)(gx) = gX and likewise for Y, so

Now the G-equivariance of y implies that Y<>(£ ). = (L )oy and using this and (4),
g * g *

(5), the above becomes

(Lg)*(Y[X,Y] - [YX,YY])(gx) = j((Lg)^(RY(X,

So R (gX gY ) = g(R (X,Y)(x)) = g R (X Y ), as required.

T A. x y y x x
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Thus the curvature of a G-equivariant connection in P(B,H) is determined by

its values over any one x £ B. (Compare Greub et al, 1973, loc. cit.)

The principal example of such an action on a principal bundle is the action

of a Lie group G on a homogeneous bundle G(G/H,H). In this case the Atiyah sequence

is isomorphic to

(7)

where j and q are induced by the corresponding maps in the exact sequence

T(7T)ii L
h >->- Q f*-D/b (3.9). It is easy to verify that if G acts on each of the

bundles in (7) by g-<g2,X> = <g g ,X> (X e h, Q or D/b), then the isomorphism of (7)

onto the Atiyah sequence of G(G/H,H) described in 3.9 is G-equivariant. Thus a G-
equivariant connection in G(G/H,H) can be identified with a G-equivariant map
G * R / n G x R

•• — — ^ - which is right-inverse to q. . We now need the following
H n 1

Lemma. Let
x \7

and
x \7'

be two vector bundles associated to G(G/H,H) via
G x v G x v' , £
— - — •»•— is or

T
actions p}p' of H on V,V . Then every G-equivariant map <j>:

the form

(8) <K<g,v>) = <g,

a G-equivariant map <J> by (8).

Proof: Let

g1,g2 e G, v e V

V •• G ̂  V be G-equivariant; that is, <{'(81<82 ,v>) = gx <}>(<g2 ,v>)

. Define (Jy V -• V by <j>(<l,v>) <l,*1(v)>. Then <j)(<g,v>)
1 2 y 1

<J>(g<l,v>) = g<l,(|)1(v)> = <g,<J>1(v)>, which es tab l i shes ( 8 ) . That <j>1 i s H-equivariant

follows from <1 , p ! (h)<j> (v)> = <h,<f> (v)> = <J)(<h,v>) = (J>(<1, p(h)v>)

( ( >

The converse is straightforward. / /

This lemma is of course a part of the well-known result that the category of

G-vector bundles and G-equivariant morphisms over G/H is isomorphic to the category

of H-vector spaces and H-equivariant maps.

From the lemma it follows that G-equivariant connections in G(G/H,H) are in

bijective correspondence with maps y : tj /fl ->• D which are right-inverse to T(TT) and

H-equivariant, that is y^Adh X + h ) = Adh y^X +h), ¥ h e H, X eD. By chasing

around the diagram
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T(G/H)

it can be seen that the connection y corresponding to y is given by

D

)M(X +h )>) = <T(LJ (Y,(X +h ))>. It Is also easy to check that

• D +17 , the left split map corresponding to y : Q/n + fl > *s t*ie restriction to

->-n of the connection form CJ: TG •• G x h corresponding to y.

With these preliminaries established, we can calculate the curvature of a G-

equivariant connection y over the coset H e G/H. Take X + h , Y +n e Q In and write

£ = Y1(X +\\ ) , n = Y1(Y +1? ). Let |, n denote the left invariant vector fields on G

corresponding to £, n; then <!(!)> = Y(<X + h > ) and similarly for n and Y. Now

Ry(X +h , Y , Y(Y (4.16)

(4.13)

-o)([|,n])(l) (since a)(|) , a)(n) are constant)

and this, together with (6), completely determines R . (Compare Greub et al, 1973,
i Y

§§6.30, 6.31.) If b is an ideal of O the last expression can be expressed as

-R (X +\\ , Y +h ) as in 4.16, but in general y. ([X +h , Y +fi ]) has no meaning.
Yl l

As an explicit example, take the Hopf bundle SU(2)(S ,U(1)) where

U(l) = {z e C | |z| - 1} is embedded in SU(2) by z *-+ (* ^ ) . Identify 11(1) with

R and £U(2) with the Lie algebra of all matrices of the form

Then is x

e R).

| 0 -i*l a n d ^^(2)/^1) c a n b e identified
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with R . Since U(l) is central in SU(2) the adjoint action of U(l) on #U(2) is

trivial and

r °
1* 1*2 'LX2 + 0

is an equivariant right split map of 11(1) +-•• &7l(2) —•-• R . The corresponding

* is

A simple calculation now shows that

for x,^ e R . //

Example 4.19. Consider a morphisra <j)(id ,f): P(B,G) •• Q(B,H) of principal bundles

over a common base, and the induced morphism of their Atiyah sequences (see 3.8)

Let y be a connection in P(B,G) with corresponding connection form u e A (Pfj)» and
rnp p X Q

a): —— -• ——**- . In the abstract Lie algebroid context (III 5.5) we defined the
~ TO
produced connection Y1: TB + —*• in Q(B,H) by Y1 = <l>*0Y» (That Yf *s a connection

follows easily from TT̂ O <|>̂  = "%•) W e n o w show that Yf is the "induced connection" in

Q(B,H) in the sense of Kobayashi and Nomizu, 1963, §11.6.

The induced connection form OJ1 e A (Q,n) is characterized by the condition

<f>*o>' = f̂ oco (op. cit. II.6.1) and in fact only the values of a)1 on im T((j>)^ TQ

are given in the standard treatments. Using the Atiyah sequence/Lie algebroid

formulation, we can quickly derive the general formula for OJ? .

Let a)1 and a)1 now denote the connection form and back-connection
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corresponding to Yf • Then j'co1 - id - Y'7** • id - fy.ynl. Using this, and the fact
* * * i

that any connection y in any P(B,G) and its connection form u> e A (P,Q) are related

by

Y(X ) - <Z - w (Z)*| > where Z is any element of T(P)
x u u 'u u

with T(TT) (Z) = X e T(B) ,

•l

it is straightforward to establish that the connection form u)' e A (Q,n)

corresponding to Yf is given by

(9) o)f(Y ) - B + Adh"1f^c(o) (X))? Y e T(Q)

where u is any element of P with TT(U) « TT'(V)

X is any element of T(P) with T(ir) (X) = T(TT') (Y)

h is the element of H for which <J>(u)h = v

and B e h is determined by B*(v = Y - T(Î )T(<fr) (X).

It is straightforward, if tedious, to check directly that this u)f is well-

defined and is a connection form in Q(B,H). If Yy = T(<f>)u(X) for some X e T(P)u

then we may use this u and X in (9) and take h = 1 so that we get

u>f(T((|>) X) = f^(w (X)). This confirms that a)' is indeed the induced connection

(form) in the ordinary sense.

It may be noted that (9), although it concerns connection forms in the

ordinary sense, is most easily derived using the Atiyah sequence/Lie algebroid

formulation.

A similar formula to (9) may be derived to express the curvature form ft1

of a)1 in terms of the curvature form ft of u). However in the Atiyah sequence

language^ we need only note that R f = •ik&Rv (see III§5, equation (3)). Here

is the map <u,X>

Clearly the definition Y1 = <I>*«Y and the resulting equation R t = <|>̂ R are

considerably simpler than (9) and the corresponding equation for ft1 in terms of ft,

yet Y* = ^J^Y and R f = <j)J>R also contain more information than the standard
Y * Y

**: ̂ G " * H 1 "

Lastly, the following result is used in II§6.
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Proposition 4.20. Let P(B,G) be a principal bundle. Then P admits a Riemannian

metric which is invariant under the right action of G.

TP
Proof: The vector bundle — •»• B admits a fibre metric (see, for example, Greub

Ox
et al (1972, p. 67)), and any such metric can be pulled back to a G-invariant

TP
Rtemannian metric on P via the fibrewise isomorphism TP -• —— . / /

G



APPENDIX B ON LIE GROUPS AND LIE ALGEBRAS

Throughout these notes, we equip the Lie algebra of a Lie group with the

bracket obtained from the right-invariant vector fields. For the Lie theory of

differentiable groupoids developed in the main text to be compatible with the

standard theory of principal bundles, it is essential to define the Lie algebroid of

a differentiable groupoid by right-invariant vector fields; consistency then

obliges us to do the same for the Lie algebra of a Lie group.

In §1 we give a brief resume of the elementary formulas, in terms of this

convention. In §2 we list the main properties of the right (Darboux) derivative

which to group-valued maps B + G assigns a Maurer-Cartan form in A (B,9). Our

references for Lie groups and Lie algebras are Dieudonne (197 2) and Warner (1971).

§1. Definitions and notations.

Let G be a Lie group and Q the tangent space at the identity. We give •

the right bracket [ , ] defined by

[X,Y] = [X,Y](1) X,Y eg ,

where X is the right-invariant vector field with X(l) = X. The left bracket

[ , 1 , which is defined by
L

[X,Y]L = [X,Y](1) X,Y e g

is related to the right bracket by

[X,Y]L = -[X,Y] X,Y e g .

For a morphism of Lie groups <j>: G -• H the induced Lie algebra morphism

T(<{>) : D -•h is denoted <f>̂. The Lie group of Lie group automorphisms G •> G is

denoted by Aut(G) (see Hochschild (1952)).

For g e G the inner automorphism I : G + G is defined by h h+ ghg , and

(I
g>*

: 9 * 9 by A d ( s ) -
For any Lie algebra Q, the Lie group of Lie algebra automorphisms Q~*"fl

is denoted by Aut(Q), and the Lie algebra of derivations Q*̂ fl by Der(O). For
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vector spaces V,W the vector space of linear maps V-tW is denoted by Hom(V,W) and

the Lie algebra of endomorphisms V-* V by End(V) or Cjl(V). For any Lie algebra D ,

the adjoint representation ad:0—f Der(0) is defined by adX(Y) = [X,Y] . The image,

ad(Q), is the adjoint Lie algebra ofQ and the ideal of inner derivations in Der(O).
ti u U

For a Lie group G, the exponential map exp:Q + G is defined in terms of 1-

parameter subgroups and is not affected by the reversal of the bracket on D. The

flow of X, where X e Q , is ^ = Lgx tx«

Rather than change the definition of the bracket on the endomorphism Lie

algebra u|(V), we retain the standard bracket

[X,Y] = X*Y - Y»X X,Y e D|(V)

and reverse the identification of T(GL(V)). with Ql(V). The standard
. id u

identification of T(GL(V)). with D| (V) is obtained by regarding GL(V) as an open

subset of D|(V) and identifying T(Q/(V))id with OJ(V) by translation in the vector

space n|(V) (see, for example, Warner (1971)). We now use the negative of this

identification; it can be alternatively expressed by mapping X e T(GL(V))., to the

element

V H - -|-exptX(v)| v e V
dt '0

of Q|(V), where, on the right-hand side, the element of T(V) is translated to the

origin. As a consequence, the representation p :D + U\ (V) induced by a

representation p: G -• GL(V) is now given by

P*(X)(v) - - |j- P(exptX)(v)|Q.

Consider the formula Ad^ = ad, which is valid in the standard left-hand

theory. Its content is that

•JJ- Ad(exptX)(Y)|0 = [X,Y]L.

Multiplying by -1 we obtain

-|FAd(exptX)(Y)|() - [X,Y]R

which, in the right-hand conventions, also asserts that Ad^ = ad.

Note however that, for any Lie group G, the representation ad: 0 -• Der(O) is
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the negative of the representation ad in the standard accounts; thus

.,, vN -adX
Ad(exp X) = e

for X e Q .

Lastly, let 0 e A (G,D) be the right Maurer-Cartan form

0(X ) = T(R )(X ). Then 6 satisfies the usual Maurer-Cartan equation
§ g 8

66 + [0,6] = 0

with respect to the right bracket.

§2. Formulas for the right derivative

Let G be a Lie group and B a manifold, and let f: B -• G be a smooth map.

Then the right derivative A(f): TB •• B x d of f isQ -valued 1-form on B defined by

A(f)(X ) = T(R )(T(f)(X )).
f(x)""1

Alternatively, A(f) is the pullback f*0 of the right Maurer-Cartan form 9 on G, and

so A(f) satisfies the Maurer-Cartan equation

6(A(f)) + [A(f),A(f)] = 0

with respect to the right bracket in Q.

If G = V is a vector space, then A(f)(X): B •• V will be identified with the

Lie derivative X(f).

The product rule is

(1) A ( fl f2} = A ( V + A d(f
1)<

A(f
2
) )

where f ,f : B •• G are two maps. Here and elsewhere the symbol Ad(f )(A(f ))

denotes the map

X H+ Ad(f1(x))(A(f )(X )), X e T(B) .

From the product rule it follows that

(2) ACf"1) = -AdCf'^CACf))

where f denotes the pointwise inverse x h* f(x)

If f: B •• G and s: B -»• G are smooth maps, then I (f) denotes the map
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x H+ s(x)f(x)s(x)~ . From the product rule it follows that

(3) A(Is(f)) = Ad(s){Ad(f)(A(s"
1)) + A(f) - ACs"1)}.

In particular,

(A) A(Rof) = A(f), A(L of) = Adg(A(f))
g g

and

(5) A(I of) = Adg(A(f))
g

where g e G is fixed, and f: B •»• G is a smooth map.

If V and W are vector spaces and <j>: B •»• Hom(V,W) and f: B -»• V are smooth

maps, then it is easy to see that

(6) X(<j>(f)) = X(<j>)(f) + <fr(X(f)), X e TTB.

Here, once again, <|>(f) denotes the pointwise evaluation X H > <j>(x) (f (x) ). If W = V

and <j> takes values in GL(V), then (6) can be rewritten as

(6a) X(<j>(f)) = -A(<f>)(X)(<t>(f)) + <j)(X(f)), X e TTB.

The reader is urged to check this formula directly. The minus sign and the double

appearance of <f> in the first term on the right-hand side arise from the

identification of T(GL(V))]. with qJ (V) that is adopted in Si.

It is easily verified that if <J>: G > fl is a morphism of Lie groups and

f: B •> G is a smooth map, then

(7) A(<fr«f) = (j)^A(f).

In particular,

(8) A(Adof) = ad<>A(f).

This formula may be rewritten as

(8a) A(Adof)(X)(V) = [A(f)(X),V]

where X e TTB and V: B *• Q , and the bracket is taken pointwise.

The following result is used in Chapter III.
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Proposition 2.1. Let G and H be Lie groups and let B be a manifold. Let 4>: Q -• H

be a morphism of Lie algebras and let f: B -»- H be a smooth map. Define

<j>: B •*- Hom(n,n) by <j>(x) = Ad(f (x) )o <f>. Then <j>(x) is a Lie algebra morphism for

x e B, and X(?(V)) = ?(X(V)) - [ A(f) (X) ,?(V) ] for X e TTB, V: B + Q .

Proof: Write $(V) as as (Adof) (<|>(V)) where Ad<>f: B + Aut(h) and <|>(V) : B •• In , and

apply (6a). This gives X(?(V)) = -A(Ad»f)(X)(?(V)) + (Ad»f)(X(*(V))). Applying

(8a) to the first terra, and (6) to the expression X(<j>(V)), this becomes

X(?(V)) = -[A(f)(X),?(V)] + (Ad*f)(*(X(V))). Now (Adof) (<|>(X(V))) = ?(X(V) ) by

definition. //

In the case where D =n and <}> e Aut(D) this equation can, by (6a), be

written more simply as

5 ad°A(f)

where A on the left-hand side is with respect to the group Aut(D).



APPENDIX C ON VECTOR BUNDLES

In this appendix we assemble some elementary results, definitions and

notations which are needed in the text and are not readily accessible elsewhere; we

also establish our position on a few matters which are not quite standard.

Our references on vector bundles are Dieudonne (197 2) and Greub et al

(1972). Throughout the text, vector bundles are real and of finite rank, unless

explicitly stated otherwise. Vector bundles are generally denoted (E,p,B), or E for

short; the fibre type is generally denoted V and atlases are generally denoted

For a vector bundle E, the C(B)-module of global sections is denoted FE;

for an open subset U of B, the C(U)-module of local sections defined on U is

denoted F E.

A morphism of vector bundles from (E,p,B) to (E',p',B') is denoted

(<j>,<t> ) where <J> is the map E + E' and <J> is the map B -»• B1. If B = B' and

<J> = id we say that <J> is a morphism E •• E1 over B, or that it is base-preserving.
o B ————

For vector bundles (E ,p ,B ) , i = 1,2, the d i rec t product bundle i s
1 2 1 2 1 2 1 2

(E X E , P * P , B X B ) ; elements are denoted (X,Y) for X e E , Y e E .
For vector bundles (E ,p ,B), i = 1,2, over the same base B, the Whitney sum i s

1 2
denoted (E 4> E ,p,B) and i t s elements are wri t ten X 4> Y or X + Y.

For vector bundles E and E' over the same base B we denote by Hom(E,Ef) the

vector bundle over B whose f ibres Hom(E , E ' ) , x e B, are the vector spaces of l inear

maps E •»• Ef , and whose module of global sect ions gives the C(B)-module of vector

bundle morphisms E •• E1• For n > 0, we denote by Homn(E;Ef) the vector bundle over

B constructed in the same way from n-mult i l inear maps E •• E1 and vector bundle
n xx

morphisms ^ E + Ef ; the sub-bundles corresponding to a l t e rna t ing and symmetric maps
are denoted, r e spec t ive ly , by Alt (E;E?) and Symn(E;Ef)-.

A morphism (<j>,<j> ) : (E,p,B) •• (E ' jp ' jB 1 ) i s f ib rewise - in jec t ive , - su r j ec t ive
o =i

or -bijective if each cj> : E •• E1 i s , respectively, injective, surjective, or
xx <p (x)

bijective.

Given a vector bundle (E,p,B) and a smooth map f: B1 •*• B, the inverse image

vector bundle (f*E,p,BT) is f*E = {(xf,u) £ Bf x E | f(xf) = p(u)} with projection

p(xf,u) = x1 and the natural bundle structure. The morphism (xf,u) |—• u, f*E + E

over f: B1 ->• B, is denoted f.



APPENDIX C 314

Definition 1. A morphism of vector bundles (<{>,f): (E ,p ,B ) + (E ,p ,B ) is a
1 2 2 2

pullback if every morphism of vector bundles (^,f): (E,p,B ) + (E ,p ,B ) over
1 2

f: B + B can be factored uniquely into

where \\> is a vector bundle morphism over B • //

Proposition 2. A morphism of vector bundles is a pullback iff it is fibrewise

bijective.

Proof; « « ) Suppose (<f>,f): (E^p^B 1 ) > (E2,p2,B2) is fibrewise bijective.

Given (ij>,f), as above, define if: E •• E fibrewise by iji = (<j>x) oi|> , for

x e B, It is easy to check, using local charts, that tf is smooth.

(*>) From (<=) it follows that f: f*E •• E is a pullback. Applying the

uniqueness condition in Definition 1 to both 4> and f, there is a vector bundle

isomorphism E + f*E such that

commutes. Since f is a fibrewise bijection, it follows that 4» is also. //

Thus the concepts of pullback, inverse image and fibrewise-bijection are

equivalent. Nonetheless, it is useful to distinguish between them.

We now consider the maps induced on modules of sections by maps of vector

bundles. If <f>: E •»• E1 is a map of vector bundles over a common base B then the

C(B)-module morphism TE •• TE1 , y !-•• <f><>y is simply denoted <J>. If E and E' are now

vector bundles over bases B and Bf , and <J>: E • E' is a vector bundle map over a

dif feomorphism <|> : B > B1, then the map FE + TE1 , v I-* (j>opo(|> will usually be
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denoted $, An alternative formula is

~i: FE + FE' is semi-linear with respect to the map C(B) + C(B'), f t—• fo<J> , which

we will also denote by <J>; by semi-linearity is meant the equation ^(fy) = 4>(f)4>(y)»

In the case of fibrewise-bijections a different construction is appropriate.

Proposition 3. Let (f>: E ->• E1 be a fibrewise-bijection over <J> : B ->• B1. Then
o

for yf e FEf the map

# #
is a smooth section of E, denoted <j> (y) t and <J> : FE

1 + FE is semilinear with respect

to ff H+ f'°<l>o, C(B') > C(B).

Proof; Elementary. //

Interestingly, if <j>: E •• E1 and <j> : B •• Bf satisfy all the conditions for

being a fibrewise-bijection except that <(> need not be smooth (or continuous), then

smoothness of <J> follows if <j> maps smooth sections to smooth sections.

Theorem 4. Let (<j>,<|> ) : (E,p,B) ->• (E'jp'jB1) be a fibrewise-bijection. Then the map

C(B) » FE1 > FE, f » yf »-• f/(yf)
C(Bf)

is an isomorphism of C(B)-modules. Here the tensor product is taken with respect to

the C(Bf)-module structure on C(B) defined by f'f = (ff«<|> )f and the tensor product

is itself a C(B)-module with respect to f (f » y1) = (f,f2> • V
% •

Proof: See, for example, Greub et al (1972, 2.26). //

Lastly, we need the following general construction of inverse image vector

bundles.

1 1 2 2
Proposition 5. Let <j> : E •* E and <{> : E •>• E be morphisms of vector bundles over a

fixed base B, and suppose that
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+ im(<f> ) = E , ¥x e B.

Then F = { u * u e E ^ E I <j> (u ) = <f> (u ) } is a vector subbundle of
1 2 -1 2 1 2 2 , - 2 1 1 2 1

E * E , the maps <J> : F •• E , u 9 u t-+ u and < j > : F > E , u ^ u h"*"u are vector

bundle morphisms over B, and

F

4
is a pullback square in the sense that if E1 is another vector bundle on B

and ty : Ef •*• E and ip : Ef •• E are morphisms of vector bundles over B such that
1 1 2 2

<j) © i|> = <j) o^ > then there is a unique morphism ij;: E' -• F over B such that
-2 1 - 1 2
<\> o i|; = ^ a n d $ o i|; = i(> .

Proof: Once it is established that F is a vector subbundle of E * E , this is

merely a formal manipulation. To show that F is a vector subbundle, define

<J»:E * E •• E, u * u H + < J > ( u ) - < j > ( u ) . Then the condition on the images
1 2

of <(> , <|> ensures that <J> is of maximal rank; hence F, its kernel, is a vector

subbundle (for example, Dieudonne (1972, 16.17.5)). //

We denote F above by E * E and may also refer to it as the pullback
E

bundle.
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Back-connection 140, 292
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Base 2, 100
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$-fibre 3

B-saturation, of a local vector field 114

Bianchi identity (second) 145: abstract

- 204, 222

Canonical coordinates 136

Canonical open set 25

CDO - See covariant differential operator

Central representation 215

Centre of an LAB 188

Change of Lie algebroids 242

Coarsest topology, on a groupoid 27

Coboundary, for Lie algebroid coho-
mology 198, 298

Cochain 123

Cocycle 39, 199: - condition 149, 237
260; construction of groupoid from - 40;
construction of Lie algebroid from - 150;
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Cohomology: equivariant de Rham - 202;
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Compatible system of local data 238

Connection 140, 292: adjoint - 144, 295;
back - 140, 141, 292; equivariant - 302;
flat - 141; - form 293; induced - in an
associated vector bundle 294;
infinitesimal - 141, 292; Koszul - 142;
Lie - 143; local - form 152; local flat
- 148, 236, 260; produced - 143, 305;
Riemannian - 142; standard flat - 143

Construction principle for Lie algebroids
150, 224

Co-star 3

Coupling 214: - induced by an extension
222

Covariant derivative, exterior 145, 146,
217, 299
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Covariant differential operator 104:
- on an LAB 133; outer - 213; on a
Riemannian bundle - 132

Covering of a groupoid 55: morphism
of - 55; regular - 57

Covering projection (monodromy
groupoid) 65, 68

Criteria for 2-form to be curvature
form 224, 266

Curvature: - of an anchor-preserving
map 203, 205; - of a connection 140,
295; - form, local 153

Decomposing section 32

Deformable section 54

Derivation 104

Derived sub LAB 188

Differentiable groupoid 84: action -
90; action of a - 92; holonomy - (of
a microdifferentiable groupoid) 63,
162; locally - 161; product - 95;
see also Topological groupoid, Lie
groupoid, Morphism

Differentiable subgroupoid 91:
a-identity component - 86; isotropy -
93; reduction 91

Embedding 37

Equivalence: - of cocycles 39; - of
operator extensions 205, 220; - of
systems of transition data 238

Equivariant: - chart 278; - connection
302; - de Rham cohomology 202; - form
295; - with respect to groupoid actions
49, 50; - with respect to Lie algebroid
actions 106; 192

Euler class 258

Exactness of Lie functor 117

Exponential map 127

Extension, of a groupoid 52

Extension, of a Lie algebroid 204,
220: flat - 204; geometric - 244;
inflated - 244; operator - 205, 226;

pullback - 209; pushout - 207;
restricted - 243; semidirect - 209,
231

Fibre bundle 274: associated - 275,
281; morphism of - 275

Fibre type 274

Field of Lie algebra brackets 97

Flow neighbourhood 126

Flow, saturated local 289

Form: basic - 296; equivariant - 295;
fibred - 122; horizontal - 296;
pseudotensorial - 295; right-invariant
fibered - 122; tensorial - 296

Formal pairing 251

Frame groupoid 5, 23: - of an LAB 97;
- of a Riemannian bundle 96; Lie
algebroid of - 128, 132

Fundamental groupoid 5, 24, 90

T-lift, of a path 75, 76, 80

Gauge transformation 60

Geometric extension 244

Germ equivalent local morphisms 70

Germ groupoid 26

Groupoid 2: abelian - 15; action - 4, 55;
action of a - 49; - associated to a
principal bundle 6, 28; base - 3;
equivalence relation as a - 12, 22, 90,
162; frame - 5, 23; fundamental - 5,
24, 90; germ -26; inverse image - 11;
isomorphism of - 7; product - 15, 95;
totally intransitive - 13; transitive -
13; trivial - 14; see also Subgroupoid,
Morphism

G-simple open cover 71

Gysin sequence 257

Holonomy: - of a connection 80; - group
78; - groupoid (of a microdifferentiable
groupoid) 63-64; - morphism 165; - sub-
groupoid (of a connection) 76, 171, 182
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Homogeneous bundle 273: Atiyah sequence
of - 291; equivariant connections in -
302; groupoid corresponding to - 23

Hopf bundles 43, 68, 231, 304

Horizontal: - form 296; - projection 299

Ideal (of a Lie algebroid) 166, 191:

- reduction 191

Identity 2

Image: - of Lie groupoid morphism 98;

- of Lie algebroid morphism 190
Inflation map 243

Inner automorphism: - of a groupoid 18,
62; Lie groupoid of - 234

Inner group bundle 52, 277

Inner subgroupoid 8, 13, 92

Integrability 260: - obstruction 264

Interior multiplication 199

Invariant section 53, 281

Isotropy: - group 3; - subgroupoid 54,
93

Kernel: - of groupoid morphism 8, 39,
98; - of Lie algebroid morphism 190

LAB - See Lie algebra bundle

Left bracket 308

Left-split map 293

Left-translation 18, 58; local - 60;

- of a principal bundle 60

LGB - See Lie group bundle

Lie algebra bundle 101: abelian - 189;
adjoint - of an LAB 189; adjoint - of a
Lie algebroid 190; - associated to an LGB
118; centre of a - 188; - of derivations
188; derived - 188; - of inner
derivations 189; quotient - 189; semi-
simple - 189; See also Morphism

Lie algebroid 100: abelian - 107; adjoint
bundle of a - 105, 190; adjoint
representation of - 107, 133, 137, 189;
- chart 149; construction of - from

transition forms 150; - of covariant
differential operators 104; curvature
reduction 180; - of a differential
groupoid 113; direct sum - 108; exact
sequence of - 107; flat - 141; - of
frame groupoid 132; integrable - 260;
involutive distribution as a - 104;

- of isotropy groupoid 129; local
triviality of transitive - 233; produced
- 232; pullback - 208; quotient - 191;
reduction of a - 108; regular - 100;
representation of - 106, 129, 193;
restriction of - 101; totally
intransitive - 100; transitive - 100;
trivial - 102; trivial representation
of - 106; See also Lie subalgebroid,
Morphism

Lie connection 143

Lie derivation law 214, 217

Lie derivative 199

Lie functor 115; exactness of - 117

Lie group bundle 277: morphism of - 277

Lie groupoid 89: adjoint - of a transi-
tive Lie algebroid 234, 261; adjoint
LAB of a - 118; adjoint representation
of - 118; flat - 141; - of inner auto-
morphisms 234, 261; local isomorphism
of - 165; monodromy - 90; orthonormal
frame - 96; quotient - 99; reduction of
- 91; Riemannian frame - 96; See also
Topological groupoid, Lie subgroupoid,
Morphism

Lie subalgebroid 108: reduction 108

Lie subgroupoid 91: - corresponding to
Lie subalgebroid 158

Lie pseudo-algebra 100

Lie's third theorem 268

Lift: - of curvature of a Lie derivation
law 215; - of a path 75, 76, 80

Lifting of extensions 250, 255

Local differentiable groupoid structure
161

Local system of coefficients 165

Local triviality 32, 233
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Maurer-Cartan forms: - on a group 310;
- on a Lie groupoid 123; See also tran-
sition forms

Microdifferentiable groupoid 161

Monodromy groupoid 68, 90, 166

Morphism of differentiable groupoids
84, 98; kernel of - 98; local - 165, 184

Morphism of groupoids 7: base-bijective
(-injective, -surjective) - 7; base -
preserving 7; covering 55; inverse-
image - 11; - over a given map 7; -
over a manifold 7; piecewise-bijective
(-injective, -surjective) - 7;
universal - 12

Morphism of Lie algebra bundles 101:
locally constant - 176

Morphism of Lie algebroids 101, 190:
compatibility condition for - 102;
image of - 190; induced - 114, 135,
162; kernel of - 190; structure of -
182, 190, 192, 239

Morphism of topological groupoids 18:
induced - of local prolongation group-
oids 63; local - 70; produced - 42

Morphism of vector bundles: fibre-
wise-bijective (-injective, -sur-
jective) 313; locally constant - 176;
- of locally constant rank 176; - over
a given manifold 313; pullback - 314

Natural projection 9, 20, 191

Object 2

Object inclusion map 2

Obstruction: - class 220; - cocycle 216

Orbit, of groupoid action 49

Pairing of representations 250

Parallel: - section 172, 195; - trans-
lation 79

Path connection: C° - 75; C°° - 168;
continuous - 75; produced - 79

Principal bundle 274: Cartan - 273;
locally simple - 71; locally trivial -
274; morphism of - 273; produced - 276

Produced: - connection 143, 305; -
groupoid 42, 233; - Lie algebroid 232;
- path-connection 79; - principal
bundle 276

Pseudogroup of local admissible
sections 61

Pseudotensorial form 295

Pullback: - groupoid 11; topological
groupoid 19, 36; - Lie algebroid 208;
- vector bundle 315

Quotient: - groupoid 9; - Lie algebroid
191; - Lie groupoid 99; - topological
groupoid 20, 38; - vector bundle 278

Reduction: - of a Lie algebroid 123;
- of a Lie groupoid 91; - of a principal
bundle 276; Abstract - theorem 241

Regular module (Rinehart) 211

Reparametrization condition 75

Representation: - associated to an
extension 53; central - 215; - of a
groupoid 59, 93; - of a Lie algebroid
106, 129, 193, 294; - trivial 50, 106;
See also Action

Restriction map 243

Restriction semi-direct 244

Riemannian metric, invariant 307

Right: - bracket 286, 308; - derivative
123, 310; - split map 293; - translation
18, 62

RSD - See Restriction semi-direct

Saturated local flow 289

Section: admissible - 58, 60; - atlas 32,
33, 274; decomposing - 32; deformable
- 54; invariant - 53, 281; local - of a
principal bundle 274; local - of a
topological groupoid 32

Semidirect product 209, 231

Z-bundle 97, 133

Simple open cover 70
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Source projection 2

Spectral sequence: - of an extension
249; Leray-Serre - 256; - of a
transitive Lie algebroid 248; Van
Est's - 269

Splitting 293

Standard cochain complex 198

Star 3

Structure equation 300

Submersion (topological) 33

Symmetric: - a-neighbourhood 48;

- set 47

System of transition data 238

Tangency conditions 168

Target projection 2

Tensorial form 296

TGB - See Topological group bundle

Topological group bundle 27, 277:
inner - 277; morphism of - 277

Topological groupoid 17: - associated
to a principal bundle 28; - with
coarsest topology 27; globally trivial
- 32; inverse image - 19; isomorphism
of - 21, 70; local isomorphism of - 70;
local prolongation - 61; locally
simple - 71; locally trivial - 32;
monodromy - 64, 68; produced - 42,
233; principal - 27; quotient - 20,
38; trivial - 22; trivializable - 32;
weakly locally trivial - 33; See also
Topological subgroupoid; Morphism

Topological quotient groupoid 20, 38

Topological subgroupoid 19: a-identity
component - 45; holonomy - 78

Transition data, system of 238

Transition: - form 149, 236, 260; -
function 39, 274

Transitivity component 13, 87

Transversal 204, 221: flat - 204

Universal covering bundle 68

Unity 2

Vector bundle: associated - 275, 280;
inverse image - 313

Vector field: right-invariant - 110,
113, 114; vertical - 110

Vertex: - bundle 30; - group 3, 87

Vertical bundle 86

Wedge product 251

Whitney sum 313
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