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INTRODUCTION

The concept of groupoid is one of the means by which the twentieth century
reclaims the original domain of application of the group concept. The modern,
rigorous concept of group is far too restrictive for the range of geometrical
applications envisaged in the work of Lie. There have thus arisen the concepts of
Lie pseudogroup, of differentiable and of Lie groupoid, and of principal bundle - as
well as various related infinitesimal concepts such as Lie equation, graded Lie
algebra and Lie algebroid - by which mathematics seeks to acquire a precise and
rigorous language in which to study the symmetry phenomenae associated with

geometrical transformations which are only locally defined.

This book is both an exposition of the basic theory of differentiable and
Lie groupoids and their Lie algebroids, with an emphasis on counnection theory, and
an account of the author's work, not previously published, on the abstract theory of
transitive Lie algebroids, their cohomology theory, and the integrability problem

and its relationship to connection theory.

The concept of groupoid was introduced into differential geometry by
Ehresmann in the 1950's, following his work ou the concept of principal bundle.
Indeed the concept of Lie groupoid - a differentiable groupoid with a local
triviality condition ~ is, modulo some details, equivalent to that of principal
bundle. Since the appearance of Kobayashi and Nomizu (1963), the concept of
principal bundle has been recognized as a natural setting for the formulation and
study of general geometric problems; both the theory of G-structures and the theory
of general connections are set in the context of principal bundles, and so too is
much work on gauge theory. As an analytical tool in differential geometry, the
importance of the principal bundle councept undoubtedly goes back to the fact that it
abstracts the moving frame technique of Cartan. An important secondary aim of these
notes Is to establish that the theory of principal bundles and general connection
theory is illuminated and clarified by its groupoid formulation; it will be shown in
Chapter IIT that the Lie theory of Lie groupoids with a given base is coextensive

with the standard theory of connections.

To summarize very briefly the work done on groupoids within differenttlal

geometry since Ehresmann, there are the following two main areas.

(1) Work on groupoid theory itself. The construction by Pradines (1966,
1967, 1968a,b) of a first~order infinitesimal invariant of a differential groupoid,

the Lie algebroid, and his announcement of a full Lie theory for differentiable
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groupoids, paralleling the Lie theory of Lie groups and Lie algebras.

Proofs of many of the Lie theoretic results announced by Pradines were given
by Almeida (1980); the construction of counterexamples to the iategrability of Lie

algebroids was announced by Almeida and Molino (1985).

The general theory of differentiable and microdifferentiable groupoids is a
generalization of foliation theory, and the techniques used are largely foliation -

theoretic in character.

A very recent article on general differentiable groupoids, expanding

considerably on Pradines (1966), is Pradines (1986).

(2) Work in which Lie groupoids have been used as a tool or language. Here
there is firstly a range of work which may be somewhat loosely described as the
theory of Lie equations and Spencer cohomology —~ see, for example, Ngs Van ng
(1967, 1968, 1969), Kumpera and Spencer (1972) and Kumpera (1975). Secondly, much
of the theory of higher—order connections is in terms of Lie groupoids -~ see Virsik

(1969, 1971), Bowshell (1971), and ver Eecke (1981), for example.

Much of this work has also contributed to the theory of differentiable and

Lie groupoids per se.

Outside of differential geometry, there are the following major areas.

(3) The work of Brown and a number of co-authors on the theory of general

topological groupoids. See Brown and Hardy (1976) and Brown et al (1976).

For references to the considerable body of work by Brown, Higgins and others
on multiple groupoid structures and homotopy theory, see the survey by Brown ('Some
non-abelian methods in homotopy theory and homological algebra', in Categorical
Topology: Proc. Conf. Toledo, Ohio, 1983. Ed. H.L. Bentley et al, Helderman-Verlag,
Berlin (1984), 108-146).

(4) Work on the algebraic theory of groupoids, and their application to
problems in group theory. See Higgins (1971).

(5) Work on the cohomology of classifying spaces associated with groupoids,
usually having non-Hausdorff, sheaf-like topologies. See the survey by Stasheff
(1978).

(6) A rapidly growing body of work on the C*-algebras associated with a

topological or measured groupoid. See Renault (1980) and Connes ("A survey of
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foliations and operator algebras.” Proc. Symp. Pure Mathematics, 38 (1), 1982, 521~

628. American Mathematical Society, Providence, R.I.).

For the measure theory of groupoids and its use in functional analytic

questions see also Seda (1980) and references given there.

A bibliography on all aspects of groupoid theory up to 1976 is given in
Brown and Hardy (1976) and Brown et al (1976). The list of references to the

present work is not a bibliography.

The primary aim of this book is to present certain new results in the theory
of transitive Lie algebroids, and in their connection and cohomology theory; we
intend that these results establish a significant theory of abstract Lie algebroids
independent of groupoid theory. As a necessary preliminary, we give the first full
account of the basic theory of differentiable groupoids and Lie algebroids, with
emphasis on the case of Lie groupoids and transitive Lie algebroids. One important
secondary aim has already been mentioned - to integrate the standard theory of
connections in principal bundles with the Lie theory of Lie groupoids on a given
base, to the benefit of both theories. As a matter of exposition, we describe the
principal bundle versions of groupoid concepts and constructions whenever this

appears to clarify the groupoid theory.

The concept of Lie algebroid was introduced by Pradines (1967), as the
first-order invariant attached to a differentiable groupoid, generalizing the
construction of the Lie algebra of a Lie group. 1In the case of Lie groupoids, the
Lie algebroid is the Atiyah sequence of the corresponding principal bundle, as
introduced by Atiyah (1957). For a differentiable groupoid arising from a
foliation, the Lie algebroid is the corresponding involutive distribution. The
closely related concept of Lie pseudo-algebra has also been introduced by a number

of authors, under a variety of names —~ see II1§2 for references.

In Chapter IV, and in Chapter 111§§2,5,7 we undertake the first development
of the abstract theory of transitive Lie algebroids and of their connection and
cohomology theory. The condition of transitivity for Lie algebroids is related to
that of local triviality for groupoids - for example, the Lie algebroid of a
differentiable groupoid on a connected base is transitive iff the groupoid is
locally trivial. (However that the transitivity condition implies a true local
triviality condition for the Lie algebroid is non-trivial - see IV§4.) A transitive
Lie algebroid is naturally written as an exact sequence L >> A —3% TB, where TB is
the tangent bundle of the base manifold and L is, a priori, a vector bundle whose

fibres are Lie algebras; it is, in fact, a Lie algebra bundle.



Exact sequences are generally classified by cohomology in the second
degree. Using this point of view, we develop two separate cohomological
classifications of transitive Lie algebroids. Firstly, there is a "global”
classification in terms of curvature forms and what we propose to call adjoint
connections. A transitive Lie algebroid L +-+ A -++ TB is characterized by the
curvature 2-form ﬁ;: TB © TB —-+ L of any connection y: TB -=—+ A in it, together
with the connection vY in the Lie algebra bundle L induced by y. Thus, for example,
we obtain simple algebraic criteria for a 2-form, with values in a Lie algebra
bundle, to be the curvature of a connection in a Lie algebroid. The criteria are a
Bianchi identity and a compatibility condition between the given form and
the curvature properties of the Lie algebra bundle. At the simplest level, this
generalizes the observation that the curvature form of a connection in a principal
bundle with abelian structure group must be closed. In cohomological terms this
classification is a speclalization of the classification of non-abelian extensions
of Lie algebroids.

Secondly we give a "local"” classification of transitive Lie algebroids by
what we propose to call transition forms, These are Lie algebra valued Maurer-
Cartan forms. The classification is analogous to that of principal bundles by
transition functions, and indeed for a Lie algebroid which is given as the Atiyah
sequence of a principal bundle, the transition forms may be obtained as the right-
derivatives of transition functions for the bundle. This classification establishes
that transitive Lie algebroids are locally trivial in a sense precisely analogous to
that true of Lie groupoids. The author obtained this result in 1979 at a time when
it was generally believed that all transitive Lie algebroids were the Lie algebroids
of Lie groupoids; it is now known that this is not so, and this classification is
the more interesting. The key to this result is that a transitive Lie algebroid on
a contractible base admits a flat connection, and we obtain this from the
cohomological classification of extensions. In turn, the classification of
transitive Lie algebroids by systems of transition forms may be regarded as an
element in a non-abelian cohomology theory for manifolds with values in Lie algebra
bundles, in the same way that the classification of principal bundles by transition

functions may be regarded as a cohomological classification.

In §5 of Chapter IV we show that there is a spectral sequence associated in
a natural algebraic manner with a transitive Lie algebroid, which generalizes the
Leray—-Serre spectral sequence for de Rham cohomology of a principal bundle and, in
particular, allows coefficients in general vector bundles to be introduced. This

algebraization allows the transfer to principal bundle theory of techniques



xi

developed for the cohomology of discrete groups and Lie algebras, and we believe it
will also provide the correct setting for the study of the cohomology structure of
principal bundles with noncompact structure group. Here we only make a beginning on

these questions.

In Chapter V we present a cohomological obstruction to the integrability of
a transitive Lie algebroid on a simply-connected base. 1In this case, this
obstruction gives a complete resolution of the problem of when a transitive Lie

algebroid is the Lie algebroid of a Lie groupoid.

Combining the obstruction to integrability with the global classification of
transitive Lie algebroids by curvature forms, we obtain necessary and sufficient
conditions for a Lie algebra bundle valued 2-form to be the curvature of a
connection in a principal bundle, providing that the base manifold is simply-
connected. These conditions generalize and reformulate the integrality lemma of

Weil (1958); see also Kostant (1970).

The methods developed in Chapter IV and in Chapter V represent a rather
intricate combination of cohomological and connection-theoretic techniques. We
believe we have in fact shown that these two subjects are even more inextricably

linked, in a nontrivial fashion, than has been realized.

Indeed it should perhaps be emphasized that this is a book about the general
theory of connections, since this may not be fully evident from a glance at the
table of contents. General connection theory has traditionally taken place on
principal bundles, but we argue here that the proper setting for much of connection
theory is on a Lie algebroid, and that the relationship between principal bundles and

Lie algebroids is best understood by replacing principal bundles by Lie groupoids.

A reader who is interested in the abstract theory of Lie algebroids and/or
the integrability obstruction, and who is familiar with principal bundle theory, but
does not wish to acquire the Lie groupoid language, could read Chapter III882, 5,
Appendix A and Chapters IV and V, though they will miss much explanatory material by

so doing.

In Chapters I, II and III we give a detailed account of the basic theory of
differentiable groupoids and Lie algebroids, with emphasis on the locally trivial
case. The presentation is intended to resemble, as far as is possible, the standard
treatment of the theory of Lie groups and Lie algebras. Chapter I is an
introduction to the algebra of groupoids. In Chapter II we treat topological
groupoids, not so much for their own interest - which is considerable - but as a
device for setting down the formal content of certain later constructions without

the need to address questions of differentiability. Thus -~ with a few brief
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exceptions - we address only those matters which have meaning in the differentiable
case.

The main business of the book starts in Chapter III and the resemblance
between this part of the subject and the standard treatment of Lie groups and Lie
algebras will be evident. We first treat questions of differentiability for the
constructions of Chapter II and then, in §§2-3, introduce the Lie algebroid of a
differentiable groupoid. In §4 we construct the exponential map and use it to compute
the Lie algebroids of several important Lie groupoids, central to connection theory.
In 86 we establish two of the main results of the Lie theory of Lie groupoids with a
given base. In §5 and §7 we present an account of the connection theory of Lie
groupoids and transitive Lie algebroids; §5 giving the infinitesimal theory and §7
those aspects which depend on path-lifting or holonomy. 1In 85 we also begin the

classification of transitive Lie algebroids by transition forms.

Much of Chapters I, II and III is the work of other minds. I have given
references to the original literature in the text itself, but I have not attempted
to write a comparative history. The following features of these chapters are, I

believe, new and significant.

The construction in II§6 of the monodromy groupoid of a locally trivial
topological groupoid, and the proof in III§6 that there is a bijective
correspondence between a-connected Lie subgroupoids of a given Lie groupoid, and
transitive Lie subalgebroids of its Lie algebroid, and between base-preserving local

morphisms of Lie groupoids and base-preserving morphisms of their Lie algebroids.

These results were announced, for general differentiable groupoids and
general morphisms, by Pradines (1966, 1967) and proofs in that generality were given
by Almeida (1980) and Almeida and Kumpera (1981). The proofs given here make
essential use of local triviality to bypass questions of holonomy, and are new and

considerably simpler.

The circle of ideas concerning frame groupoids of a geometric structure on a
vector bundle: The proof of Ngd's theorem III 1.20 by use of III 1.9 - and thus,
ultimately, by Pradines' theorem III 1.4; the calculation III 4.7 of the Lie
algebroids of isotropy subgroupoids and of the induced representations III 4.8; and

the derivation of III 7.1l from these results.

The separation of standard connection theory into the infinitesimal
connection theory of abstract transitive Lie algebroids (III§5, IV§l) and the path
connection theory of locally trivial topological or Lie groupoids (II§7, III§7).

The deduction of the Ambrose-Singer theorem (III 7.27) from the correspondence
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IIT 6.1 between a-connected Lie subgroupoids and Lie subalgebroids.

The concept of transition form in III§5, and the results and techniques of

Chapters IV and V, have already been referred to above.

Three appendices follow the main text. Appendices B and C are brief
summaries of relevant formulas for Lie groups and vector bundles, respectively, and
also serve to fix some matters of notation. Appendix A, however, is substantial, and
gives a detailed translation of the elementary theory of connections in principal
bundles (as given, for example, by Kobayashi and Nomizu (1963) or Greub et al (1973))
into the language of Atiyah sequences. This Appendix is entirely in terms of
principal bundles, and makes no use of groupoid concepts. The Atiyah sequence
formulation of connection theory has been mentioned in passing by many writers on
gauge theory but - to the knowledge of the author - this is the first full account
of its equivalence with the usual formulation. Care has been taken with matters of
signs, especially since it is necessary to use the right-hand bracket on the Lie

algebra of the structure group.

Two major topics have been omitted from these notes. Firstly there is the
theory of jet prolongations of differentiable groupoids and Lie algebroids. This is
thoroughly treated in existing accounts - see, for example, Kumpera and Spencer

(1972), Kumpera (1975) and ver Eecke (1981).

Secondly there is the important body of work revolving around the concept of
microdifferentiable groupoid. This is a generalization of the theory of foliations,
both in results and techniques. For the construction of the holonomy groupoid of a
microdifferentiable groupoid, announced by Pradines (1966), and its applications,
see Almeida (1980). Some very brief indications of the results of this theory are
included here. The author hopes that this book will also facilitate a wider
appreciation of the importance and depth of the general theory of microdifferentiable

groupoids. See Pradines (1986) and references given there,

Some nonstandard terminology deserves comment. In I 2.18 and III 2.1 we

"anchor" where Pradines uses "fl&che". It seems to us that the

have used the word
English word, "arrow', is overused and colourless. A possible alternative,
"transitivity projection", is cumbersome. The anchor ties - or fails to tie - the
structure of the groupoid or algebroid to the topology of the base. Secondly, in II
2.22 we use the word "produced" to describe what in principal bundle terms is the

P x H
G

usual terms ''prolongation'

bundle

(B,H) constructed from a given P(B, G) and a morphism G —=» H. The

' and "extension" have other uses in this subject, and
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"produced" has the virtue of being clearly antonymous to the word "reduced", used to

describe the dual concept.

The background needed for this book is slight. A knowledge of the elementary
theory of Lie groups and Lie algebras (not including any structure theory), of vector
bundles (not including the homotopy classification), and of de Rham cohomology, is
essential. Some acquaintance with the theory of connections in principal bundles is
desirable, but only so that the purpose of the constructions given here will be clear.
For Chapter IV a familiarity with the cohomology theory of either discrete groups of
Lie algebras will help, but - as with connection theory - proofs of almost all

results are given in full.

This book is designed primarily for those interested in differential geometry.
The methods given here are essentially algebraic and since much recent differential
geometry is very firmly rooted in analysis, we have given the algebraic
constructions in some detail. We feel that the use of algebraic methods to produce
cohomological invariants has a substantial history in differential geometry and is

capable of much further development.

We use the words 'category' and 'functor' when it is convenient, but we make

no actual use of category theory.

In conclusion, there is a point to be made about the need in differential
geometry for the general connection theory of principal bundles, as distinct from
that merely of vector bundles. So long as one is interested only in geometries with
a matrix structure group (that is, in G-structures), the two approaches are, of
course, perfectly equivalent. However one of the points of global Lie group theory
ig that not all Lie groups are realizable as matrix Lie groups (unlike Lie algebras,
which always admit faithful finite-dimensional representations), and to work in this

generality it is essential to use principal bundles - or Lie groupoids.

Throughout this book we have given most proofs and constructions in
considerable detail. 1In the case of the first three chapters, we have found that
even quite simple details can be difficult to supply quickly, on account of the
eclectic nature of groupoid theory. In the case of Chapter IV, we have not wanted
to presuppose a knowledge of homological algebra. In any case, we believe that
there is enough good mathematics to go around, and there seems no reason why anyone

should have to do for themselves what the author has done in preparing this book.
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This book has been some time in the making. Some of the work recorded here
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CHAPTER I THE ALGEBRA OF GROUPOIDS

In this chapter we define groupoids and their morphisms and give the basic
algebraic definitions and constructions of subgroupoids, quotient groupoids, kernels
of morphisms, products of groupoids and other standard concepts. We do not address
the algebraic theory of groupoids for its own sake, and we do not prove any of the

deeper results from the algebraic theory.

An interesting algebraic theory of groupoids exists, and was begun by Brandt
and by Baer in the 1920's, well before Ehresmann made the concept of groupoid
central to his vision of differential geometry. However the algebraic theory is
primarily concerned with problems which are largely trivial for categories of
transitive groupolds and there is therefore no reason for us to treat it here. See
Higgins (1971) for a full account and further references, and Brown (1968) for an
account which is more accessible to the non-algebraist, though less comprehensive
than Higgins'. Much material on the algebraic theory of groupoids, from a different
point of view to that of the work cited above, can be extracted from Ehresmann
(1965). See also Clifford and Preston (1961, §3.3).

The examples given in this chapter are examples of topological or
differentiable groupoids, presented without their topological, or smooth,
structures. We have managed to avoid giving examples which can arise only in the

purely algebraic setting.

The development of the algebraic theory of groupoids has heen succinctly
chronicled by Higgins (1971, pp. 171-172). The examples, as has been said, belong
to the topological and differentiable theories, and will he sourced when they

reappear in full in later chapters.

§1. Groupoids

A groupoid is a complicated structure and we will spend a little time in
giving a full definition and, in the process, introduce the notation to be used in

these notes.

Groups commonly arise as the structures natural to sets of automorphisms of
mathematical objects. 1In differential geometry one frequently encounters families
of mutually isomorphic objects, the basic example being the set of tangent spaces to
a manifold, and the way in which the members of such a family relate to each other

is captured by taking as the set of 'automorphisms', not merely the automorphisms of
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each individual object, but all isomorphisms between each pair of objects in the
family, The resulting system of isomorphisms has the structure of a groupoid. Of
course, like groups, groupoids also often arise in other ways, not related to

automorphisms.

To illustrate the concept of groupoid, we take as example the set, denoted
M(TB), of all linear isomorphisms between the various tangent spaces to a manifold
B. Each such isomorphism &: T(B)x + T(B) has associated with it two points of B,
namely the points x and y which label the tangent spaces which are its domain and
range; we denote x by a(%) and y by B(&) and call «,B: H(TB) » B the source and
target projections of N(TB); the isomorphism £ can be composed with an isomorphism
n: T(B)y, > T(B)z iff y' =y, that is, iff a(n) = B(£). Thus composition is a
partial multiplication on II(TB) with domain the set IN(TB)*I(TB) =
{¢(n,8) e W(TB) x ﬂ(TB)|G(n) = B(g)}. WNote that when the composition nf is defined,
we have a(ng) = a(g) and B(ng) = B(n). This partial multiplication has properties
which resemble the properties of a group multiplication as closely as is possible:

each point x € B has associated with it the identity isomorphism id, , here

T(B)x
denoted ;, and the elements ;,x ¢ B, act as unities for every multiplication in
which they can take part; each isomorphism &: T(B)_~ T(B) has an inverse

-1 -1 -1 X y — —
isomorphism £ ": T(B)y +> T(B)x and E§ ~ and £ & are the unities B(E) and a(f)

respectively. These properties are abstracted into the following definition.

Definition 1.1, A groupoid consists of two sets Q and B, called respectively the

groupoid and the base, together with two maps a and B from @ to B, called

respectively the source and target projections, a map e€: x ++> ;, B + R called the

object inclusion map, and a partial multiplication (n,£) +> nf in Q defined on the
set 9*Q = {(n,e) € a x Q'G(ﬂ) = B(&)}, all subject to the following conditions:
(1) a(ng) = a(f) and B(nE) = B(n) for all (n,§) € Q*Q;

(11) g(ng) = (gn)g for all ¢,n,& € Q such that a(g) = B(n) and a(n) = B(E);

(11i) «(X) = B(X) = x for all x € B;

F——,

(iv) Ea(E) = £ and B(E)E = & for all £ € Q;

(v) each £ € Q has a (two-sided) inverse 5—1 such that a(E_l) = B(&),
pr—

-1 -1 -1
B(E ") = a(g) and & & = a(E), EE = = B(&). /1
Elements of B may be called objects of the groupoid Q and elements of  may
be called arrows. The arrow X corresponding to an object x € B may also be called

the unity or identity corresponding to x. To justify this terminology and to prove




that the inverse in (v) is unique, we have the following proposition.

Proposition 1.2, Let @ be a groupoid with base B, and consider £ ¢ 2 with a(g) = x
and B(§) =y.

(1) If n € 2 has a(n) =y and n§ = &, then n = y.

If z € R has B(Z) = x and & = £, then T = X.
(1) Tf n € 2 has a(n) = y and n§ = %X, then n = £ L.
~ -1

If ¢ € 2 has B(Z) = x and & =y, then g = & .
Proof. Exercise. /!

In place of the phrase "a groupoid with base B", we will often write "a
groupoid on B". For a groupoid 2 on B and x,y € B we will write Qx for a-l(x),
@ for B—l(y) and Qz for QXI\ @, To avoid cumbersome suffices we will sometimes
denote "¢ ¢ ﬂi" by "E: x *+ y". The set QX is the a-fibre over x and @’ is the
B-fibre over y. The set Qi, obviously a group under the restriction of the partial
multiplication in @, is called the vertex group at x. Some writers call Q: the
isotropy group at x. For any subsets U,Vg B we likewise write QU, QV and QI‘; for

a—l(U), B—I(V) and N Qv, respectively.

Many authors denote Qi by Q(x,y), call Qx the star of Q at x and denote it

by St_x, and call 9" the co-star of @ at y and denote it by Costﬂy.

Q

The following examples are of basic importance.

Example 1.3. Any set B may be regarded as a groupoid on itself with a = 8 = idB
and every element a unity. Groupoids in which every element is a unity have been

given a variety of names; we will call them base groupoids. 1/

Example 1.4, TLet B be a set and G a group. We give B x G x B the structure of a
groupoid on B in the following way: o is the projection onto the third factor of
B x G xB and B is the projection onto the first factor; the object inclusion map
is x b+ x = (x,1,x) and the partial multiplication is (z,h,y')(y,g,x) = (z,hg,x),
defined iff y' = y. The inverse of (y,g,x) is (x,g-l,y). This is called the

trivial groupoid on B with group G.

In particular, any group may be considered to be a groupoid on any singleton

set, and any cartesian square B X B is a groupoid on B. 1/
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Example 1.5. Let X be an equivalence relation on a set B. Then X& B x B is a
groupoid on B with respect to the restriction of the structure defined in l.4.
Fach a-fibre Xx’ x € B, may be naturally identified with the equivalence class

containing x.

Groupoids Q such as this, in which each Qi is either empty or singleton, are
sometimes called principal groupoids (see Renault (1980)). We use this term with a
different meaning (see II 2.9). 1/

Example 1.6. Let G X B *+ B be an action of a group G on a set B. Give G x B the
structure of a groupoid on B in the following way: a is the projection onto the
second factor of G x B and B is the action G X B + B itself; the object inclusion
map is x b+ X = (x,1) and the partial multiplication is (gz,y)(gl,x) = (gzgl,x),
defined iff y = gyx. The inverse of (g,x) is (g_l,gx). We propose to call G x B

the action groupoid of G x B + B.

The a-fibre (G x B)x is 6 x {x}, and the B-fibre can also be identified with
the group G. The vertex group (G x B): is naturally isomorphic to the isotropy

group Gx'

This construction can be generalized. See IT 4.20. //

Example 1.7. Applying the construction of 1.6 to the action R X S1 + Sl,

(t,z) > e2"itz gives a groupoid structure on the cylinder R x Sl. The base may be
identified with the circle t = 0, the oa-fibres are straight lines orthogonal to

t = 0, the B-fibres are the helices which make an angle of 45° with the circles

t = constant, and the vertex groups are the Z x {z} for z € Sl.

The reader may construct similarly visualizable examples on the torus, using
the actions S1 x S1 > Sl, (w,2) F> wnz, for given n € Z. However no truly typical
example of a groupoid of the type with which we shall be concerned in later chapters

can be visualized by means of an embedding in R3. 1/

Example 1.8. Let B be a topological space. Then the set T(B) of homotopy classes
<c> rel endpoints of paths ¢: [0,1] + B is a groupoid on B with respect to the
following structure: the source and target projections are a(<c>) = ¢(0) and
B(<c>) = c(1), the object inclusion map is x F+ X = <Kx>, where k_ is the path
constant at x, and the partial multiplication is <e¢'><e> = <c¢'c> where c'c is the
standard concatenation of c followed by c', namely (c'c)(t) = c(2t) for 0 < t < % s
1 = T 1 -, «

(e'e)(t) = ¢'(2t-1) for 3 € t < 1. The iaverse of <c> is <c > where ¢ is the



reverse of the path c, namely c+(t) = c(l-t).

Note that many authors take c'c to be c¢' followed by c, defined iff
c'(1) = c(0). The groupoidsW(B) may also be defined using paths of variable length;

for this see, for example, Brown (1968).

M(B) is the fundamental groupoid of B; 1its vertex groups are the

fundamental groups nl(B,x), x € B, and if B is path—connected, locally path-
connected and semi-locally simply connected, then its o-fibres are the sets

underlying the universal covering spaces of B.

There are now a number of beginning texts on algebraic topology which
introduce the concept of fundamental group via that of the fundamental groupoid, but
most make little use of the groupoid structure. The first account of elementary
hiomotopy theory to make effective use of the algebraic structure oqukB) was Brown
(1968). /!

Example 1.9. Llet p: M > B be a surjective map. Let I(M) denote the set of all
bijections &: MX *> My for x,y € B, where MX = p_l(x), x € B, Then II(M) is a
groupoid on B with respect to the following structure: for £: Mx > My, a(g) is x
and B(£) is y; the object inclusion map is x ++ X = idy , and the partial
multiplication is the composition of maps. The inverse of & € (M) is its inverse

as a map. I(M) is called the frame groupoid of (M,p,B).

Many variants of this fundamental example will be given in later chapters.

/1

Example 1.10. Let P(B,G,m) be a principal bundle. Let G act on P X P to the right
by (uy,uj)g = (uyg,ug); denote the orbit of (ug,uy) by <uy,uy> and the set of
orbits by P é L3 . Then P é P

structure: the source and target projections are a(<u2,u1>) = n(ul),

is a groupoid on B with respect to the following

B((uz,u1>) = ﬂ(uz); the object inclusion map is x ¢+ X = <u,u>, where u is any
element of n—l(x); and the partial multiplication is defined by
] = 1]
<u3,u2><u2,ul> <u3,u16(u2,u2)>.
Here §: P X P + G is the map (ug,u) k> g (see A§1). The condition a(<ug,ud>) =

L
B(<u2,ul>) ensures that (ué,uz) € P X P. Note that one can always choose

representatives so that ué =u, and the multiplication is then simply
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<u3,u2><u2,u1> = <u3,ul>.
The inverse of <u2,u1> is <u1,u2>. P ; P is called the groupoid associated to

P(B,G,m). //

Example 1.11. Applying 1.10 to the principal bundle SU(Z)(SO(3),ZZ,H) yields a
groupoid which, though it has dimension 6, is perhaps somewhat visually accessible.
Here the action of 22 = {I,-1}€ SU(2) on SU(2) is by matrix multiplication and =
is essentially the adjoint representation (see, for example, Miller (1972, p. 224)).
SU(2) x Su(2)
ZZ
SU(2) with the unit sphere in the space of quaternions H, each pair

The groupoid can be naturally identified with S0(4): identifying

(p,q) € SU(2) x SU(2) defines a map H + H, x >+ pxq_l which, as a map Ré > RA, is a
proper rotation. It is well-known that this map SU(2) x SU(2) » SO0(4) is an
epimorphism of Lie groups with kernel {(I,I), (-I,-1)} (see, for example, Greub
(1967, p. 329)).

Thus we obtain a groupoid structure on S0(4) with base RP3, a- and B-fibres

which are 3-spheres, and vertex groups which are Zz's. However it seems that the

groupoid multiplication has no clear geometrical significance. //

We shall return to examples 1.4 to 1.10 in chapters II and TII.

§2. Morphisms, subgroupoids and quotient groupoids

We treat the concepts listed in the title, and the related concepts of
kernel, normal subgroupoid, etc., and consider the factorization of a morphism into
a quotient projection, an isomorphism, and an inclusion. This factorization,
fundamental in the category of groups, is valid only for certain classes of groupoid
morphism, for example, those morphisms which are both piecewise-surjective and base-
surjective, and those which are base-injective. 1In particular, hase-preserving
morphisms can be so factored. We mention in passing two factorizations of an
arbhitrary groupoid morphism into a base-preserving morphism and a morphism of

another specified type.

The examples given here are tailored to those of later chapters but

otherwise the material of this section comes from Higgins (1971) and Brown (1968).



Definition 2.1. TLet Q@ and Q' be groupoids on B and B' respectively. A morphism
Q2+ Q' is a pair of maps ¢: 2 +» Q', ¢°: B + B' such that a'e ¢ = ¢Oou,

Ble ¢ = ¢; 8 and $(ng) = ¢(nN)$(&), ¥(n,E) € Q*Q. We also say that ¢ is a morphism
233£_¢0. If B = B' and ¢o = idB we say that ¢ is a morphism over B, or that ¢ is a

base-preserving morphism. 1/

Note that the conditions a'e ¢ = ¢5’u, Blo ¢ = ¢°°B ensure that ¢(n)¢(&) is

defined whenever ng is. Morphisms preserve unities and inverses:

Proposition 2.2. Let ¢: @ > Q', ¢°: B + B' be a groupoid morphism. Then

~ o~

1) ¢x) = ¢ () ¥x¢eB,

-1 -1

1) ¢ ) = $(&) ¥Eel,

Proof. Exercise. /1
9,
For x,y € B we denote the restrictions of ¢ to _+ Q! (x)’ AL
¢ (v) ¥ 9,

Y v O y y
and Qx > Q ¢°(x) by ¢x, ¢’ and ¢x, respectively.

Definition 2.3. A groupoid morphism ¢: & + Q' over ¢O: B + B' is piecewise-

surjective (respectively, piecewise-injective, plecewise-bijective) if
¢ (y)

A U Y

x' x ¢°(X)

is surjective (respectively, injective, bijective) ¥ x,y € B.

$ is base-surjective (respectively, base-injective, base-bijective)

if 00: B + B' is surjective (respectively, injective, bijective).

¢ is an isomorphism if ¢: @ > @' (and hence ¢o: B + B') is bijective, //

We will not use the words ‘'epimorphism’' or 'monomorphism' in the algebraic

context.

It is trivial to prove that a surjective (injective) morphism is base-
surjective (base-injective); further, a morphism is injective iff it is base-
injective and piecewise-injective, and a morphism which is base-surjective and
piecewise-surjective is itself surjective. All these results are easy to prove. A

surjective morphism need not be piecewise-surjective; see example 2.8 below.



CHAPTER 1 8

Definition 2.4. Let @ be a groupoid on B. A subgroupoid of Q is a pair of subsets
Q< Q, B's B, such that «(Q')& B', B(R')S B', X e ¥ x € B', and Q' is closed
under the partial multiplication and inversion in . A subgroupoid ', B' of

2, B is wide if B' = B and is full if @) =@ ¥ x,y ¢ B'.

The base subgroupoid or identity subgroupoid of @ is the subgroupoid

B = {;lx € B}. The inner subgroupoid of @ is the subgroupoid G = LJ Q:. 1/
x€eB

A morphism of groups may be factored into a surjective morphism (the
projection of the domain group onto its quotient over the kernel of the given
morphism), followed by an isomorphism, followed by an injective morphism (the
inclusion of the image of the given morphism into its range). For groupoid
morphisms the situation is more complicated. Firstly, the image of a groupoid
morphism need not be a subgroupoid; it may happen that a product ¢(n)¢(£) is
defined but the product nf is not and that another pair nos El with ¢(nl) = ¢(n),
¢(§1) = ¢(£) and nlil defined cannot be found. This can occur even for morphisms of
trivial groupoids: Let B be an interval on the real line, bounded away from
infinity and zero, and G' the multiplicative group of positive reals and consider
BxB+G', (y,x) > yx_l‘ (It is easy to prove, however, that the image of a base-

injective morphism is a subgroupoid.)

Secondly, the concept of kernel for groupoid morphisms does not adequately
measure injectivity. To demonstrate this failure and its consequences and describe

what factorizations are possible will occupy us until 2.13.

Definition 2.5. Let 2 be a groupoid on B. A normal subgroupoid of 2 is a wide

subgroupoid ¢ such that for any A € G® and any £ € Q with af = aA = BA, we have
exel e ol 1/

Note that whether or not a subgroupoid is normal depends only on those of

its elements which lie in its inner subgroupoid.

Definition 2.6. Let ¢: @ + Q', 00: B + B' be a morphism of groupoids. Then the
kernel of ¢ is the set {£ € @ | o(8) =%, Ix e8], //

Clearly the kernel of a morphism is a normal subgroupoid. The following
construction of quotient groupoids shows that every normal subgroupoid is the kernel

of a morphism.



Proposition 2.7. Let & be a normal subgroupoid of a groupoid € on B. Define an
equivalence relation ~on B by x ~y <=> J ¢ € &: of = x, BL =y, and denote the
equivalence classes by [x],x € B, and the set of equivalence classes by B/®%. Define
a second equivalence relation, also denoted ~, on & by § ~ n <=> J z,z' ¢ &: ¢ng' is
defined and equals £. Denote the equivalence classes by [£],£ € @, and the set of
them by Q/%. (Note that, ﬁ’x,y EB, x ~y <= X ~ ;.)

Then the following defines the structure of a groupoid Q/¢ with base B/®:
the source and target projections are a([£]) = [a(€)], BC[£]) = [B(&)], the object
inclusion map is [x] +» fi] = [x], and the product [n]{£], where a(n) ~ B(£), is
defined as [nc_lil, where ¢ is any element of ¢ with af = an and Bz = B&, The
inverse of [&] is [5—1].

The projections #: g+ [E], @ > Q/9, 90: x ++> [x], B + B/® coustitute a
groupoid morphism. The kernel of q is @.

Proof. Exercise for the reader. //

/% is the quotient groupoid of Q over the normal subgroupoid 9. The
notation 'é‘ should be read as 'natural', for 'natural projection'. Note the
extreme cases: Q/B is isomorphic to f under %, Q/Q is a base groupoid (not

necessarily singleton), and /G is isomorphic to B,

It is easy to see that an injective morphism has the base subgroupoid of its
domain as kernel, and that a morphism whose kernel is the base subgroupoid is
plecewise-injective. The following example is a surjective morphism whose kernel is

the base subgroupoid but which is not (always) an isomorphism,

Example 2.8. Let P(B,G,7) be a principal bundle and consider the associated

X P x
groupoid P e L3 coustructed in 1.10., It is easy to see that the map P X P » d L3 N

(u2,u1) > <u2,u1> is a morphism of groupoids over m: P + B, where P X P has the

trivial groupoid structure of 1.4. The kernel is the diagonal AP of P, which is the
base subgroupoid of P x P, /!

A surjective group morphism can be factored into the projection onto a
quotient group followed by an isomorphism. This example shows that the straight-
forward generalization to groupoids is not valid. Surjective groupoid morphisms are

not determined by their kerunels: both the morphism in 2.8 and id are surjective
P x P
G
P x P
G

PxpP
morphisms with kernel AP' Notice that the contrasting notations /¢ and

are

used to emphasize that there is no subgroupoid 'G' of P X P that makes a
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quotient of groupoids.

For morphisms which are not only surjective, but are also piecewise-

surjective, such a straightforward factorization is possible:

Proposition 2.9. TLet ¢: £ + Q' be a groupoid morphism over ¢0: B + B' with

kernel &.

(i) If ¢ is base-surjective and piecewise-surjective then $: /& + Q',

[E] ++ ¢(&) is an isomorphism of groupoids and ¢ = $°%.

(ii) If there is an isomorphism of groupoids Y: 2/¢ + Q' such that ¢ = th,

then ¢ is base-surjective and piecewise-surjective.

Proof. (i) Clearly ¢ is surjective, since ¢ is. Suppose $([£]) = ¢([n]), that

is, ¢(&) = ¢(n). Then BE and Bn have the same image, say z, under ¢0 so, since
¢22: Q:E > Q‘z is surjective, there is an element Z € 922 such that ¢(g) = ;; such
an element must actually be in @SE. Similarly there is an element Z' € 0:".

- - - £
4 1n;’£ ! is defined, is an element of QSE, and is mapped by ¢ to z, so it is

Now

actually an element of 022; denote it by A, Then £ = (Cl)—lnC', which shows
that £ ~ n; that is, [£] = [nl.

(ii) h is base-surjective by construction. To prove that ﬁi: ﬂi > (Q/@)Ez%

is surjective, take [£] € @/¢ with B([£]) = [y], a([£]) = [x]. Then 8L ~y, af ~x
so 3 £,0' € & such that &: y > BE and ¢': x + af. Now c-liz' ~ & and C—IEC' € QZ.
//

In the rest of these notes we will be mostly concerned with morphisms
$:  » Q' for which B = B' and ¢O = idB, or at any rate for which ¢0 is a
bijection. For morphisms ¢ with ¢0 a bijection, surjectivity is equivalent to
piecewise-surjectivity so 2.9 shows that in this case we have a factorization of an
arbitrary morphism into a natural projection followed by an isomorphism followed by
an inclusion, exactly as for group morphisms. Two other simplifications are
possible in this case: (i) the kernel of a base-bijective morphism (indeed of a
base-injective one) is the union of its vertex groups, that is, in the terminology
of 3.1, it is a totally iantransitive groupoid, and so there is no need to consider
the equivalence relation on the base when quotienting over such a kernel, (ii) when
quotienting a groupoid & over a totally intransitive normal subgroupoid ¢, the
relation "§ ~ n <=>£3 z,z' € ¢: ng' is defined and equals &£” may be defined by
"E~n<=>3 A e b: nAis defined and equals £" (this is a simple consequence of
the facts that £, n, &' must now all belong to the same Qi, and Qi is a normal

subgroup of Q:). It is also true for base-bijective morphisms that a morphism is
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injective 1iff its kernel is the base subgroupoid.

A straightforward factorization like that of a group morphism is also
possible for base-injective morphisms (Brown (1968, 8.3.2) or Higgins (1971)).

There are two ways in which an arbitrary groupoid morphism can be factored
into a base~preserving morphism, to which the factorization given above can be
applied, and a second morphism of a specified type. Firstly, one can use a

pullback:

Definition 2.10. Let ¢: Q@ + Q', ¢0: B + B' be a groupoid morphism. ¢ is a pullback
1f every groupoid_morphism y: ¢ + @', also over wo = ¢0: B + B', can be factored

uniquely into ¢ <, Q N Q' where ¥ is a groupoid morphism over B. !/

Definition 2,11, Let @ be a groupoid on B and f: B' *+ B a map. The inverse image
groupoid of @ over f is the set f*Q = {tyr,e,x") ¢ B'XQXB'lf(y') = BE, £(x') = ag}
together with the groupoid structure consisting of projections a'(y',g,x') = x',
B'(y',E,x') = y', object inclusion map x' =+ ;1 = (x',f(x"),x'), and composition
(z',n,y'")(y',E,x") = (2',nE,x"). The inversion is (y',«E,x')—1 = (x',E-l,y'). The
inverse image morphism is the morphism F: £x > R, (y',E,x") |~ &, over f: B' + B,

/1

Note that fis piecewise-bijective.

Proposition 2.12. A morphism of groupoids is a pullback iff it is piecewise-
bijective.

Proof. (=) 1If ¢: @ + Q' is piecewise-bijective and $: ¢ + Q' has wo = 00: B + B',
A A =y _ (L ¥
define y7: &7 + @ for each x,y € B by wz (¢x) oy,

P
(=>) Let ¢:  + Q' be a pullback. By (=), ¢o: ¢:Q' + Q' is also a pullback

so there is a morphism wlz Qo+ ¢;Q' over B such that ¢ = 3;0 wl. Because ¢ is a
pullback, there is a morphism wzz ¢;Q' + Q over B such that $; = ¢0¢2. By the
uniqueness requirement in 2.10, both of w1°"b and wzowl are identity morphisms,
S0 wl and wz are isomorphisms. Because 3; is plecewise-bijective it now follows
that ¢ is. !/

Hence an arbitrary groupoid morphism ¢: € + Q' can be factored into the

inverse image morphism 3;: ¢;Q' + Q' and a base-preserving morphism 2 + ¢gQ' over B.
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Secondly, and in some seunse dually, one can use the concept of universal
morphism of Higgins (1971, Chapter 12). A morphism ¢: £ + Q' is universal if for
all morphisms $: & > Q" such that wo = ﬁ¢o for some f: B' » B", there is a unique
morphism €: ' + Q" gsuch that ¢ = 0¢ and 60 = f, Tt is a non-trivial fact (Higgins
(1971, Chapter 8) or Brown (1968, Chapter 8)) that given any groupoid & on B and map
f: B+ B' there is a groupoid Uf(Q) on B' and a universal morphism f*: Q » Uf(Q)
over f: B » B', Now, given an arbitrary morphism ¢: @ + Q' one can factor ¢ through
the universal morphism Q + U¢0(Q) and obtain a morphism U¢0(Q) + Q' over B' which
can be factored in the straightforward way we described above. Note that in the

category of groups a universal morphism is an isomorphism.

We close this section with some basic examples,

Example 2.13. A morphism of trivial groupoids ¢: B x G x B » B' x G' x B' can be

written in the form
$(r,8,0) = (8, (5),0(EEIO0 1,6 (x))

for a group morphism f: G + G' and a map 6: B + G'. The maps 6 and f are not

unique; €for any point b € B, such maps are defined by

$0x,1,0) = (9 (0),00x),4, (1)) and  #(b,g,b) = (4_(),5(8),8 (0)). 1/

Example 2.14. (Pradines (1966).) 1If G is a group the 'division map'
G(gz,gl) = gzgz1 is a groupoid morphism G X G + G where the domain is the trivial
groupoid on the set G and the range is the group G itself.

More generally, for any groupoid € on B, the set
Q : Q={(n,e) e xq ﬂ on = af} is a subgroupoid of the cartesian square groupoid
Qx Qon R and §: Q : Q+ 2, (n,&) > ng is a groupoid morphism over 8: @ + B.
1/

Example 2.15. The subgroupoids of a cartesian square groupoid B X B may be
identified with the equivalence relations on the subsets of B. An equivalence
relation X on B itself counstitutes a normal subgroupoid of B x B and (B x B)/X may
he identified with the trivial groupoid (B/X) x (B/X) under [(y,x)] ++ ([y]},[x]).
1

Example 2.16. Let G and G' be groups acting on sets B and B', let ¢: G > G' be a
morphism and let f: B > B' be a map equivariant with respect to ¢. Then
¢ x £f: G x B > G' x B' is a morphism of the action groupoids. /!
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Example 2.17. If F(f,4): P(B,G) » P'(B',G') is a morphism of principal bundles,
then <u2,ul> [ad <F(u2),F(u1)> is a morphism of the associated groupoids. !/

Example 2.18. For any groupoid £ on base B, the map {B,al: 2 + B x B,
& F*> (B(E),a(&)) is a morphism over B, which we propose to call the anchor of Q.
Its kernel is the inner subgroupoid GQ. /1!

These examples will be treated in more depth, and others introduced, in

Chapters II and III.

§3., Transitive and totally intransitive groupoids

A groupoid is transitive if any two points of its base can be joined by an
element of the groupoid. While the algebraic theory of transitive groupoids is
trivial (see 3.2), the main interest of later chapters will be with topological or
differentiable groupoids that are transitive, but not topologically trivializable.

A groupoid is totally intransitive if it is the union of its vertex groups.
Totally intransitive groupoids are important because a transitive groupoid can be
regarded as an extension of a cartesian square groupoid by a totally intransitive

one.

This section also treats the concepts of product over a fixed base and
abelianity, concepts which are largely meaningless for groupoids which are neither

transitive nor totally intransitive.

Definition 3.1. Let @ be a groupoid on B. Q is transitive it its anchor

[8,a]: @ + B x B is surjective. Q is totally intransitive if the image of [B,a] is

the base subgroupoid AB of B x B,

In general, the image of {B,a] in B x B is an equivalence relation onB. The
equivalence class containing x € B is denoted Mx and called the transitivity
component of 2 containing x. //

Transitive groupoids are sometimes called connected groupoids and totally
intransitive groupoids called totally disconnected groupoids. We shall not use this
terminology.
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M
Let @ be any groupoid on B. For x € B, MX is clearly B(nx) and QMX is a
X

transitive, full, subgroupoid of Q; clearly @ is the disjoint union of the

transitive subgroupoids QM, as M runs through the transitivity components of Q.

Now consider a trausitive groupoid & on B. The anchor is a surjective
morphism over B with kernel the inner subgroupoid G of 2 so we may regard Q as an

exact sequence
(8,0}
G 9 Q =229 B X B

or, in some sense, as an extension of B x B by GR. This extension is trivial (or

semi-direct) because any right-inverse o: B » Qb to Bb: Qb

b € B, defines a morphism 6(y,x) = U(y)o(x)—l, B x B » @, which is right—inverse

+ B, for some chosen
to [B,a). Further,

Proposition 3.2. Let Q be a transitive groupoid on B, let b be a point of B, and

let o: B + Qb be a right-inverse to Bb: Qb + B, Then

IrBx @ xB > (v,0,%) b+ o(y)Aa(x) "

is an isomorphism of groupoids over B.
Proof. Exercise. 1/

So every groupoid is the disjoint sum of transitive subgroupoids and every
transitive groupoid is isomorphic, though not usuwally in any natural way, to a

trivial groupoid.

Examples 3.3. Trivial groupoids B x G X B are of course transitive. The groupoid
P x P
G
surjective. The frame groupoid NI(M) of a surjection (M,p,B) is transitive if all

associated to a principal bundle P(B,G,n) is transitive, since 7w is

the fibres Mx’ x € B, have the same cardinality. The transitivity components of a
fundamental groupoid 7T(B) are the path-components of B, and the transitivity
components of an action groupoid G x B are the orbits of the action. For an
equivalence relation X on B, the transitivity components are the equivalence

classes. Any inverse image of a transitive groupoid is transitive. !/

Given groupoids Q and @' on B and B' one can define a product groupoid
2 x Q' on B x B' in an obvious way. However, in the rest of this book we will be

mainly concerned with categories of groupoids over a single base. Given groupoids
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Q and ' on B we require a product groupoid @ B:B Q' on B, not on B x B, and
although this construction can be given for arbitrary groupoids, it is largely

meaningless unless one of the factors is tramsitive.

Define & = Q@ x Q' to be the pullback
BxB

p ———t— @

" l l [8',a"] 3

Q ————— B X B
[B,a]

and its anchor [E,E]: ¢ + B x B to be either composite. Thus Qi may be regarded as
91 x 9'1. Define the partial multiplication and inversion in ¢ componentwise in the
obvious fashion. Then it is easy to see that if ¢: ¥ » Q and ¢': ¥ +» Q' are
morphisms over B, then E: ¥ + 0, £+ (6(E),9'(E)) is also a morphism over B, so ¢
is indeed the product groupoid of Q and 2' in the category of groupoids on B and

morphisms over B.

Another standard concept which is rather meaningless for general groupoids

but has an importance for transitive groupoids is that of abelianity.

Definition 3.4, Let R be a transitive groupoid. & is abelian if any one (and hence
all) of its vertex groups is abelian. !/

Though the definition involves only the inner subgroupoid of Q, it has an
effect on the structure of the whole groupoid: For an arbitrary transitive
groupoid @, all vertex groups are isomorphic for, given £ ¢ ﬂi, the "inner
automorphism” Ig: Q: > ﬂy, A EAE_I, is an isomorphism of Qz onto Qz (see II 1.2
for the formal definition). 1If Q is abelian, then Q: and Qz are naturally

isomorphic, for in this case I_ = In for all £, n in the same 91. (Compare the

£
well-known fact that if a path-connected space has abelian fundamental groups, then
they are all naturally isomorphic.) Thus there is a well-defined map B x G » @,

b
where G = ﬂb for some b € B, and an exact sequence
B xG *++Q -+>B x B,

Here B X G may be regarded as the action groupoid corresponding to the trivial

action of G on B.



CHAPTER 11 TOPOLOGICAL GROUPOIDS

It is well-known that despite the body of techniques and results common to
the theories of topological groups and Lie groups, the general theory of topological
groups scarcely resembles at all the theory of Lie groups. With topological
groupoids and differentiable groupoids the divergence is even more marked. This
will be particularly clear after III §1, for the ceatral result III l.4 is proved
by a foliation—-theoretic method which has no analogue in the general topological
case. There is also no analogue of Sard's theorem. At a simpler level, if
f: M > N is a smooth map between manifolds M, N which has the property that a
composite M E N E P is smooth iff g: N + P is smooth (where g is, a priori, not
necessarily even continuous), then f is a submersion and, in particular, is open.
In the case of topological spaces, the corresponding concept is that of
identification map, and such a map need not be open. As a final example, every
transitive smooth action of a Lie group on a manifold makes the manifold a

homogeneous space; the topological version of this result is false.

This chapter is chiefly concerned with those parts of the theory of
topological groupoids which mirror the theory of differentiable and Lie groupoids.
Some references to the general theory of topological groupoids are made in §1, §3,
§4 and §5 and for further information the reader can consult Brown and Hardy (1976),
Brown et al (1976), and Renault (1980).

The point of separating out that part of the theory of differentiable
groupoids which is valid in the topological case, is not so much to make a
contribution to the theory of topological groupoids, as to demonstrate that these
results continue to hold for differentiable groupoids based on more general forms of
the manifold concept, such as Banach manifolds or non-paracompact manifolds. Such

groupolids may well have applications elsewhere.

There are two natural questions which are still unresolved: Given a
morphism ¢: Q@ + Q', where © and Q' are topological groupoids and ¢ is continuous on
a neighbourhood of the base in Q, is it true that ¢ is continuous everywhere?
1f @ is a principal topological groupoid, this is easily established (1.21(ii)).
Secondly, is it always true that the oa-identity component subgroupoid of a suitably
locally connected topological groupoid is (o~) open? For differentiable groupoids,
this is so (III 1.3), and for principal topological groupoids with connected bases
it is so (3.4). If these results turn out to be false in geuneral, it may be that

the most general form of the concept of topological groupoid needs re—definition.
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We give a brief description of the individual sections. §1 briefly
considers the nature of quotient topological groupoids, and then gives the main
examples which are used throughout the rest of the text. §2 treats local
triviality, its use in reducing global problems to a local problem and a patching
problem, and the classification of locally trivial groupoids by cocycles. 8§3 is
concerned with the connected components of the spaces present in a topological
groupoid. §4 sets up the apparatus of representations of topological groupoids on
fibre bundles and gives the characterization of groupoids of the form @ * M, where @
acts on M. §5 is concerned with the concept of left~translation for topological
groupoids; the apparatus developed here is needed. for the exponential map and
adjoint formulas of Chapter III. §6 constructs the monodromy groupoid of a suitably
connected principal topological groupoid; this construction generalizes that of the
universal covering group of a topological group and of the fundamental groupoid of a
topological space. §7 is concerned with path lifting in topological groupoids, and

is an introduction to the connection theory of Chapter III.

§1. Basic definitions and examples.

The greater part of this section, from 1.9 to 1.17, consists of examples of
topological groupoids. The list is biased towards groupoids which are locally
trivial and which admit differentiable structures. It should be noted that the few
examples included here which do not meet these criteria are not intended to give a

full picture of the range of variation possible in the general theory.

In 1.5 to 1.7 we consider the problems assoclated with quotient topological
groupoids, and in 1.18 to 1.20 we give the equivalence, due to Dakin and Seda
(1977), between principal topological groupoids and Cartan principal bundles. This
equivalence provides a neat formulation of the correspondence between locally
trivial groupoids and principal bundles and, at the same time, shows that a slightly
more general class of groupoids shares some of the important properties of locally

trivial groupoids.

Definition 1.1. A topological groupoid is a groupoid R, B together with topologies

on £ and B such that the five maps which define the groupoid structure are
continuous, namely the projections a,B8: @ + B, the object inclusion map €: x ;,
B + Q, the inversion & b+ E-l, 2 + @, and the partial multiplication Q*Q + @, where
Q*Q has the subspace topology from Q x Q.
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A morphism of topological groupoids, or, if emphasis is required, a

coutinuous morphism, is a morphism of groupoids ¢: Q + Q', ¢0: B + B' such that ¢

and ¢° are continuous. 1/

Clearly if one of the projections in a topologized groupoid is continuous,
and the inversion is coatinuous, then the other projection is continuous. 1In a
topological groupoild the inversion 1s clearly a homeomorphism and the projections
are identification maps, since they have the object inclusion map as a right-
inverse. TLastly, the object inclusion map is a homeomorphism onto the base
subgroupoid g, for given U& B open the set i of unities corresponding to elements
of U {? the iIintersection ﬂgfi %, and dé is certainly opi2~}n Q. If Q is Hausdorff
then B is closed in @, being the image of the map £ k> a(f), @ + @, whose square is
itself.

In the definition of a continuous morphism, the requirement that ¢° bhe
continuous is superfluous, since ¢° is the composite of the object inclusion map of

its domain, ¢, and either projection of the range.

Definition 1.2. Let 2 be a topological groupoid on B, and take £ € 2, af = x,
BE = y.

The left-translation (right-translation) corresponding to & is the map

LE: & -+ Qy, n++ En (R Qy > Qx’ n b+ ng). The inner automorphism corresponding
to £ is the map I Q: + Qg, x> EXE—l. 1/

If its base B is Hausdorff (or merely Tl)’ the a-fibres and B-fibres of a
topological groupoid @ are closed subspaces of Q. Clearly a-fibres (B-fibres) of {
which are labelled by points of B in a common transitivity component of Q are
homeomorphic under right- (left-) translations. TIaner automorphisms (which, of
course, are not usually automorphisms at all) are isomorphisms of topological

groups.

In many cases the topological properties of the space R of a topological
groupoid are less important than the properties of its a-fibres. This {s the case,
for example, with connectedness and simple-connectedness. For a topologlcal
property P, therefore, we will say that a topological groupoid is a - P if each of
its a-fibres has P. (Each B-fibre is of course homeomorphic to the corresponding
a-fibre under the Inversion map.) This usage is from Pradines (1966). 1If P is
invariant under continuous maps and finite products then any transitive groupoid Q

which is a - P is itself P, for Qb x Qb + Q, (n,&) > ng—l (any b € B) is a



continuous surjection.

It is easy to verify that any subgroupoid Q', B' of a topological groupoid
Q, B is itself a topological groupoid with respect to the subspace topologiles
on ', B' inherited from Q, B:

Definition 1.3. Let  be a topological groupoid on B. A topological subgroupoid

of @, B is a subgroupoid ', B' of @, B equipped with the subspace topologies
inherited from 9, B. 1/

The problem of giving the factorization results of I§2 validity in the
category of topological groupoids is difficult and is not, to the knowledge of the
author, completely solved; we will briefly discuss the general situation here, but
the only case we will use later is that of base-preserving morphisms of locally

trivial groupoids, for which see §2.

Brown and Hardy (1976) show that the universal groupoid construction
mentioned in I§2 has a topological validity. Precisely, given a topological
groupold 2 on B and a continuous map f: B + B' the groupoid Uf(ﬂ) has a topology
which makes it a topological groupoid on the space B' and makes f*: Q + Uf(ﬂ)
continuous; f* is now universal in the category of topological groupoids in the
sense that given any morphism of topological groupoids ¢: 2 + Q" such that ¢° = gof

for some continuous g: B' + B", there is a unique morphism of topological groupoids

'] Uf(Q) + Q" such that ¢ = pof* and Wo = g

Definition 1.4. Let ¢: @ + Q' be a morphism of topological groupoids. Then ¢ is a

pullback if for every morphism of topological groupoids ¥: & + Q' such that

¥, = 9,1 B> B', there is a unique morphism V: ¢ > Q over B such that ¢ = ¢oP. /!
If @ is a topological groupoid on B and f: B' + B is a continuous map then

f*Q with the subspace topology from B' x Q@ x B' 1s a topological groupoid on B'

and f: £*Q > Q is a continuous wmorphism and a pullback (in the sense of 1.4) still

called the inverse image of Q over f. As in the second half of the proof of I 2.12,

every pullback ¢: @ + Q' is equivalent to the inverse image EO: ¢§Q' + Q' and, in

particular, is a piecewise homeomorphism. It seems unlikely, however, that every

piecewise homeomorphic morphism is a pullback but a counter-example is lacking. See

2.9 for the locally trivial case.

Whether one uses universal morphisms or pullbacks, it is sufficient, from a

strictly logical point of view, to restrict the problem of factorization to base-
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preserving morphisms of topological groupoids. (From a practical point of view
neither factorization helps very much to extend results for base-preserving
morphisms to general ones.) In particular we may restrict the construction of
quotient topological groupoids to the case of totally intransitive normal

subgroupoids. The general definition is as follows.

Definition 1.5. Let @ be a topological groupoid on B and ¢ a normal subgroupoid.
Then a topological groupoid ¥ and a morphism v: @ + ¥ are the topological quotient

groupoid Q/® and its natural projection é: Q > Q/® if for every morphism of
topological groupoids ¢: Q + Q' such that ¢(9) & 8% there is a unique morphism
$: ¥ > Q' such that $ov = ¢. 1/

If G is a topological group and H a normal subgroup it is trivial that
9: G + G/H is open with respect to the identification topology on G/H and it is thus
easy to prove that G/H is the topological quotient group in this topology (see, for
example, Higgins (1974)). For groupoids, the natural projection % : @+ Q/% need not
be open with respect to the identification topology on /% - see example 1.10 below.
Even if y is open, it is not clear that /¢, with the identification topology, need
be the topological quotient groupoid. However there is the following result.

Theorem 1.6. Let Q be a topologlcal groupoid on B and let ¢ be a normal subgroupoid
such that : @ + Q/¢% is open, with respect to the identification topology on /9%,
and such that the anchor [B',a']: & + im[B',a'] is open into its image. Then Q/%,
with the identification topology, 1s the topological quotient groupoid.

Proof. Only the continuity of multiplication in @/¢ requires proof. Let D denote
the set (h"%)_1(9/0*9/¢) = {(n,g) e 2 xQ '; z e & nc-li is defined}. Then
because D is saturated, the restriction q XH|D: D * Q/%*Q/% is open.

Denote im[8',a']< B x B by M'. Note that D is also the set
(a x B)-l(M')SE Q x 2. Let D denote the set {(n,z,E) € @ x & x nlnc’li is defined}.
Then D is the pullback

————————=d D

D
J’ axaln
)

e o
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Because [8',a']: ¢ * M' is open, the pullback map p: D D, (n,%,8) =+ (n,£) is

open.

Now the following diagram commutes

(n,2,6) F> gk > 0

o
9 &— ol
-

h<h1,

Q/e*a/e multiplication

> Q/¢

and since % X% 'D and p are both open, it follows that the multiplication is
continuous. /1

This result may be related to a theorem on differentiable quotient groupoids
stated by Pradines (1966).

Brown and Hardy (1976) prove the following criterion.

Theorem 1.7. Let 2 be a locally compact, Hausdorff topological groupoid on B and
let & be a compact normal subgroupoid. (In particular, B must be compact.) Then

/¢, with the identification topology, is the topological quotient groupoid. !/

A third criterion is given in 2.18.

It is proved by Brown and Hardy (1976), that topological quotieat groupoids
always exist, although 1.10 below shows that the topology on £/¢ need not be the
identification topology. One would like to know, in general, to what extent the

topology on a topological quotient groupoid /¢ inherits the topological properties
of Q.

Definition 1.8. Let 2,Q' be topological groupoids on B,B'. 4n isomorphism of
topological groupoids  + Q' is a morphism of topological groupoids ¢: Q + Q',

¢°: B + B' such that ¢ (and hence ¢°) is a homeomorphism. //
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We will not use the terms "epimorphism” or "monomorphism”. We now give some

basic examples.

Example 1.9. If G is a topological group and B a space, the trivial groupoid
B x G x B is a topological groupoid in the product topology, called the trivial
groupoid, on B with group G. The description of morphisms of trivial groupoids in

I 2.13 remains valid for coutinuous morphisms. //

Example 1.10. Let X be an equivalence relation on a space B, considered as a normal
subgroupoid of B x B. In I 2.15 we identified the (algebraic) groupoid (B x B)/X
with the product groupoid (B/X) x (B/X) and the natural projection
‘:’:BXB*(BXB)/Xwitthp:BXB"(B/X)X(BXX).

We now prove that (B/X) x (B/X), with the cartesian square of the
identification topology from p, is the topological quotient groupoid, despite the
fact that p X p need not be an identification. Let ¢: B x B + Q' be a continuous
morphism over ¢°: B + B' such that ¢(X)§;_f‘. Choose b € B and dffine g: B > Q'
by o(x) = #(x,b). Then ¢(y,x) = o(y)o(x) , V¥'x,y € B. Now let o: B/X » Q' be
o([x]) = o(x); then G is of course continuous, and so $: (B/X) x (B/X) » Q',
(91, 1x]) = 4(3,%) = S([yDI([x])"" is continuous.

Note that H = pxp: BxB > (B xB)/X may be an identification without
being open: 1let B consist of the two axes in R? and let X collapse the y-axis to
the origin; p is then the projection onto the x-axis, B + R. Since B and R are
locally compact, H = p X p is an identification; since p is not open, % cannot be.

Any equivalence relation X on any space B is a topological groupoid on B
with the subspace topology from B x B. WNote that the projections X + B are not

always open maps. !/

Example 1.11. Let G x B + B be a continuous action of a topological group G on a
space B. Then the action groupoid G x B, with the product topology, 13 a
topologlcal groupoid on B. !/

Example 1.12. Let P(B,G,m) be a Cartan principal bundle (see A 1.1 for

P xP P xP
definition). Then with the identification topology from P x P »

G g
(u2’u1) [ and <u2,u1> (see T 1.10) is a topological groupoid on B.
We prove that the groupoid multiplication 1s continuous. Denote 2 ; 13

by Q and (uz,ul) > <u2,ul> by p. Now p is open, for if UGS P x P is any subset, we
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have p_l(p(U)) = Lzé Ug (with respect to the action of G on P x P) and so p—l(p(U))

is open 1f U is. Hence p x p: P x PZ > Q x Q 1is open. Now (p x p)-l(g*n)
=p x (P x P) x P and

(uh,u3,u2,u1) [2d (ub,ul6(u3,u2))

a*Q groupoid multiplication

commites. Since an open map restricted to a saturated set, in this case

(p x p)-l(Q*Q), is open, it follows that the groupoid multiplication is continuous.

That local triviality of P(B,G,n) is not necessary for to be a

topological groupoid, was first pointed out by Dakin and Seda (1977).

1f F(f,¢): P(B,G) + P'(B',G') is a morphism of Cartan principal bundles,

then <v,ud> F* <F(v),F(u)> is a continuous morphism of topological groupoids over f.

Consider the special case G(G/H,H), where G is a topological group and H is
a subgroup. Then g ; G is isomorphic as a topological groupoid to the action

groupoid G x (G/H) (where G acts on G/H to the left in the standard way) under
-1
8ys8 > F (8,8, 8 H).

Returning to gemeral principal bundles, 1f P(B,G) is locally trivial then

P) is a topological group bundle (see A 1.12 for

P x
the inner subgroupoid G( e

definition) and is naturally isomorphic to X6 , the inner group bundle of A§l.
The isomorphism is defined by the map
P X G P x P
T ¢ ,  Lu,g> F* Lug,w> .

P x
Note that if G is abelian then S ¢ is naturally isomorphic to B x G under
<u,g> k> (1(u),8). 1

Example 1,13, A fibre bundle is a continuous surjection p: M > B with the local
triviality property with respect to some fibre type F, where to avoid unnecessary
complications we assume that F is locally compact, locally connected and Hausdorff
(see A 1.6 for precise definition). By II(M) we from now on understand the groupoid
of all homeomorphisms Mx > My’ %,y € B, We use the local triviality of p: M + B

to place a topology on I(M) with respect to which it will be a topological groupoid.
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Let {wi: Ui x F » MUi} be an atlas for M. Let Homeom(F) denote the group of
all homeomorphisms f: F + F with the compact-open topology; 1t is known that
Homeom(F) is a topological group (Arens (1946, §5)), that the evaluation map
Homeom(F) %X F > F is continuous and that a map X + Homeon(F) from any space X is
continuous iff the associated map X x F + F is continuous (for example, Dugundji
(1966, Chapter XII)).

For each 1 and j, define

U
=3, b -1
wi. U, X Homeom(F) X Ui > H(M)Ui by (y,f,x) k> wj,; f«‘nyi’x .

]
7 TS

Clearly each wi is a bijection and any (wk) ° wi

homeomorphism. Hence there 1s a well-defined topology on H(M) for which each E

which has a nonvoid domain is a
i

i
is a homeomorphism.

That NI(M) 1s now a topological groupoid is straightforward: one works

locally and the details are similar to those for a trivial groupoid.

For a TGB (M,p,B) (see A 1.12 for definition) with locally compact, locally
connected and Hausdorff fibres we will always understand by II(M) the topological
subgroupoid of topological group isomorphisms; for a vector bundle (E,p,B) of
finite rank we will always understand by II(E) the topological subgroupoid of vector

space isomorphisms.

For a fibre bundle with fibres which are not locally compact (for example
the CVB's of Mackenzie (1978)) or not locally connected, this construction can
sometimes be carried through, but we will not need that generality. On the other
hand, 1f p: M + B 1s merely a continuous surjection, one can presumably adapt the
modified compact-open topology of Booth and Brown (1978) to make inversion
Im) » M), &+ E_l continuous and thus, under some suitable local compactness
condition on M, make M(M) into a topological groupoid, even when M + B has no local
triviality properties. This is the more Interesting of the two generalizations, but

we have no specific need for it.

See also Seda (1980, §4). 1/

Example 1l.14. The following example is from Brown and Danesh-Naruie (1975).
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Let B be a path—connected, locally path-connected and semi-locally simply
connected space. The first condition ensures that the fundamental groupoid 3KXB) is
transitive; the last two that the topology of B has a basis of open, path-connected
sets Ui such that the inclusion Uig; B maps each fundamental group nl(Ui,x), x €U

i
to the trivial subgroup of ﬂl(B,x). Such sets may be called canonical.

Let N be a normal, totally intransitive subgroupoid of 7T(B). We define a
topology in 7T(B)/N with respect to which it is a topological groupoid on B, and a
topological quotient groupoid of 7((3). To reduce the notatioun, denote 7((3)/N
by Q.

For each canonical Ui and x € Ui choose a function Oi x which to y € Ui
f from x to y. By the conditions on Ui’ the map y k> <e i,x (y)>,
Ui *'7((3) depends only on Ui and x, not on the representative paths chosen.

assigns a path in U

Let U denote the image of Ui under the composition of this map with the
projection.é 7((3) + Q.

It is easy to prove that the sets ﬁj, [(c)]U x> 28 U and Ui range through
the basis of canonical sets, y ranges through Uj and x through Ui’ and [<c>] ranges
through QZ, form a basis for a topology in Q, and that with this topology § is a
topological groupoid on B. We verify the continuity of the groupoid multiplication:

take [<e'>] ¢ Q , [<ed] ¢ Qy and write ¢” for c'c. Consider a basic open neighbour-

hood ﬁk z[(c")]U1 % of [<c">]}. Choose any Uj which contains y; it is immediate to
’ b
verify that

-] ~ e
[(c >]U y[<c>]Ui,xEE Uk’z[<c >]Ui,x .

jy

which shows that the multiplication in £ is countinuous.

Clearly H: 7(13) + @ maps basic open sets to basic open sets, so é is open
and 9 is therefore the topological quotient groupoid of 7r(B) over N.

The vertex groups Q =7 (B,x)/N inherit from Q the discrete topology, for
1f [AWD] € Q: and Uy 3 x, then U [<A>]U <N Qx {[<A>]}. It is also clear that
the o-fibres ﬂx, X € B, inherit from Q the standard topology which makes Bx: QX + B
the covering of B determined by Nx < ﬂl(B,X), and that the right action
Qx X Qz + Qx by groupoid multiplication is the deck-transformation action of
NI(B,x)/Nx on the covering determined by Nx (see, for example, Hu (1959, I111§16)).

It is trivial to check that, given a normal subgroup H < nl(B,b) for some

chosen b € B, there is a unique totally intransitive normal subgroupoid N of 7((3)
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such that Nb = H. Thus the groupold formulation efficiently encapsulates the
phenomena of the theory of regular covering spaces. It does not, however, adapt
well to the general, non-regular case — any collection whatever of subgroups

Hx < ﬂl(B,x), x € B, constitutes a totally intransitive subgroupoid of 7th).

The topology on 7I(B) is the identification topology from the compact-—open
topology on the space of continuous paths in B. This is clear from the

constructions in §6.

Returning to the original situation, note that the anchor
[E,&]: 7((3)/N + B x B 1is 1tse1f a covering: it is easy to see that, given Uj and
U, , the open sets U, [<c>]U .+ 25 v and x range through Uj and U, respectively,
and [<c>] through (7((B)/N)y are either disjoint or equal; they are therefore the
components of their union, which is [B,a] (U x Ui)’ and it is easy to see that

i
prove the non—trivial result that the fundamental group of’T(B)/N at a unity
[<Kx>] is isomorphic to the subgroup {(a,b) € ﬂl(B,x) x "1(B’x)|3 b e Nx}; this

subgroup, of course, need not be normal.

each [B E] [<c>]U x *> Uj x U, is a homeomorphism. Brown and Danesh-Naruie

Lastly, it 1s easy to see that if B' is a second path-connected, locally
path-connected and semi-locally simply-connected space, N' a normal totally
intransitive subgroupoid of?((B') and f: B + B' a continuous map such that
f*:vr(B) > 7((5') maps N into N', then the induced morphism TB) /N *7TYB')/N'

is continuous. //

Example 1.15. Let B be a topological space and T a pseudogroup of local
homeomorphisms ¢: U + V.of B (that is, T contains the identtty 1dB’ and is closed
under restriction, inversion and composition). Let J (F) denote the set of germs
gx¢ (or "local jets") of elements of I, with the obvious groupoid structure:

alged) = x, Blaggd) = 6(x), * = g(idp), (g7 = gy() (47 and

(g¢(x)¢)(gx¢) = g,(Vo¢). Then JA(F) is called the germ groupoid of I'. The pseudo-
group ' is transitive 1if ¥ x,y € B there is an element ¢ € T such that ¢(x) =

(for example, Xobayashi (1972)); clearly JA(F) is transitive 1ff T is.

For ¢ € I', define N¢ = {gx¢ | x € dom ¢}. The sets N¢, ¢ € T, form a basis
for a topology in JA(F), called the sheaf topology, and it is easy to see that
JA(P) with this topology 1s a topological groupoid on B, which we will denote by
JX (I'). The importance of this topology is well-established (see, for example,
Lawson (1977) or the survey by Stasheff (1978)). However for our purposes it is

mainly of interest in providing a naturally occurring topological groupoid which is
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somewhat pathological' it is easy to see, for example, that each J (P)
discrete and that B is open in J (r) In particular, there are sets Us; B for
which each J (P) , X £ B, is open, but for which neither J (F) nor U itself is

open. Note also that o and B are étale.

If B is locally compact and Hausdorff one can define a compact-open topology

in JA(P) as follows (Abd—Allah and Brown (1980)): in T itself define subsets by
NE,U) = {¢ €T | R € dom(¢), ¢(R) & U}
N'(UR) = {¢ € T | UG dom($), ¢(U) 2K}

for K & B compact and UE B open. Take the topology in I generated by these sets as
subbasis, and give JA(P) the identification topology with respect to (x,¢) F> gx¢
defined on B*T = {(x, ¢) €eBxTD | xedom(¢)}. It is straightforward to show that,
with this topology, J (F) is a topological groupoid, denoted J (F), the details
are gsimilar to those in Arens (1946). This structure may be more appropriate in

groupoid theory itself - see 5.9. 1/

Example 1.16. Let Q be a transitive algebraic groupoid on a space B. Give Q the
coarsest topology for which the anchor [B8,a]: @ + B x B is continuous; that is, @
has the sets ﬂg} U,V.€ B open, as a basis. It is easy to verify that Q is a
topological groupoid on the space B, clearly the coarsest topology on Q for which

this is so. Note that each vertex group has the indiscrete topology. !/

Example 1.,17. Any TGB (topological group bundle - see A 1.12 for definition) is a
totally intransitive topological groupoid. /!

The notes by Renault (1980) contain further examples of topological
groupoids; most are equivalence relation groupoids (as in I 1.5) but with
topologies finer than the subspace topology from the cartesian square of the base,
and all share with J (P) the property that the unities form an open subset. From

our point of view such examples are pathological.

Topological groupoids of the form 13 é P constructed in 1.12 admit an

intrinsic characterization. The following definition and Proposition 1.19 are due
to Dakin and Seda (1977).

Definition 1.18. Let @ be a topological groupoid on B. Then @ is principal if it

is transitive and if for any one, and hence every, x £ B, the maps BX: Qx + B and
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820 X0 >a (n,8) k> nt™l, are identifications. /1

If Gx is an identification then it is in fact open, for the saturation of

any basic open set V x U&E Qx x Q is Ux VA x UX, which is itself open. Similarly
AeQ
if Bx is an identification, then it is opgn.

x P
G
is easily seen to be principal. Conversely, if Q 1s a principal topological

of 1.12

If P(B,G,w) is a Cartan principal bundle, then the groupoid

groupoid then, for any x ¢ B, QX(B,Q:,BX) is a Cartan principal bundle, and for any
other y € Band ¢ ¢ QZ, the maps R;'1: Qx > Qy and I, Q: > Qz form an isomorphism
of Cartan principal bundles over B. These correspondences are mutually inverse,
though the necessity of choosing reference points complicates the precise

formulation:

Proposition 1.19. (i) Let P(B,G,7) be a Cartan principal bundle. Choose

uo € P and write x0 = n(uo). Then the map
p+E ; P , u b <u,u°>
X
(]
is a homeomorphism, the map
X
P xP
6 > —— °, g <u0g,uo>
X
(]

1s an isomorphism of topological groups and together they form an isomorphism of

Cartan principal bundles over B.

Let F(f,¢): P(B,G) » P'(B',G') be a morphism of Cartan principal bundles,
1 A}
denote by F*: EL%—E > 2——ér2— the induced morphism of groupoids, and
choogse u € P, u' € P' such that u' = F(u ). Write x = w(u ), x' = n'(u'). Then
[} o ° ° o o [ [

commutes, where the vertical maps are the isomorphisms corresponding to u and u;.
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(i1) Let @ be a principal topological groupoid on B, and choose x € B. Then

the map

<n, &> == nE-l

= > %

is an isomorphism of topological groupoids over B.

Let ¢: @ + Q' be a morphism of principal topological groupoids over

¢0: B + B' and choose x € B, x' € B' such that x' = ¢°(x). Then

Q x Q o* Q' x @
X X X . X X
o
o iy
lx J/X
Q ___.__2_____> U

commutes.

Proof. 1In both cases the algebraic assertions are easily verified. To prove the

continuity of the inverse of P + 2 g 13 in (1), write it as
*o
-1
P x (xo)
P P 3 P
x
o

where the oblique arrow is (u,u,g) k> vg™l. This map is continuous since

§: P x P+ G is continuous, and the vertical map is an identification since it is

m
the restriction of an identification to a saturated subset. In (1i) we have

Q x Q
XJ/ X
1 \\\\\\\\\\\\\,
X Q

X

X
X

Q

and the bottom arrow is an identification map since the other two maps are; since

it is also a bijection it is a homeomorphism. !/
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For a principal topological groupoid €, the bundle Qx(B’Q:’Bx) is called the

vertex bundle at x.

The choice of different reference poilnts in 1.19(i) leads to automorphisms

of P(B,G) of a specific form:

Proposition 1.20. With the notation of 1.19(4), let “B be a second reference point
in 7 (x ), say u' = u h where h € G. Then the composite automorphism
o o o

X

P P xP P, c P xP|lo ¢
G Xq G X,
1 1
(u) (u)) (u)) (u?)
-1
is u F+ uh, g F* h “gh.
Proof Computation. 1/

In particular, G acts as a group of automorphisms of the bundle P(B,G)

by h € G acting as u t-» uh—l, g+ hgh'l or, briefly, as R -1 (idB,Ih). Whenever a
phenomenon in principal bundle theory is dependent on a re?erence point, one may be
sure that changing the reference point within its fibre will map the pheunomenon
under an automorphism of this type; one may also be sure that if the phenomenon is
formulated in groupoid terms them it will be an intrinsic concept, independent of
reference points. The clearest example of this is the replacement of the various
mutually conjugate holonomy groups and isomorphic holonomy bundles arising from a

connection, by a single holonomy groupoid. See II 7.14 for this.

It is easy to verify that a transitive topological groupoid whose groupoid
space is compact and Hausdorff, is principal. On the other hand, unless B is a
discrete space, J:h(r) cannot be principal, since the a~fibres J:h(r)x are
discrete. Similarly an action groupoid G x B in which the evaluation

maps G > B, gt gxo are not open cannot be principal.

1.19 allows problems for principal groupoids to be reduced to problems for

the vertex bundles and this technique can be extremely useful:

Proposition 1.21 Let 2 be a principal topological groupoid on B, let Q' be any
topological groupoid on B' and let ¢: @ > Q' be a morphism in the algebraic sense.

(1) 1If any omne ¢b: Q is continuous, then ¢ is continuous.

+ Q!
b (D)
(11) If ¢ is continuous on a neighbourhood ?L of B in 2, then it is
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continuous everywhere on Q.

Proof: (i) follows directly from 1.19. (ii) Choose b £ B. Yow for every

£ eQ g: QBE > Qb maps ggto E.

it follows that ¢, 1is continuous at &. Wow apply (i). /1!

—
. ¢B€ is continuous in a neighbourhood of BE and R

Si oR. = R o
nee $p°Re = Rocey®se

Although 1.21 (i) is easily seen to be false for arbitrary topological
groupoids, it is not clear whether 1.21 (ii) is true in general.

The main examples of principal topological groupoids are locally trivial
groupoids, which we treat next. 1In fact the main value of the concept of principal
topological groupoid is that it expresses much of the force of the concept of local
triviality, without using localization techniques; it also explains why all action
groupoids G x (G/H) for homogeneous spaces G/H, not merely those which are locally
trivial, are well-behaved and do not provide good examples of the pathology possible
in the general theory. 1In the differentiable theory, the two concepts colncide.

§2. Local triviality.

A topological groupoid 2 is locally trivial if it is transitive and there is

U
an open cover {Ui} of the base such that each QUi
i

groupoid (see 2.2). For such groupoids a problem may be reduced to a local problem

is isomorphic to a trivial

concerning trivial groupoids, and a globalization problem; this technique however,
although it is almost universally used in principal bundle theory, is not always the
most fastructive, and is of course incapable of generalization to arbitrary
topological groupoids. In the remainder of this book we will give intrinsic

proofs, rather than use the localization-globalization technique, whenever it can be

done without a great increase in length.

Locally trivial groupoids are equivalent to principal bundles under the
correspondence 1.19 for principal groupoids and Cartan principal bundles. Much of
the theory of principal hundles is simplified by reformulating it in groupoid terms,
on account of the clearer algebraic structure of a groupoid, and because groupoid
theory has a natural conceptual framewotrk inherited from group theory. This will be

especially evident in the Lie theory and connection theory of Chapter III.

In this section, after the definition and reformulations of the concept of

local triviality, we examine morphisms of locally trivial groupoids in some detail,
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and sharpen some of the results of §1. These are chiefly technical results needed
in later sections; 1little has been published on the algebralc analysis of morphisms
of principal bundles. The section concludes with a brief account of the
clagsification of locally trivial groupoids by cocycles; this material, well-known
in the theory of principal bundles, is included here because we wish to emphasize a
point about the extent to which base-preserving morphisms of locally trivial
groupoids are determined by their restriction to vertex groups - this is important
in the cohomology theory of locally trivial groupoids and transitive Lie algebroids,
in understanding the maps ﬁ{Z(Q,M) > I'HZ(GSZ,M)BXB and 712(A,E) > I‘HZ(L,E)TB (see
Chapter IV). This classification by cocycles is one part of the theory which fits

more naturally into the principal bundle formulation.

The concept of local triviality is due to Ehresmann (1959), as is the
equivalence between locally trivial groupoids and principal bundles. The material
from 2.17 to the end of the section is a reformulation of material standard in
principal bundle theory. The remaining unsourced material in this section may be

regarded as folklore.

Definition 2.1. Let @ be a topological groupoid on B. Then € is locally trivial if
there exists a point b € B, an open cover {Ui} of B, and continuous maps

: Q = .
Gi Ui* bsuch that Bt‘;ci idUifor all 1

The maps o, will be called local sections of @, or local decomposing
sections when it is necessary to distinguish them from the local admissible sections
of §5.

The family {ci: Ui + Qb} will be called a section—-atlas for f.

If there is a global section o: B + @
trivial or trivializable. 1/

b of Q@ then Q@ is called globally

A locally trivial groupoid is clearly transitive, and given any x € B there

is a section-atlas {oi: U, »> Qx} taking values in QX. The significance of the

i
concept of local triviality is shown by the following proposition, whose proof is

clear.

Proposition 2.2. Let @ be a topological groupoid on B, and let U be an open subset
of B.

If o: U ~» Qb is a continuous right-inverse to Bb, for some b € B, then the
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topological subgroupoid Qg i1s isomorphic to the trivial groupoid U x Qt x U under
-1
I: (7,A,%x) F* o(y)Aa(x) .

Conversely, if G is a topological group and I: U x G x U » Qg is an
isomorphism of topological groupoids over U then, choosing any b € U, the map
01 U R, x> (x,1,b) is right-inverse to B.. /1!

Thus locally trivial groupolds are "locally isomorphic” to trivial
groupoids. The converse is not quite true, since a groupoid may be locally

isomorphic to trivial groupoids without being transitive. Use of 2.2 leads to the
following concept.

Definition 2.3. Let © be a topological groupoid on B. Then @ is weakly locally
trivial if there is an open cover {Ui} of B, points bi € B, and continuous maps

3% + Q h t ° = 11 4.
{ Ui bisuc tha Bb1 tJi iduifora

The set {aiz v, ﬂb } is still called a section-atlas for . //
i
This is the concept which Ehresmann (1959) originally defined to be local

triviality. It is clear that the points b, may be assumed to lie in the

i
corresponding sets U,. We have chosen to include transitivity in the concept of

local triviality, ani to use the simpler definition 2.1 available in that case,
because the transitivity components of a weakly locally trivial groupoid are easily
seen to be both open and closed, and so the groupoid is topologically, as well as
algebraically, the disjoint union of transitive - and locally trivial - topological
subgroupoids.

Proposition 2.4. A topological groupoid which is both weakly locally trivial and
trangitive is locally trivial.

Proof. Trivial. I/

For the last reformulation of the concept of local triviality we need the

following definition from Brown et al (1976).

Definition 2.5. Let f: X + Y be a contlnuous map. Then f is a (topological)
submersion if ¥ xo € X there is an open neighbourhood V. of f(xo) in Y and a right-
inverse 6: V + X to f such that a(f(xo)) =% /]



CHAPTER 1I 34

Note that this is stronger than the mere existence of a local right-inverse
in some neighbourhood of any given point of Y: a map satisfying 2.5 is open, but a
continuous map with a global right-inverse need not be open (project the union of

2
the two axes in R~ onto one of them).

Proposition 2.6. Let @ be a topological groupoid on B. The following conditions

are equivalent:
(1) @ is locally trivial;
(i1) Bx: Qx + B is a surjective submersion for one, and hence for all
X € Bj
(i1i) [B,a]: @ » B x B is a surjective submersion;

(iv) B: @ » B is a submersion and 6x: Qx x Qx + Q is a surjective

submersion for one, and hence for all, x € B.

Proof. (1) => (iii). Let {Ui: Ui > Qb} be a section-atlas for Q and take & € Q.
Choose i, j such that af € Ui’ BE € U, and define 6: Uj x Ui + Q by
8(y,x) = oj(y)oj(BE)'lgoi(ag)ci(x)-l. Clearly [B,a]®6 = id and 6(BE,af) =£. The

other parts are similar, though (iv) => (i1) is most easily proved from the diagram

® —— o
™

8
. SN
BX
—xE 5 3 . /1

In particular, a locally trivial groupold £ is principal, and all the vertex
bundles (B,QX,B ) and the bundles Q_ x @ (Q,Qx,é ) are principal bundles.
X x*"x X X X’ X

Examples 2.7. Obviously trivial groupoids are locally trivial. A transitive action
G X B > B gives a locally trivial groupoid iff the evaluation maps G + B, g - gxo,
are submersions; this is always the case for a smooth (transitive) action of a Lie
group (see, for example, Dieudonaé (1972, 16.10.8(1))). For the standard action on a
homogeneous space G/H, the action groupoid is locally trivial iff G + G/H admits

local sections.

The groupoid P ; P associated to a Cartan principal bundle is locally
trivial iff the bundle P(B,G,m) 1is locally trivial: if o: U + P is a local section
P x PI
G w(u))

of the bundle, then x +> <0(x),uo>, LU is a local section of
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L4 2 P . 1If H is a subgroup of a topological group G for which G + G/H is not a
submersion, then g ; is principal but not locally trivial.

That the frame groupoid N(M) of a fibre bundle M is locally trivial is clear
from the way in which we defined the topology in II(M) (see 1.13). The same remark
applies to the fundamental groupoid 7r(B) of a path-connected, locally path-
connected and semi-locally simply-connected space B; the maps y k> <ei’x(y)> form a
section-atlas of the type defined in 2.3.

A transitive topological groupoid on a discrete space is locally trivial, in
fact globally trivial, and so also is a transitive groupoid with the coarsest

groupoild topology (see 1.16).

If 8 is a Hausdorff topological manifold and PO(B) is the full pseudogroup
on B, then J (P (B)) 1is locally trivial - see 5.9 for a more general result.

Lastly, any inverse image of a locally trivial groupoid is locally trivial.
/!

The topology of a topological group may be defined by means of a system of
symmetric neighbourhoods of the identity. A neighbourhood 2 of the base AB of the
square topological groupoid B X B contains a neighbourhood of the formlg (Ui x Ui)’
where {Ui} is an open cover of B, and one may loosely ldentify open neighbourhoods
of the base with open covers of it. For a general locally trivial groupoid 2 on a
paracompact, second countable, Hausdorff topological manifold B, dimension theory
shows that there is a finite section-atlas and it therefore follows that an opeun
neighbourhood 2‘ of B in @ contalns an open nelghbourhood constructed locally from
neighbourhoods of the form U, x N X Ui’ where N is a neighbourhood of the identity

i

in a single vertex group Qb. Evidently then, the topology of 2 could be

b
reconstructed from the system of such neighbourhoods, but this observation will not

be used (compare the proof of 1.21(ii), where such methods are avoided).

We now analyze morphisms of locally trivial groupoids.

Lemma 2.8. Let ¢: & > Q' be a morphism in the algebraic sense of locally trivial
. . - 1]
groupoids, and let {ci. U1 > Qb} and {Tj. Vj > Qb } be sectlon-atlases for @ and Q

with p' = ¢°(b). For any Vj and any U, with U < ¢ (V ) define 9 U, » n'b by

1 15 1 b

U

v
'
and Vj x Q'g, x Vj > Q'Vj induced by o, and Tj, the morphism ¢: QU

U
-1 b 1
8 = . g
ij(x) Tj(¢o(x)) ¢(ci(x)) Then in terms of the isomorphisms U x Qb x U QUi
V
i V

' 3 is
3
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represented by (y,4,1) F> (#.(5),8, (D)8, (01,0 (0)).

ij

Proof. Exercise. //

In particular if ¢° and ¢: are continuous and one can find section-atlases

with respect to which the eij are continuous, then ¢ is continuous.

The proof of the following proposition 1s given in full because it is a
typical example of working locally with morphisms of locally trivial groupoids.

Proposition 2.9. Let Q and @' be locally trivial groupoids on B and B',
respectively, and let ¢: @ + Q' be a piecewise homeomorphic morphism. Then ¢ is a

pullback for the category of locally trivial groupoids.

Proof. The assertion is, that if & 1s a locally trivial groupoid on B and
P: @ + Q' is a morphism over ¢°, then there is a unlque morphism @: ¢ + Q over B
such that ¢ = ¢n$.

¥ must be defined by Ei = (¢1) ° wi for x,y € B. Let {T1: Ui *> @b} be a
section—atlas for ¢ and {0': V.j > Q' .} a section—atlas for @', with b' = ¢°(b).
-1
Write W, = (v ) and define o.: W, > & by 0,(x) = (4 (9}(8,G0))« Ve prove

that Uj is continuous.

Take a continuous section v s Ak > Q of B with Ak W.,. As in 2.8, the

V J
map ¢b: Qik > ﬂ'b? can be written in terms of the homeomorphisms Ak x QE > ﬂ:k,
v '
(720 = v (A and Vx> @) 0 s ynas A B s v xarh,

(ys1) > (¢o(y),9kj(y)¢g(l)) where ekj(y) = 03(¢0(y)) ¢(vk(y)). The restriction

A A b by - -
of oj to Ak - Qbk is mapped under Qbk > Ak X Qb to y > (y,(¢b) 1(ekj(y) 1)) and

is thus continuous.

Thus {6 j > Qb} is a section-atlas for . Now with respect to the
U W
b i b i
i
somorphisms Ui x ¢b x Ui i QUi and wj x Qb x Wj > Qw induced by T and cj (where
we can assume Ui = wj, by restricting Ti and Uj to their intersection) the algebraic

morphism @ is
b, b b, 7t -1
(7,23 b (v, (o) (O GNP N4 (8] ()7, %)

i) -
where eij: U, > ﬂ':, is y > 05(¢°(y)) ! w(ri(y)). Since all the maps appearing in
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this local representation are continuous it follows that E is continuous. !/
The following result is given by Brown et al (1976).

Proposition 2.10. Let O be a locally trivial groupoid on B, let @' be a topological
groupoid on B' and let ¢: © + Q' be a morphism. If ¢° is a surjective submersion
then Q' is locally trivial.

Proof. Take b € B and write b' = ¢ (b). Take x' € B', say x' = ¢ (x ). Take a
local right—inverse T: V+ B to ¢ with V an open neighbourhood of x and

t(xo) = xo_.1 Now ¢ (V) is an open neighbourhood of X3 take o: U > Qb with

x € e ¢° w). Define o': (U) > Qb by o'(x') = (o(r(x'))). Then o' 1s a
continuous section of BL: Q; > B, /1

We will mainly apply 2.10 in cases where ¢° is an identity map. For the

remainder of this section we restrict attention to base-preserving morphisms.

Lemma 2.11. Let ¢: @ +> @' bhe a morphism of locally trivial groupoids over B.

Let {Oi: U, + .} be a section-atlas for Q and define ¢! = ¢oo . Then, with respect

i b i i
b Y b Ui rog
to the Uj x Qb X Ui > QUi and Uj x Q b X u; + Q U3 induced by Gj’ oy and Oj’ Oy
. U] ' J b
the morphisms o Q x Q is locally represented by ide X by X idUi .
Proof. Exercise. //

It follows from 2.11 that base-preserving morphisms of locally trivial

groupoids inherit many properties from their restrictions to vertex groups:

Definition 2.12. A continuous map f: X + Y is an embedding if it is injective and
if £f: X + £(X) 1s a homeomorphism with respect to the subspace topology on f(X).
1/

Proposition 2.13. 1Let ¢: @ +» Q' be a morphism of locally trivial groupoids over B.
Choose b € B, Then

(1) ¢ is open iff ¢: is open;
(ii) ¢ is a surjective submersion iff ¢: is a surjective submersion;

(i1i) ¢ is an embedding iff ¢€ is an embedding.
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Proof. (i) (=>) Q = ¢ (Q' ) and the restriction of an open map to a saturated
subset is open. (<=) ¢ open implies that each id x ¢b x 1d 1s open.

(11) is similar to (1) and (iii) follows from (1) since im ¢ is a
topological groupoid in its own right and is locally trivial by 2.10. 1/

Notation 2.14. Let ¢: Q + Q' be a morphism of locally trivial groupoids over B.
Then ¢: @ —-++ Q' denotes that ¢ is a surjective submersion, and ¢: & +-+ Q' that
¢ is an embedding. 1/

Theorem 2.15. Let Q be a locally trivial groupoid on a T, space B and let N be a

1
totally intransitive normal subgroupoid of . Then /N, with the identification

topology from 9: Q + Q/N, is the topological quotient groupoid, and é is open.

Proof. Give the algebraic groupoid Q/N the identification topology; we show that
it is a topological groupoid, hy showing that the bijections
b Yy

Uy x @my xu, (Q/N)Ui

(1)
LA, B> S e = (o, (071,

where {oi: Ui *> ﬂb} is a section-atlas for @, and oi =(1'01, are homeomorphisms.
Recall that 1f f: X > Y is an identification, and A& Y is either open or closed,
then the restriction f: f_l(A) + A is an identification.

First take f -q and A to be the closed subset (Q/N)b = [B a] (b b). It

b

follows thathb 9
group projection, it is open. Hence id qb

> (Q/N) is an identification and so, since it is a quotient-

U is open, in particular an
i
identification, and it follows that (1) 1s continuous.

U U i)
Second, take f =':I and A to be the open subset (Q/N) 3, Thenl?: QUj > (9/W) i
Yy 1 Y

is an identification and so the 1inverse bijection to (1) is continuous.

By working locally it is easy to show that Q/N 1s a topological groupoid,
obviously locally trivial. That % is open follows from the construction, or from
2.13. 1/

That N is totally intransitive is crucial to the above proof; 1if it were
, (Q/N){E% would receive from Q/N the ideutification topology not from Qb, but

from x€[b] Q:. Even 1f %o: B +» B/N is assumed to be a surjective submersion, it
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seems unlikely that the topological quotient groupoid Q/N always receives the
identification topology from Q.

Note that in 2.15 q need not be a surjective submersion - this already

occurs for topological groups.

The following trivial result will be needed later.

Proposition 2.16. Let & be a locally trivial groupoid and N a totally intransitive

normal subgroupoid. Let {Oi: u, » Qb} be a section-atlas for . Then the set of

i

b i -1
all U1 X Nb > NU , (x,A) -+ Ic (X)(A) ci(x)koi(x) forms an atlas for N as a
TGB. ot 1

In particular, the kernel of a base-preserving morphism £ + Q' of locally
trivial groupoids is a sub TGB of GQ.

We now wish to show that, given a locally trivial groupoid @ on B and a

group morphism f: Q:

with ﬂ'z = H and a morphism ¢: @ + Q' over B with ¢: = f, For this we need the

+ H for some b, there is a locally trivial groupoid Q' on B

concept of cocycle and the construction of locally trivial groupoids from cocycles.
The treatment will be brief, since the corresponding construction for principal

bundles is well-known.

Definition 2.17. Let B be a space and let G be a topological group. A cocycle on B
with values in G consists of an open cover {Ui} of B and maps s,,: U, . =U.n U, > 6

ij° 13 i i
such that whenever Uijk = U1f1 Ujfﬁ Uk # 9 we have

) sij(x)skj(x)-lski(x) =1 ¥xeuy .

Two cocycles {sij: U1j + G} and {s!: + G} on B are equivalent if there

|'3A Vki
is a common refinement {Wm} of {Ui} and {Vk} and maps T w o *G such that

8' (x) =r (x)-ls (x)r (x) ¥ x €W _ and ¥ myn. (Here s__ denotes the restriction
mn n nn n mn 'mn

f
of an 5., to wmng; U /!

1] 137

Equation (2) is called the cocxcle equation; clearly it implies that each
Si4 is constant at 1 (set 1 = j = k) and that Sji(x) =8, (x)_1 ¥ x € Uij (set
j = k). The elements s, , of a cocycle may be called transition functions.

i3
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Proposition 2.18. Let Q be a locally trivial groupoid on B and let {oi: U, » Q}

i b
be a sectlon-atlas for @, Then the maps sij. Uij + :, x F> 0 (x) 1cj(x) form a
cocycle. If {OL' " + Q } is another section-atlas then the associated cocycle
[
{skl' Qb} is equivalent to {s j
Proof. Trivial. 11/

bY
If sé above took values 1n some Qb' then, taking any ¢ € @ and defining

b

Tk: X b= GL(X)E’ the cocycles {tkl = E_lsilc} and {si'} would be equivalent; that

is, {st} and {sij}’ which take values in different groups, would be equivalent to
within an isomorphism. The reader may work out the details of how this additional
generality affects the following results.

Theorem 2.19. Let B be a space, G a topological group and {s U1j + G} a cocycle.

i3t

For each i,j write xf = {j} x Uj X G x Ui x {1} and write X for the union of

all the Xi. Define an equivalence relation ~ in X by
(3,7,8,%,1) ~ (3',5",8",x",1") <>y =y', x=x' and g =5, ,(y)gs;,, (%),

Denote equivalence classes by [j,y,g,%,i] and X/~ by Q. Then the following defines
in @ the structure of a groupoid on B: the source and target projections are
a([i,y,8,%x,1]) = x, 8({j,y,8,%x,i}) = y, the object inclusion map

is €: x k> x = [1,x,1,x,i] (any i such that x ¢ Ui)’ and the multiplication is

[sz,h’}'ajz][jl)y,g’x)i] = [k»z)hsj j (y)g)xvi]°

2-1
-1 -1
The inversion is [j,y,g,x,1] = (i,x,8 ",y,3].
3 U
Let 2 be the map Xg + Quj, (3,7,2,x,1) > [3,y,8,%x,1]. Then Each Zj is a
bijection and transferring the product topologies from the Xi to the QUj gives a

i
well-defined topology in 2 with respect to which it is a locally trivial topological

groupoid on B.
Choose b € B and io such that b ¢ Ui and define ci: Ui > Qb by
o
x b+ [i,x,l,b,io]. Then {01} is a section-atlas for 2 and the associated cocycle

is {x =+ [io’b’sij(x)’b’io]}'

Proof. The verification of the algebraic properties is an instructive exercise;

the verification of the topological properties follows as in 1.13. //
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Thus € in 2.19 is a locally trivial groupoid with a collection of
distinguished section-atlases whose associated cocycles are mapped to {sij} under
the corresponding isomorphisms [io,b,g,b,io] g, Qb + G. One could make this

b
correspondence 'natural' by defining a pointed cocycle to be a cocycle {sij}
together with a point b € B and index io such that b € Ui ; or, alternatively, to

be a cocycle {s,.} together with a point b € B such that gij(b) = 1 whenever

i3

be Ui (one may always choose a section-atlas (Oi: Ui > Qb} in such a way that

oi(b) = § whenever b € Ui)' The reader may work out the details.

Proposition 2.20. Let {sij: Uij + G} and {sij: U1j + G} be cocycles on a space B
with values in a topological group G, defined with respect to the same open cover

{Ui} and equivalent under a set of maps {riz U, G}. Let 2 and Q' be the groupolds

constructed from {Sij} and {Sij} in 2.19, and define a map ¢:  + Q' by

[3,7,8,%,4] > [1,y,7 (0 Tgr, () ,x,1].

Then ¢ 13 well-defined and is an isomorphism of topological groupoids over B.
Proof. Exercise. /!

The condition that the two cocycles are defined on the same open cover is of
course not necessary - one can always take the common refinement of the covers and

all the restrictions of the elements of the cocycles.

To make the correspondence of 2.18 and 2.19 precise one must define two

pointed cocycles {sij;b,io} and {si ;bzi;} to be equivalent if b =b', L = ié
and there is an equivalence {ri} with r, (b) = 1.

o

2.18 and 2.20 show that there is a bijective correspondence between
equivalence classes of cocycles on B with values in G and suitable isomorphism
clasgses of locally trivial groupoids on B with vertex groups isomorphic to G,
providing one defines the notions of equivalence and isomorphism with suitable
care. For our purposes the results given are sufficient; we do not need a precise
correspondence. Alternatively one may consider cocycles with values in TGB's and
congtruct a locally trivial @ from B x B and a TGB M which will he the inner
subgroupoid of Q; the cocycle must satisfy a compatibility condition with a cocycle
for M, for not all TGB's are inner subgroupoids of locally trivial groupoids.

Proposition 2.21. Let Q be a locally trivial groupoid on B, let b be a point B, and
let f: Q: + H be a morphism of topological groups. Then there is a locally trivial
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groupoid ¢ on B together with an isomorphism 6: H » 0: and a morphism ¢: Q + & over
B such that feof = ¢:.

If ¢',0',¢' are a second set of data satisfying these conditions then there

is an isomorphism O: ¢ + ¢' over B such that 9:09 = 0' and 6o0¢ = ¢'.

Proof. Let {21: U1 > Qb} be a section-atlas for 2 and, for convenience, arrange
that oi(b) = b whenever b € U . Denote the corresponding cocycle by {sij}’ and
congtruct ¢ from the i;cyele {f’sij: U1j + H} as in 2.19. Define ¢: Q + ¢bby
() = [j,Bi,f(¢j(BE) Eoi(ai)),ag,i] where af ¢ Ui’ BE ¢ Uj’ and 6: H + ¢b by
6(h) = [1,b,h,b,i] (any 1 with b ¢ Ui)' It is straightforward to check that &, ¢

and © have the required properies.

Given ¢',0' ¢' define oi = ¢'°ci
by {sij}; then sij = e'ofvsij. Define O: & + &' by 6([],v,h,x,1]) =
U'(y)e'(h)ci(x)-l. It is straightforward to check that O is well-defined and that

Gog = ¢', 000 = 8', /!

H Ui+ GL and denote the associated cocycle

Definition 2.22. 1In the situation of 2.21, ¢ is called the produced groupoid of &

along f and ¢ the produced morphism. /!

The corresponding concept for principal bundles is usually called an
'extension' or 'prolongation'. Both terms have other meanings within bundle or

groupoid theory.

Proposition 2.23. Let ¢: @ > Q' be a morphism of locally trivial groupoids over B.
Choose b £ B. Then Q' and ¢ are (isomorphic to) the produced groupoid and produced
morphism of £ along ¢:.

Proof. Follows from 2.21. //

We remind the reader that these results do not imply that an algebraic
morphism of locally trivial groupoids over B is continuous if its restriction to any
single vertex group is continuous (consider B X B + B x G' x B,

(y,x) > (y,e(y)e(x)-l,x) for suitable 6: B + G'); and they do not imply that

if ¢,4': Q > ¢ are morphisms of locally trivial groupoids over B and ¢: = 0': for
some {or all) b, then ¢ = ¢' (for a counterexample, in the special case of
inclusions, see III 1.20 to III 1.21). These results merely reflect the fact that a

locally trivial groupoild is determined by its base, a vertex group, and a cocycle:
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It follows from 2.10 that if 2 is locally trivial and ¢: @ + Q' is a base-preserving
morphism then Q' is locally trivial and, what is more, any open cover {Ui} which is
the domain of a cocycle for Q will also be the domain of a cocycle for Q'. Loosely
speaking, 2' can be no more twisted than @ is (and this is so even though ¢ need not
be onto; 1indeed ¢ need not even be a morphism - one needs only that a'0$ = a and
B'e¢ = B). Put differently, one cannot (with preservation of the base) map a
locally trivial groupoid into a groupoid which is more twisted than itself (or that

is not locally trivial at all). Given Q and f: Q]; + H, the base, a vertex group and
a cocycle for the codomain groupoid ' are all determined and so 2' is determined to

within isomorphism.

For the benefit of a reader meeting this material for the first time, we

append an example.

Example 2.24. Consider the locally trivial groupoids _&(_%_)ﬁg(_@_}_ and

%—go—)((-z—io—(a—)— corresponding to the priancinal bundles SU(Z)(SZ,U(l),n) and
SO(3)(52,SO(2),1r'). For the first bundle, denote a typical element of SU(2),
[_% g] with la'z + |B'2 =1, by (a,B), regard U(1) as a subgroup of SU(2) by

z +> (z,0), and let 7 be
(a,8) 1> (-2 Re(aB), -2 Im(aB), 1 - 2{8|%).

For the second bundle, regard SO(2) as a subgroup of SO(3) by Ar~> [8 (1)] and
let 7' be AF> Ae,, where {el,e2 ,e3} is the usual basis of R3.

Define a section—atlas for the first bundle by

- - x + iy /1 -2z
UN sz\{(0’0’1>): UN(X’Y1Z) = ( )

2(1 - z)
2 _ /1 + z x + iy
US S\{(0,0, 1)}) US(X,Y,Z) = ( 5 ’ 0T z)> >
and a section-atlas for the second bundle as follows: for i = 1,2 let
X Xe
2
Ui = s\{tei} and for x € Ui’ let y = le—xeﬁ and let ci(x) be the element of S0(3)

which maps el, e2, e3 toy, X Xy, X Calculate cocycles for the two bundles.
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-1
Each A € SU(2) defines its adjoint Ad(A): X t> AXA ~,¢% (2) » @U(2).
Identify $%(2) with R? by mapping (xl,xz,x3) to

ix3 X, + ix1

+ ix -ix

X 1 3

2

then the corresponding map g? + R3 is an element of SO(3) (see, for example, Miller

(1972, p. 224)). Then <A',A> ++ <AdA',AdA> 1s a morphism of topological groupoids

~  SU(2) x sU(2) __ S0(3) x S0(3)

Ad: €M) + S6(0) over Sz.

SU(2) x Su(2)
o)

Identify the vertex group of

over (0,0,1) with U(1) using the identity matrix in SU(2) as

reference point, do likewise with the second groupoid, and calculate the restriction
P~

of ZE to U(1) » S0(2). Deduce the kernel of Ad and also deduce another cocycle for

S0(3) x 80(3)

EI6) , and relate it to the one already found. //

§3. Components in topological groupoids.

We return to the study of arbitrary topological groupoids, and geuneralize
two elementary facts about topologlcal groups: the component of the identity is a

subgroup and that subgroup is generated by any neighbourhood of the identity.

We begin however by considering the relationship hetween transitivity
components and connectedness components. For arbitrary topological groupoids there
is no relationship - any partition of any space B 1s the set of transitivity
components for some topological groupoid on B, for example the equivalence relation
corresponding to the partition itself is such a groupoid. However there is the

following result:

Proposition 3.1. Let B be a locally connected space and let 2 be a topological
groupoid on B for which each BX: Qx + B8, x € B, 1s open. Then for each connectivity
component C of B, Qg is transitive.

Proof. C is open so each BX: ﬂg +C, x € C, is an open map. Hence the transitivity
components of QC are open, and therefore closed, subsets of C. Since C is connected,

c
there can be only one such transitivity component. 1/

As has already been noted, Bx will be open providing it is an identification.

3.1 shows that for such a topological groupoid on such a space, the
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transitivity components of Q are unions of connectedness components of B. 1In
particular each transitivity component M is open and therefore closed in B, and
so R is algebraically and topologically the disjoint union of its transitive full
subgroupoids Qg.

Now consider a transitive groupoid Q satisfying the conditions of 3.1, and

let Ci denote the connectedness components of B. If Q is locally trivial, it can
c

be reconstructed from the Qci; we will not, however, need the details of this

result. In general it seems unlikely that such a reconstruction is possible and so
to restrict oneself in general to transitive groupoids on connected bases is some

loss of generality. We will however often make this restriction in the locally

trivial case.

Proposition 3.2. Let ? be a topological groupoid on B. Let Wx denote the
connectedness component of X in Qx’ x € B« Then ¥ = iEL Wx is a wide subgroupoid

of 2, called the a-identity-component subgroupoid of Q.

Proof. By definition ¥ contains each ;,x € B, so it is certainly wide. Take

£ e Wi and n € Y; and consider ng = RE(n) € Qi. Because RE: Qy > Qz is a
homeomorphism, it maps components to components; since £ = RE(;) € RE(Wy) we have
yx" Rg(Yy) # § and therefore Wx = Rg(Wy). Hetfe ng € Wx. So ¥ is closed under
multiplication. Taking & ¢ ‘l’}}: again, we have y € R _1(‘l’x)n ‘l’y so R _1(‘{’x) =y

and hence g-l = 25'1 € Wy, which proves that ¥ is closed under inversion. 1/

¥ need not be normal; see 3.7 below. It is implicit in the proof that the
B-fibres ¥ are the identity components of the B-fibres & of 2, and that, for
-4 ﬂi, the component of ﬂx containing £ is Wy& and the component of o containing
g is EWX. Clearly the various components of any one oa-fibre need not be

homeomorphic.

If B is connected, then ¥ = qg ﬂx)xj B is connected, since each Yxl\ B is

nonvoid. Conversely, if Y is connected then B = B(Y¥) is connected.

If ¥ is transitive, then it is a connected space, since the map Wx x Yx + Y,
~1
(n,E) b+ ng is surjective. Thus if B is not counected then ¥ cannot be
transitive. However a transitive Q on a connected B may have Y = ﬁ; consider the

A
germ groupoid Jsh(r) for T a tramnsitive pseudogroup and B a connected space.
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Proposition 3.3. Let Q be an a-locally connected topological groupoid on a
connected base B for which each Bx: ﬂx + B is open. (By 3.1, @ is transitive.)
Then ¥ is transitive.

Proof. Similar to 3.1. /1!

Proposition 3.4. Let 2 be an a-locally connected principal topological groupoid on
a connected base B. Then ¥ is a principal subgroupoid of 2 and is an open subset
of Q.

Proof. By 3.3, Y is transitive. Hence Qx x Qx + 2, (n,8) +> nE-l maps Wx x Wx
onto Y. This map is open, since @ is principal, and since Vx is open in ﬂx, it

follows that ¥ is open in R, and the restriction Wx x Yx + ¥ is open. !/

If Q@ is a differentiable groupoid (not necessarily transitive and with base
not necessarily connected) then ¥ is open (see III 1.3). It would be interesting to
know if, for any topological groupoid 2 on a connected base B, ¥ is the component

of @ containing B.

Proposition 3.5. Let ? be a weakly locally trivial groupoid on a locally comnected
space B. Then Y is weakly locally trivial.

Proof. Let {Ui: Ui + ﬂb } be a section-atlas for R. Since B is locally connected
i

we can assume the U1 are counected, and in this case each Oi(Ui) lies in a single

by x b+ oi(x)gzl.

b 1

i
Then {Ti} is a section-atlas for Y. 1/

component C1 of & ; choose any Ei € Ci and define 11: Ui + yBE

Together with 3.3 this yields

Corollary 3.6. Let @ be an a-locally connected, locally trivial groupoid on a
connected base B. Then ¥ is locally trivial. 1/

Of course if ¥ (or any subgroupoid of Q) is locally trivial, then 2 itself
is.

Example 3.7. Let P be the space R X Z and let G be the discrete space Z X Z with

the group structure
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m,
2
(my,n)(my,0,) = (m) + my, (-1) “ny + n,).

Let G act on P to the right by

(x,p)(m,n) = (x + m, (—1)mp + n)

2mix
e

and let m: P + B = s1 be m(x,p) = . It is easy to verify that P(B,G,n) is a

principal bundle.

X

g 3 on B, let u = (0,0) € P and

let x5 = 7(uy) =1 + 04 ¢ Sl. Then under the identifications of P with @, and G
o

Let © denote the assoclated groupoid

X X
with QXO given in 2.8(i), QXO &£ Q, corresponds to the natural inclusion G & P.
o ) )

X

Therefore ¥, =R x {0} and on =Z x {0}, It is easy to verify that Z x {0} is
o o

not normal in G, so ¥ is not a normal subgroupoid of Q.

b3
The vertex bundle Wx (B, on) is of course the familiar example R(SI,Z) and
o o

the bundle P(B,G) is the pullback of the universal cover R?(K,G) of the Klein bottle

X along the map st - R/Z + X = R?/G induced by R » R?, x > (x,0). !/

Let Q be an a-locally connected principal topological groupoid on a
connected base B, and assume that the vertex groups of f2 have abelian component
groups. (By component group of a topological group 6 is meant the quotient group
G/Go where Go is the component of the identity.) Then ¥ is normal. :o see this,
note first that since Y is transitive, it suffices to show that one Wb is normal
in ﬂ:. Let P(B,G) denote the vertex bundle of Q at some b € B, and let Q denote the
component of t in P. Then WE ={gec I Rg(Q)S; Q}; clearly Wg is an open subgroup
of G; denote it by H. Hence H is a union of cosets of Go in G and so H is normal

in G iff H/G° is normal in G/Go. When G/G° is abelian, this is always the case.

This argument shows that for locally trivial groupoids on conunected bases
whose vertex groups are nondiscrete Lie groups of the type encountered in many

applications, the a-identity-component subgroupoid is normal.

Proposition 3.8. Let 2 be a topological groupoid on B. Let 2( be a symmetric set
(that is, ?{E?E and eL_l =2l) such that eachizx is open in Qx. Then the subgroupoid
¢ generated by ?( has Qx open in Qx for all x € B.

Proof. Since 2( is symmetric, ¢ is merely the set of all possible products of
elements from Zl. Choose x € B. The set of all n-fold products En LR El from 7‘
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with aE = x is the union of all Z{ C__ Q where [ is an (n-1)-fold product from Z(
Since RC: 8z + Q is a homeomorphism the set of all n-fold products from ZC which
lie 1n £, is open in @ . Hence ¢ 1s open in Q . /1!

X X X x

As with 3.4, if Q is principal and ¢ is transitive, then ¢ will itself be
principal and will be an open subset of 1. A set Zé satisfying the conditions in
3.8 will be called a symmetric oa-neighbourhood of B (or, of the base) in Q.

Proposition 3.9. Let 2 be a topological groupoid on a connected space B for which
each B : Q + B is open, and let 26 be a symmetric a-neighbourhood of B in Q. Then
the subgroupoid $ generated by QL is transitive.

Proof. Each Bx(ﬁ;) is open in B; denote it by Ux. Given x,y € B there is a finite
chain Uzo,...,Uzn with z = x, z =y and Uzil\ UZi+1 #0 ¥0<4i<n-1; this
follows from the connectivity of B. WNow it is clear that there is an element

£ e éi. 1/

Proposition 3.10. Let @ be a topological groupoid on B, and let & be a wide

subgroupoid of Q. Then, if each @x is open in Qx’ x € B, each ¢x is also closed
in @ , x € B.
X

Proof. The complement Q;\Qx is the union of all ¢B§£ as £ ranges over Q£\0X.
Since QBE is open in QBE it follows that QBEE is open in Qx. //

The following result is now immediate.

Proposition 3.11. Let @ be a topological groupoid on B, and let ?L be a symmetric
a-neighbourhood of § in Q. Then 14 generates the a~identity-component subgroupoid
¥ of Q. /1

Proposition 3.12. Let @ be an a~locally connected, locally trivial groupoid on a
connected base B, and let 2L be a symmetric a-neighbourhood of B in Q. Then the

subgroupoid ¢ of Q generated by Zé is locally trivial.

Proof. Apply 3.6 and 3.11. 1/
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§$4. Representations of topological groupoids.

This section gives the basic definitions and examples of the concept of
representation (or action) of a topological groupoid, and related concepts such as
igsotropy subgroupoid and invariant section. The basic material is due to Ehresmann
(1959, and elsewhere); see also Nga (1967). We also give the equivalence hetween
the concepts of action of a groupoid and covering of a groupoid; this is due to
Higgins (1971) in the algebraic case and to Brown et al (1976) in the topological

case.

Some deeper results for isotropy subgroupoids and the classification of
locally trivial subgroupoids are given in III§1; the simplicity of their
formulation there depends on the facts that all transitive smooth actions of Lie
groups are homogeneous, and all closed subgroups of Lie groups admit local sections.

A general topological formulation of these results would be cumbersome.

Definition 4.1. Let £ be a topological groupoid on B and let p: M + B be a
continuous map. Let @ * M denote the subspace {(i,u) e N xM | af = p(u)} of
2 x M.  An action of 2 on (M,p,B) 1s a continuous map & * M » M, (&,u) k> £u such

that
(1)  p(&uw) = Bg, ¥ (E,u) € Q%M ;
(11)  n(&u) = (n&)u, ¥ (n,E) e *Q, (gE,u) e Q*M;
(1i1)  p(uwu = u, YueM.
For u € M, the subset Qfu] = {€u | £ ¢ ﬂp(u)} is the orbit of u under Q.
1/

This definition goes back to Ehresmann (1959). We will be mainly concerned

with two cases: (i) when (M,p,B) is a TGB and each ubk+ &u, M is an

+ M
ag BE
isomorphism of topological groups; we will then say that @ acts on M by topological

group isomorphims, (ii) when (M,p,B) 1s a vector bundle and each ut+ &u,
Mag > Mﬁg’ is a vector space isomorphism; 1in this case we say that £ acts linearly

on M.

A concept of groupoid action on a groupoid is given in Brown (1972).

Definition 4.2. Let 2 be a topological groupoid on B, and let Q * M1 > M1 and
Q* M M2 be actions of 2 on continuous maps (Mi,pi,B), i =1,2. Then a
continuous map Y: Ml > M2 such that pa Y = p1 is Q-equivariant if $(&u) = E¥(u)
¥ (§,u) € O * Ml.
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Let 2' be a second topological groupoid with base B', let (M,p,B) and
(M',p',B') be continuous maps, let @ * M + M and Q' * M' > M' be actions, let
$: 8 > Q' be a morphism of topological groupoids, and let y: M + M' be a continuous

map such that p'ey = ¢; p. Then ¥ is ¢-equivariant if ¥(Eu) = ¢(E)¢P(u),
¥ (E,u) €6 0 * M. /1!

Definition 4.3. Let £ be a topological groupoid on B and let (M,p,B) be a fibre
bundle with locally compact, locally connected and Hausdorff fibres. Then a

representation of € in (M,p,B) is a morphism p: @ » I(M) of topological groupoids
over B. 1/

For our interpretation of the term 'fibre bundle', see A§1. 1If (M,p,B) is a
TGB we interpret II(M) as the groupoid of topological group isomorphisms and call p a
repregentation by topological group isomorphisms; if (E,p,B) is a vector bundle we
interpret II(E) as the groupoid of vector space isomorphisms and call p a linear

representation.

Proposition 4.4. Let Q be a locally trivial groupoid on B and let (M,p,B) be a
fibre bundle whose fibres are locally compact, locally counnected and Hausdorff.
If @ *M > M is an action of 2 on M then the associated map @ + II(M),

£+ (u > Eu) is a representation; if p: @ + (M) is a representation then
(E,u) = p(&)(u) is an action.

Proof. If @ * M + M is an action, let {oi: Ui + Qb} be a section-atlas and define
U

. - 3y
charts wi. Ui X Mb > Mui for M by wi(x,a) Oi(x)a. Then QUi MUi > MU becomes
b
(Ug X @ x U * (U x M) > Uy x M, ((7,4,0), (x,2)) k> (y,32) and the resule is
clear. The converse is similar. //

It is not clear whether this result holds for general topological groupoids
Q2 and whether, using the methods of Booth and Brown (1978) a similar result can be
proved without local triviality conditions on (M,p,B) or Q.

The following examples are basic.

Example 4.5. Let 2 be a topological groupoid on B and let B X F be a trivial fibre
bundie. Then £(ag,a) = (BE,a), £ € R, a € F, is an action of R on B x F, called the

trivial action. The associated representation is the trivial representation. //
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Example 4.6. Let (M,p,B) be a fibre bundle whose fibres are locally compact,
locally connected and Hausdorff. Then I(M) * M + M, (Z,u) k> £E(u) is an action.
/!

Example 4.7. Any topological groupoid Q acts on its own B-projection through the
multiplication map © * £ + Q. /!

P XF

Example 4.8. Let P(B,G,7) be a principal bundle, and let M = be an

associated fibre bundle with respect to a representation G + Homeom(F). Then

(Lv,uw>, <u,ad) k> <v,a>

is an action. //
In fact all actions of locally trivial groupoids are of this type:

Theorem 4.9. Let 2 be a locally trivial groupoid on B, and let 2 * M +» M be an
action of Q on a continuous surjection (M,p,B) whose fibres are locally compact,
locally connected, and Hausdorff. Then (M,p,B) is a fibre bundle and, for any

b G = Q:, F = Mb’ the map ; LN M, <§,a> F+ &a
is a homeomorphism of continuous sur jections over B and is equivariant with respect
to the isomorphism L3 ; P + Q of 1.19 (ii). (P é L is constructed with respect to

the representation of G on F corresponding to the restriction Q: x Mb + Mb.)

choice of b € B and writing P = @

Proof. Take a section-atlas {ci: Ui *> Qb} and use it to define charts

¢1: U xF> MUi, (x,a) >+ oi(x)a, as in 4.4. This proves that (M,p,B) is a fibre
bundle. Define P x F + M by (§,a) +> €a. In terms of the charts wi for M and

(x,g) > 0 (x)g for © , this is Ui X G X TF > Ui x F, (x,g,a) > (x,ga), which is
X F

open. Hence + M, <g,a> > £a is a homeomorphism. The other statements are

easily proved. 1/

This result should be compared with Xobayashi and Nomizu (1963, I.5.4 and

subsequent discussion).

Proposition 4.10. Let P(B,G) be a principal bundle and let M and M' be two
associated fibre bundles corresponding to actions G X F » F and G x ¥' + F' of G on

locally compact, locally connected and Hausdorff spaces F and F'.

(1) If £: F » F' is a G-equivariant map then £: M » M' defined by
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<u,a> k> <u,f(a)> is a well-defined morphism of fibre bundles over B, and is
P xXP

G

—-equivariant.
P X P

(11) If ¢: M+ M' is a

B, then ¢ = ? for some G-equivariant map f.

—-equivariant morphism of fibre-bundles over

Proof: (i) is easy to verify. For (ii), observe that a map £: P x F + F' can be
defined by the condition that

$(<u,a>) = <u,f(u,a)> for u €P, ac€F.

Now it is easy to see that equivariance with respect to

; P forces f(u,a) to
depend only on a. So we have f: F + F' and f must clearly be G-equivariant. 1/

One can formulate this result as a statement about adjoint functors (see
Mackenzie (1978, 7.1)).

Example 4.11. Let @ be a topological groupoid on B. Then the inner automorphism
action is the map & * G2 > G2, (£,1) k> I.(M) = exet,

If @ is locally trivial and its vertex groups are locally compact, locally
connected and Hausdorff then I is a representation £ + I(GR). If ¥ is a normal
totally intransitive subgroupoid of @, whose fibres satisfy the same topological

conditions, then the 'restriction' £ + II(X) is also a representation.

Returning to G itself, 4.9 shows that GQ is equivariantly isomorphic (as a

X
TGB) to 13 C & with respect to the inner automorphism representation of G on

P xG
G
associated to P(B,G). We shall call it the inner group bundle. 1/

itself. In the physics literature,

is often called the gauge hundle

The following definition introduces the last example.

Definition 4.12. Let 2 be a locally trivial groupoid on B and let (M,p,B) be a TGB
with locally compact, locally connected, Hausdorff fibres. An extension of Q by M

is a sequence

in which ¢ is a locally trivial groupoid on B, 1 and 7 are groupoid morphisms over

B, 1 is an embedding, 7 is a surjective submersion, and im(1) = ker(m). !/
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It is easy to see that the condition that & be locally trivial is

superfluous.

Example 4.13. TLTet M »Ls [} -1, 2 be an extension as in 4.12 with M an abelian TGB.
For & € QZ, %,y € B choose &' ¢ @i with m(£') = £ and define p(£): M_ > M as

Af> £'AE' 7, the restriction of I_,. It is clear that p(f) is well-defined. Now
I: ¢ + (M) is continuous (by 4.11) and 7 is an identification so p: £ » I(M) is
continuous. p is the representation associated to the extension M +-+ & -»+ Q,

/1

These examples are straightforward; see the discussion following III 4.14

for a representation which is not well-known in the context of principal bundles.

We now give some simple definitions and results about isotropy subgroupoids

and invariant sections.

Definition 4.14. Let  * M + M be an action of a transitive topological groupoid &
on a continuous surjection (M,p,B). Then a section pu € TM is Q-invariant 1f

Q
Eu(ag) = u(BE), ¥ £ € Q. The set of N-invariant sections of M is denoted (M) .
1/

If @ * E > E 1s a linear action on a vector bundle, then (FE)Q is an
R-vector space with respect to pointwise operations, but not usually a module over
the ring of continuous functions on B. A general fibre bundle need not of course
admit any (global) sections. 1In the case of a vector bundle and a linear action,

1%
(TE)" may consist of the zero section alone (see 4.16 below).

Proposition 4.15. Let @ be a principal topological groupoid on B and let @ * E > E

be an action of Q@ on a vector bundle (E,p,B). Choose b € B, and write V. for Eb and
G for Qt. Then the evaluation map

Q
aey? > v%,  wEr uw)

is an isomorphism of R-vector spaces.

Proof. Obviously the map is injective. Given v ¢ VG, define u by u(x) = £v where

£ 1s any element of Qi. Clearly u(x) is well-defined; u is continuous because

Bb: Qb + B is an identification. !/

A different view of this result is given in Mackeanzie (1978, §4).
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1
Example 4.16. Consider the principal bundle SO(2)(S ,Zz,p), whete 22 is embedded in

$0(2) as {1,-1} and p is z F> z2. Let O be the associated groupoid and E the vector
Z

bundle §Q£E%_§_§ , where Z2 acts on R by multiplication. Then (I‘E)Q =R 2 is the
2
zero space. (B is, of course, the Mdbius band.) 1/

Proposition 4.17. Let © * E + E be an action of a locally trivial topological
groupoid 2 on a vector bundle E. For each x € B, define g6% % £ be

af Q
BN = {ue E I u=u, ¥Xie Q:}. Then E°" 1s a subvector bundle of E.

b
Proof. Let {ci: U1 * Qb} be a section-atlas for Q, and write V = Eb’ G = Qb.
G
Define Wit Ui x V8 » EGQ'U by (x,v) F+ ci(x)(v). Then wi < maps V isomorphically
i s
onto EFQI . /!
x

Proposition 4.18. With the above notation, there is a natural trivialization

Q
B x V'G > EG .
[ X G GQ .
Proof. For x € B and any two £,£' € 2, the maps V" + E |x’ V> Ev and v F> E'v,

are identical. //

Compare Greub et al (1973, p. 384, proposition III). This result is mainly
of interest because the corresponding construction for actions of transitive Lie

algebroids yields sub vector bundles which are flat but not necessarily trivializable.

Definition 4.19. Let 2 * M > M be an action of a transitive topological groupoid @
on a continuous surjection (M,p,B). Then u € T™M is Q-deformable if for all x,y € B
there exists £ ¢ Qi such that &u(x) = u(y).

If p € IM is Q-deformable, then the isotropy subgroupoid of Q at u is
o) = {£ e guat) = )} /7

The term "Q-deformable” is adapted from Greub et al (1973, 8.2). A section
u is Q-deformable iff its values lie in a single orbit; the condition ensures that
the isotropy subgroupoid is transitive. Note that &(u) is closed in £ providing M
is Hausdorff. 1If Q is locally trivial, ®(u) need not be locally trivial; however
for a smooth action of a locally trivial differentiable groupoid the isotropy
subgroupoid at a deformable section is always locally trivial (see III 1.20).
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Mlso in ITI§1 we will use the correspoudence between deformable sections and
their isotropy subgroupoids to give a classification of those locally trivial

subgroupoids of £ which have a preassigned vertex group at a given point b ¢ B.

The coustruction of an action groupoid in I 1.6 may be generalized: let @
be a topological groupoid on B and € * M + M an action of Q on a continuous map
p: M > B. Give 2 * M the structure of a groupoid on M as follows: the projections
are 3(€,u) = u, E(E,u) = fu, the object inclusion map is ut+~+ (fﬁ,u), the
multiplication is (n,v)(&,u) = (ng,u), defined when v = fu, the inversion is
(x‘;,u)-1 = (E_I,Eu). Then, with the subspace topology from £ x M, 2 * M is a
topological groupoid on M, and @ * M + Q, (&,u) ++ &, is a continuous morphism over
p: M > B.

Definition 4.20. With the structure described above, Q * M is the action groupoid
assoclated to the action of Q on M. !/

Remarkably, action groupoids and the morphisms assoclated with them can be
characterized intrinsically. The following discussion, including 4.21 to 4.23, is
taken directly from Brown et al (1976).

Definition 4.21. TLet ¢: Q' > Q be a morphism of topological groupoids over

¢o: B' + B. Then ¢ 1s a covering morphism if the pullback space

Q% B' = {(E,x') e x B' ‘ a(g) = ¢0(x')} is homeomorphic to the space Q' under the
map [¢,a']: Q' + Q * B', £' =+ (¢(&"),0'(£')). We also say that ¢: Q' + Q is a

covering of .

Let ¢1: Q' *» Q and ¢2: Q" > Q be covering morphisms with the same

codomain Q. Then a morphism of coverings P: ¢1 + ¢2 over  is a morphism of

topological groupoids ¥: Q' + Q" such that ¢2°w = ¢1. 1/

Obviously each action groupoid € * M and its morphism @ * M > M form a

1 2
covering Q. It is also easy to see that if ¢: M + M is an f~equivariant map of

1 1 2 2 ~ 1 2
two actions 8 * M +M and R * M + M, then ¢: Q* M + Q * M, {&,u) > (§,¢(u))

is a morphism of coverings over Q.

Theorem 4.22. Let ¢: Q' + @ be a covering morphism, and let s: £ * B' > Q' denote

the inverse of [¢,a']. Then B'¢s: R * B' + B' 1is an action of Q on ¢°: B' > B.
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Let Pt ¢1 - ¢2 be a morphism of coverings over Q. Then woz B' » B" is Q-
equivariant with respect to the actions ianduced by the coverings.

Proof. We will show that n(Ex') = (ng)x' for (n,) € @ * @ and x' € B' with
af = ¢°(x'); the other conditlons are clear. TFirst note that each

¢x': Q;' > Q¢ (x) is a homeomorphism - it is easy to see that [¢,a'] maps Q',
X

o
onto Q¢ (x') x {x'}. Thus s(£,x") is the unique element of Q;, which is mapped
o

by ¢ onto £. Write y' = (B s)(£,x") and note that ¢ (y') = BE = an.

So s(n,y') is defined and is the unique element of Q'? which is mapped by ¢ onto n.
Since a'(s(n,y')) =y' = B'(s(&,x")), the product s(ﬁ,y')s(i,x') is defined.
Obviously it belongs to Q;, and is mapped by ¢ onto nf; it is therefore equal

to s(n&,x"). That n(Ex') = (n&)x' now follows.

The second statement of the theorem follows from noting that

[9y,a" 10 = (id*wo)°[¢,0'], and hence W(SI(E,X')) = sz(i,wo(x')),
¥ (g£,x') € @ * B, 1/

These two counstructions are indeed mutual inverses:

Theorem 4.23. (i) Let ¢: Q' + Q be a covering morphism, and let @ * B' + B' be the
assoclated action. Then, giving © * B' its structure as an action groupoid,
[¢,0']: &' > @ *# B' 1s an isomorphism of topological groupoids over B' and is an

isomorphism of coverings of Q.

(ii) Let 2 * M + M be an action of a topological groupoid on a continuous

map p: M + B, and let LI 2% M + Q be the associated covering. Then the action
of @ on M induced by m is the original action.

Proof. Straightforward exercise. !/

One may express 4.23 by saylng that the category of covering morphisms over
a topologlical groupoid £ is equivalent to the category of actions of Q and
Q-equivariant maps. One should note too that Brown et al (1976) also prove that if

¢2. Q' + Q" is a covering morphism and ¢1: Q + Q' any morphism of topological
groupoids, then ¢2°¢1 is a covering morphism iff ¢1 is.

If X, Y are path-connected, locally path-counnected and semi-locally simply-

connected spaces, and p: X + Y is a covering map, then p*:7r(X) +7TYY) is a
covering morphism of topological groupoids (Brown and Danesh-Naruie (1975)). The
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abstract theory of covering morphisms of topological groupoids in fact models the
familiar features of the theory of covering spaces: a covering ¢: Q' > Q may be

$ (x')

1 *

called regular if ¢§,(n':,) < Q¢°(x')’ ¥.x' € B'; if Q is a transitive topological

3
groupoid on a Hausdorff base B, x ¢ B, and H < Qx, then there is a covering

) ' X -1
$: 0" > 2 of 0 with @' transitive and ¢ (2',) = H for some x' € ¢_'(x), which is
universal in a natural sense; 1in particular, there is a universal covering groupoid
of @, which is in fact the action groupoid for the action Q * QX > Qx, (E,n) k> En
of R on a chosen a-fibre Q . For these results see Brown et al (1976, Theorems 6
X

and 13). (Presumably there is also a version of these results in which one works

with subgroupoids of { rather than with subgroups of a particular vertex group.)

Proposition 4.24. Let @ * M » M be an action of a topological groupoid Q on a
continuous map p: M > B.

M

(1) @ * M is transitive iff QgEM;

is a transitive groupoid on p(M)& B
b
and Qb x Mb > Mb is a transitive action for some b ¢ B;

(i1) 9 * M is locally trivial iff Qb + M, £t++ Eu, is a surjective

submersion for gsome b € B and u ¢ Mb.

Proof. (i) is straightforward and (ii) is merely a reformulation of the definition.
1/

For actions of groups, G X B + B, the action groupoid is principal iff the
action 1s transitive and the evaluation maps g ++ gx, x € B, are open. No such

simple criterion seems to exist in the general case.

The concept of "homogeneous space” for a topological groupoid, and its
relationship to transitive actions of groupoids, is a complicated and unsatisfactory
matter and it is fortunate that we do not need to consider it here. Some results

may be found in the same paper of Brown et al (1976).

§5. Admissible sections.

On a group G, the left-translations Lg: X b+ gx form a group which is
isomorphic to G itself under g > Lg’ and the right-translations R : x k> xg

likewise form a group with gt+ R now an anti-igomorphism. For a topological

groupold f one calls a homeomorphism £ > & a left-translation if it is the union of

a
left-translations Lg: Q ¢ + QBE; such a left-translation is not characterized by a
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single element of Q, but by an admissible section. These admissible sections may be
regarded as generalized elements of the groupoid, since in the generalizations of
the adjoint and exponential formulas for Lie groups, they play a rdle which, in the

case of groups, is taken by the group elements themselves.

The material in this section is based on Xumpera and Spencer (1972,

Appendix).

NDefinition 5.1. Let Q be a topological groupoid on B.

A left—translation on Q is a pair of homeomorphisms ¢: & + Q, ¢ : B » B,
IR N AN G
such that Be¢ = ¢0f6, o = a, and each ¢ : & + Q is LE for some £ € Qx .

An admissible section of @ is a continuous ¢: B + Q which is right-inverse

to a: £ > B and is such that B9g: B » B is a homeomorphism. The set of admissible

sections of & is denoted by IQ. 1/

Given an admissible section o, define a map Lc: € » Q by £ F> o(BE)E. Then
L0 and 890: El+ B ciqstitute a left-translation on 2 (the inverse of Lo is
n k> o((B%0) (Bn)) n). Conversely, let ¢, ¢o constitute a left-translation on Q.
For X € B choose & € 2" and define o(x) = ¢(€)E—1. If n is another element
of * then n = §Z for some £ € R, Now ¢(E) = 6% for some 6 € Qx and $(£L) = OEL
with the same 6. Thus ¢$(£Z) = $(&)z and so o(x) is well-defined. The map o is
continuous since B: & > B is an identification. Clearly o is an admlssible section
and ¢ = Lc’ ¢o = Bog, We call LU (with Boo understood) the left-translation
corresponding to o.

Clearly the set of left-translations is a group under composition. We

transfer its group structure to TQ:

Proposition 5.2. Let Q be a topological groupoid on B. Then I' is a group with
respect to the multiplication * defined by

(o*1)(x) = o((Be)(x))1(x), x€eB,

with identity the object inclusion map x ¢+ ;, denoted in this context by id, and

iaversion
-1
c'l(x) = c((B’O)-l(X)) N x€eB,

and 0 +*+ L 1is a gro isomorphism, that is L =L°L .
g s group morphism, at is . PaT
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Proof. Straightforward. /!

Note that 0 F+ Beo 1s a group morphism from TQ to the group of

homeomorphisms of B.

Example 5.3. Consider a trivial topological groupoid B x G x B. The set

T(B x G x B) can be identified with the set of pairs (¢,8), where ¢: B + B is a
homeomorphism and €: B + G is any map, by identifying (¢,0) with

x k> ($(x),0(x),x). The multiplication is then

(4,,8,) * (4,,8,) = (400

Lo (9,20)0))

with inversion (¢,6)-1 = (¢-1,e-10¢-1); here e'l refers to the pointwise inverse of

a group~valued map and ¢—1 to the composition-inverse of a homeomorphism. !/

Example 5.4. Consider a vector bundle (E,p,B) or, more generally, a fibre bundle
whose fibres are locally compact, locally connected, and Hausdorff.

Given ¢ ¢ TN(E), define a vector bundle morphism, also denoted by o, over Beoo, by

u b+ o(pu)u. Then 0 * T = oot and id = 1dE, and so each o: E +» E is an isomorphism

of vector bundles. Conversely, given an isomorphism of vector bundles ¢: E > E,
¢ _(x)
¢o: B > B, the map 6: x ++ ¢_ € I(E) ° is an admissible section of I(E)
X x

(continuity is proved by using the local triviality of E) and o = ¢.

We will use these vector bundle isomorphisms less than the maps of sections
which they induce. An admissible section o: E + E, Beo: B + B induces a
map o: TE » TE by

S (x) = o((Bo0) T(x))u((Boo) T(x)), x & B

and a map o C(B) > C(B), f +~+ fﬂ(ﬁﬂo)—l (see A§1) and these maps satisfy

oFr(u) = a(T(n)
oluy + uy) = o(u) + o(n,)

o(fu) = o(£)o(r) ,

as can be easily checked. For future use, we also note that

Tl = o tu(Booy (). 1/

Example 5,5. Consider an action groupoid Q * M where Q is a topological groupoid
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and p: M >+ B is a continuous map. If ¢: M + M is a homeomorphism then an admissible
section o of @ * M with Beo = ¢ may be identified with a map f: M + @ such that

aef = p and f(ud)u = ¢(u), ¥ u € M. Consider in particular a discrete group G,

let B be the set G with the indiscrete topology and let G X B + B be the group
multiplication., If ¢: B + B is a permutation, but not a left-translation g F+ xg,
then there is no (continuous) admissible section 0 of G x B with Boo = $. For each

left-translation B + B there is exactly one such admissible section. /!

Example 5.6. Consider a principal topological groupoid 2 on B, and a left-
translation LO: 2 + Q@ over B*o: B + B. For each x € B, LCr restricts to Qx > Qx and

x x
L0|X(B°0,id): QxSB’nx) > QX(B,QX) is an isomorphism of Cartan principal bundles.

Counversely, let P(B,G,m) be a Cartan principal bundle and let ¢(¢°,id) be an
isomorphism P(B,G) + P(B,G). (That is, me¢ = ¢o'ﬂ and ¢(ug) = ¢(u)g, ¥ u € P,
g € G.) For x € B choose u € ﬂ-l(x) and write o(x) = <{¢(u),u>; this is clearly
well-defined and o is continuous since 7 is an identification. ¢ is an admissible
section of 13 Z 4 and L, is v, w =+ <$(v),u>, which, in terms of the isomorphism
of 1.19(1), corresponds to ¢: P > P,

Automorphisms of principal bundles of the form ¢(¢°,id) might thus
legitimately be called left-translations. Those for which ¢o = idB are called gauge
transformations in the physics literature (for example, Atiyah et al (1978, §2));

X
they correspond to those admissible sections of P A P which take values in the

bundle © . €. /!

The question of the existence of admissible sections is an extremely obscure
one. Even 1if 8 1s locally trivial and the homeomorphism group of B is transitive,
it is not clear that o ++> Beo, I'Q + Homeom(B), is surjective. In future however we

will only be concerned with local admissible sections:

Definition 5.7. Let Q be a topological groupoid on B. TFor U& B open, a local

admissible section of @ on U is a map 0: U + @ which is right-inverse to a and for

which Beo: U + (Beo)(U) is a homeomorphism from U to the open set (Bed)(U) in B.
The set of local admissible sections of f on U is denoted FUQ.

For 0 € FUQ with V = (Beo)(U), the local left-translation induced by ¢ is
U \'s
Lys @ + @, £k> o(BE)E. !/

The set of all Lo for o € FUQ and UG B open 1is not a pseudogroup on

since it is not closed under restriction. The following result, which will be
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needed in ITI§4, shows that this is unimportant.

Proposition 5.8. Let  be a topological groupoid on B, for which B: 2 + B is an
open map. Let ¢: U >V be a homeomorphism from Uen open to Y= open, and let
¢°: U + V be a homeomorphism from U = B(IHE B to V = 8()) & B, such that ae$ = a,

Be¢ = ¢o°B and $(En) = ¢(&)n whenever (£,n) € @*Q, & ¢ and &n e¥. Then ¢ 1s the
restriction to ZL of a unique local left-translation LG: QU + s'lv where 0 € I‘UQ.

-1
Proof. For x € U choose § eﬂx and define o(x) = ¢(&)Yf ~3; clearly o(x) is well-
defined. Since the restriction B: U - U is open, ¢ 18 continuous and is therefore a

local admissible section on U with Bog = ¢>o. That LO(E) = ¢(&) for £ e s clear,
as is the uniqueness. /1l

Thus, at least for groupoids whose projections are open maps, any local

homeomorphism 7(»‘)/ which commutes with the Rn: an + Qom in the sense of 5.8 is the

restriction of a local left-translation LU: Qs(w > QB(%.

In any case, for a general topological groupold R we will regard the set of
local admissible sections as being in some sense a pseudogroup on B with law of
composition *: if o ¢ I‘UQ with (Beo)(U) =V agg T e FV,Q with (Bet)(V') = W, then
T * 0 is the local admissible section in (Beo) (V') N V defined by
(t*0)(x) = T((Beo)(x))o(x), providing (860) (V') A V is nmot void. We will refer to
the set of all local admissible sections, together with this composition, as the

pseudogroup of local admissible sections of 2, and will denote it by I‘loc(Q).

Let J}‘(ﬂ) denote the set of all germs of local admissible sections of Q.
Then J)‘(Q) has a natural groupoid structure: the source and target projections are
E(gxo) = X, .B(gxc) = (Beo)(x); the object inclusion map is x +> X = gxid; the
multiplication, denoted *, is (g 1) * (ng) = gx('r*c), and the inversion is
(gxo)-l = g(Buo)(x)(c-l)‘) where o ! is y > 0((800)_1(y))-1,vdefined on (Bed)(U).
With this structure, J (9) is called the local prolongation groupoid of Q.

One can give J)‘(Q) a sheaf-type topology defined by taking as basis the sets
Nc = {gxo I X € dom)‘a} for 0 € I‘R'OCQ. With this topology JA(Q) 1s a topological
groupoid, denoted Jsh(Q). Whether this is an Interesting topology is rather
uncertain; for a topological group G, J (G) 1s naturally isomorphic as a groupoid
to the group G, but J:h(G) has the discrete topology. It is thus a rather coarse
invariant.

If @ is locally compact and Hausdorff, the set of germs g;(Lcn x € U, of
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local left—-translations LO: QU > QV can be given the compact—open topology oi Abd-
Allah and Brown (1980) (see 1.15) and this topology tramnsferred to J (Q); J (R) 1is
then a topological groupoid on B, and is denoted JQO(Q). For any locally compact
and Hausdorff topological group G, JA (G) 1s naturally isomorphic to G as a
topological group. Further, «

Proposition 5.9. Let @ be a locally trivial groupoid on a topological manifold B.
A A A
Then J:O(Q) is locally trivial and the map J () + J (FO(B)) =J (B x B),

g0 > gx(8°0) is surjective.

Proof. Let {oi: Ui > Qb) be a section—atlas for §; assume each Ui is the domain of
a chart R* 2 Ui for B. Choose some Ui which countains b and denote it by U. Choose
i and find a continuous wi: U x Ui + U1 such that each wi(—,x): U+ Ui is a

~ A
homeomorphism and wi(b,-) is the identity. Define o Ui + JCO(Q)b by
;i(x) = gb(y (e ci(wi(y,x))o(y)_l). It is straightforward to check that gi is

any U

continuous.

The second assertion is proved in a similar way. 1/

This result is taken from Virsik (1969, 1.4). It is the only existence
result for local admissible sections that we need.
Definition 5.10. Let Q be a topological groupoid on B, and take ¢ € Flocn with
domain U and (Beo)(U) = V.

The local right-translation defined by o is R Q,

g > Bys § > E0((B0)(0D)).

The local inner automorphism defined by o is Iq: ng > Qg, [ i d U(BE)EG(GE)_I.

1/
Clearly R = ReR and I = I 01 _, wherever the products are defined.
o*kT v o o*1 o T U v
Also, Rc_l(E) = go(ag) ~ and I = Lovko_l = Rc_lo L,. Note that I : o, > Q is

an isomorphism of topological groupoids over Beo: U » V. (Local) right-translations
can be characterized intrinsically as in 5.1. Since the Lie algebroid of a
differentiable groupoid will be defined using right-invariaant vector fields and the
flows of such fields are local left-translations, we will not use local right-—

translations very extensively.
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Definition 5.11. Let ¢: & » Q' be a morphism of topological groupoids over B. Then
2 £ A A

%% » 1°°% | g+ goo, and J(Q) + J @),

£.° = gx(¢°o), are all devroted by ¢ and called induced morphisms (of groups,
“pseudogroups” and groupoids, respectively). //

the maps I'Q + I'Q', o ++ ¢o0, T

It is easy to see that $: JA(Q) > JA(Q') is continuous with respect to
either (consistent) choice of topology.

In the case of a representation p:  + M(E) and a local admissible section

o€ FUQ, the map S(U): FUE + FVE will be denoted more simply by p(o).

§6. The monodromy groupoid of a principal topological groupoid

Given an o-connected and principal topological groupoid £, whose topology is
locally well-behaved, we construct a principal topological groupoid MQ whose a-fibres
are the universal covering spaces of the a—fibres of Q and which is locally
isomorphic to 2 under a canonical morphism §: MQ + 2 which on each a-fibre is the
standard covering projection. MQ is called the monodromy groupoid of @ and
generalizes both the construction of the universal covering group of a topological

group and that of the fundamental groupoid of a topological space.

The algebraic structure of MR is easily defined for an arbitrary o-connected
toplogical groupoid; we considerably simplify the problem of defining the topology
on MR by restricting ourselves to the case where @ is principal and then working in
terms of the vertex bundles. 1In fact we show that if P(B, G) is a principal bundle
with P connected then the universal cover P is a principal bundle over B with
respect to a group H which is locally isomorphic to G, and that the covering
projection P+Pis a principal bundle morphism over B. The corresponding result

for principal groupoids then follows immediately.

For § a differentiable and not necessarily locally trivial groupoid, Almeida
(1980), following the announcement of Pradines (1966, Théoreme 2), has shown the
existence of a differentiable groupoid structure on MQ such that the covering
projection M2 + Q is smooth and étale. The proof proceeds by lifting the
differentiable structure of £ back to a generating subset of M and then showing
that the resulting microdifferentiable structure on M2 (see IIT 6.3 for definition)
globalizes. This construction is vastly more complicated than the one given here,
and we believe it worthwhile to have set down the simple proof available in the case

of principal topological groupoids and locally trivial differentiable groupoids.
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It should be noted that Almeida's construction deduces a topology on MR only
a posteriori; it would be interesting to have a purely topological construction of

the holonomy groupoid of a microtopological groupoid.

The proof given here can be reformulated to avoid use of the correspondence
1.19 between principal groupoids and Cartan principal bundles: if £ is locally
trivial and locally simple (see 6.9 for definition) 6.2 generalizes to show
that pisa) + MQ is open and the continuity of the multiplication in MQ then follows

o
from that of the multiplication in PO(Q). However it seems unlikely that
p“(n) + MQ is open in general.

o

A different approach to the construction of the universal covering principal

bundle EXB, H) of P(B, G) is given by Kamber and Tondeur (1971, 6.3).

In 6.14 we show that a local morphism of topological groupoids, defined on
an o-simply connected and principal domain groupoid, globalizes. 1In 6.11 we show

that the covering projection ¥: MQ + Q has a local right—-inverse morphism; for this

we need to assume that  is locally trivial.

To avoid tedious repetition we use the following terminology.

Definition 6.1 A topological space is admissible if it is Hausdorff, locally

connected, locally compact and semi-locally simply counected. 1/

Local compactness is included here because it is used in the proof below
that CP x C}l > CP is continuous.

Let & be an a-connected and transitive topological groupoid on B,

with @ admissible. The monodromy groupoid M@ of Q is defined as follows.

tet p% = Pa(Q) be the set of paths y: I +» Q (where I = [0, 1]) for
which aey: I + B is constant; elements of Pa are called o-paths in Q . Llet
Pg = P:(ﬂ) be the subset of a-paths which commence at an identity of
Q; every y € ?” is of the form Rg Y' where Y' € Pz and & = v(0). Define
Y, 8§ ¢ B to be a-homotopic, written y gy 6, if v(0) = 8(0), y(1) = &(1), and there
is a continuous H: I x I + Q such that H(0, -) = vy, H(1l, =) = §, H(s, O) and H(s, 1)

are constant with respect to s € I, and H(s, =) ¢ Pa, ¥s € I. Such a map H is

called an a~homotopy from vy to 8. The a-homotopy class containing Y € p* is
written <yY>.

a
Define Mt to be the set {<Y>iy € Po} with the following groupoid structure:
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the projections &, E: M2 + B are E(<y>) = ay(0) and §(<Y>) = By(l); consequently

1f a(<K6>) = §(<Y>), then 8(0)Y(1l) is defined and so 1s the standard concatenation
(RY(I)OG)Y; we define <8><¥> to be <(RY(1)°5)Y>. Tt is straightforward to verify
that this product is well-defined and makes MQ into a groupoid on B, The identities
: v*> where € = (1)} and v* s the

reverse of Y. Since f is a-connected and transitive, it follows that MQ is

are X = <k.> and the inverse of <Y> is <R
x

transitive. It is clear that y: MQ + ©, <¥> ++ Y(1) is a surjective morphism of

groupoids over B; V¥ is called the covering projection.

Clearly each a-fibre Mﬂ'x is the set underlying the universal covering space
of Qx' constructed from paths starting at ;. This, together with the fact that
M(B x B) =7TKB) is a topological groupoid with respect to the quotient of the
compact—open topology on C(I, B) = PZ(B x B), suggests that MR should be a
topological groupoid with respect to the quotient of the compact—open topology
on Pﬁ(ﬂ). However, this writer has not been able to give a general proof that, with
this topology, the groupoid multiplication is continuous. On the one hand one may
try to calculate nl(MQ) and nl(MQ * MQ), with the aim of lifting MQ * MQ + MQ + Q
across MR + ©; this, however, appears intractable unless MR has associated with it
a fibre bundle structure, such as MQ ;_g_g_g where Q = MQ o b= MQ :. On the other
hand, one may try to imlitate the case of 7[(B) (see 1.14), but although C(I, B)
*7(&3) is an open map (see 6.2) it seems unlikely that P:(Q) + MQ is open in

general.

These problems can be avoided when @ is principal, by working with a single
vertex bundle of @, and this case will suffice for our purposes. Therefore
let © now be a principal and a-connected admissible topological groupoid on B.
Choose b € B and write P = ﬂb, G = 92, "= Bb. Then M9|b = 5, the universal cover
of P based at B. Write H = n-l(G) = MQ’bSE F, and give H the subspace topology
from P, Denote Eb: P>B by T; note that Tis <y & m(y(1)).

We claim that F(B, H, ;) is a Cartan principal bundle. The algebraic
properties follow from the groupoid stucture of MR, and it only remains to prove
that the action P x H + P and the inversion H + H are continuous. The following

result is needed.

Proposition 6.2 Let X be a connected, locally connected and semi-~locally simply

connected Hausdorff space. Then the identification map

pr C(I,X) (XY, v+> <Y,
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where C(I, X) has the compact-open topology, is open.

Proof: The topology on C{I, X) has as sub-basis sets of the form

N(a, b, U) = {y & ¢(1, X).Y([a, b])< U}, where 0 € a < b <1 and US X is open.
n
i]’ Ui) be a basic open set, and choose Y € N. Write

a= min{ai} and b = max{bi}. There are now four cases.

Let N = (1) N([a,, b
i=1 i

Case 0 < a, b <1, We will show that every element of the form
<8'><Y>K8>, where §', § are arbitary paths with §'(0) = v(1), §(1) = Y(0), is in
p(N). (This in fact shows that p(N) =7Tkx).) For convenience, regard € = §'y$ as

being
1
e(t) = 48030 0<t <3
1 2
(1) Y3t - 1) 39t <3
' 2
§' (3t - 2) 3<t<1.
Define €' by the formula
e'(t) = 14 1+ t) 0<t<a
3a
(2) e( £L7;—L ) a<t<hb
(2 -t + (1 - 2b)
e( (1 = b) ) b<t< 1,
ai + 1

Then for all i we have e'(ai) = g( ——— )

and e'([ai, bi])SE Y([ai, bi])EE Ui° S0 ¢' ¢ N, That e' ~ ¢ should be clear; a

Y(ai) and similarly e'(bi) = Y(bi)’
specific homotopy is

(% -a)s+a+1l 1
H (¢) = e( ————1t ) for 0 < t < G- a)s + a

1
3(5 - a)s + 3a

t+1 1 1
e( 3 ) for (E - a)s+a<t< (E - b)s+b

2 - (% - b)s - bt + (1 - 2(% - b)s - 2b)

€ 1
3(1 - (E - b)s - b)

for (% -b)s +b <t <1,
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Case a = 0, b < 1. Set a+ = min{ai|ai > 0} and U =) (Uilai = 0}; U is an
open neighbourhood of Y(0). We will show that every element of (X) of the
form <8'><Y><8> where &' is arbitary with §'(0) = y(1) and 6§ is in any path in U
with 6(1) = v(0), lies in p(N). Clearly the set of all such products is open (see
1.14). With € as in (1), define €' by (2) except that a is replaced by a+.

Then €' ~ € as before and €'(la bi])EUi whenever a; > 0. It remains to show

i’
that '({0, bi])_C_;Ui when ai = 0, Consider first the sub-case where bi < a+.

+ +
1l +a

T

Then e'([0, b,1) = (o, =22 v ]). 1
+ 3a 3a

l*ra 4 1280, 1DevSU,. And if k = b, > 1
387 1 - . B r 3.t 1 3’

e[0, k] = ¢[0, %] v 8[;-, k] = 8¢{o, 11) v v[0, 3k - 1]. Now 3k - 1 < b, since

+
bi <a, sovl0, 3k -~ 11& vla

1
bi <7, then

+
1 +a

elo, then

10 bi]g Ui as required.

Secondly, consider the sub—case where a+ < bi' Here

e'[o, bi] = ¢'[0, a+]u €' [a+, b,]

i
+ + 1+b,
=5[0’1;a]UE[1;a, 31] (sincebi<b)
+ + +
1 +a 1 +a ! bi

N 1 1 1 +a. 1l+a _ i
= ¢[o, '3-]U 6[5, 3V el —3 » 73 1

800, 11U ¥I0, a1y vla', b,]

i

< v yvlo, b, 1C U,, as required.

The case a > 0, b =1 is similar. 1In the case a =0, b =1, define

+ - -

a" = minfa |2, > 0}, b7 = max{b |b, < 1} and v =N {y,|a, =0}, v =V [b =1},
and consider products <8'><y><8> with ' in V and § in U and €' defined using

at and b7, //

Returning to g(B, H, ;), let CP denote the space of paths y in C(I, P) for
which v(0) = b, and CH the space of paths Y in CP for which v(1) € G. Let p be the
projection C(I, P) *7((P). From 6.2 it follows that p: CP + P is open, hence that
p: CH + H is open, and hence that p X p: CP x Cl-I > P xH is open. It therefore
suffices to show that

P H P
¢ xC ¥, (8, Ve (R ()0 8)Y
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is continuous. Now CP x G > CP, (8, g)r>r RgOG is continuous, since the action of G
on P is continuous and P is locally compact; and concatention in path spaces is
continuous (see, for example, Dugundji (1966, XII.2 and XIX.l, respectively)). This

completes the proof that F(B, H, ;) is a Cartan principal bundle, the universal
covering bundle of P(B, G, ™).

Since F(B, H) is algebraically the vertex bundle at b of MR, the topology on

; can be transferred to MQ via the bijection P ; LN MR, <LKY'D L, <Ok <Y'><Y>-l and,

by 1.19, MQ becomes a principal topological groupoid on B with ﬁkB, H) now the

topological vertex bundle.

Definition 6.3 Let @ be a principal and a-connected topological groupoid on B,
with @ admissible. The topological groupoid M@ constructed above is the monodromy
groupoid of 2 and the morphism y: M2 + @, <>+ ¥(1), is the covering

projection. /1

Proposition 6.4 1let £ be a locally trivial a-conmected, topological groupoid on B,
with @ admissible. Then M2 is locally trivial and y: MQ + Q is &tale.

Proof: Decomposing sections U, » MQ’b = P for MR can be constructed as the

i
compositions of decomposing sections Uj + P for Q and local sections of § > P.

Using decowmposing sections o,: U, »> F for MQ and wcoi: Ui + P for Q,

i i
g and P XU > by (<v, x) b <o (x) ! and
i i

(&, xX)r> Ew(oi(x)_l). Then ¥ is locally p X id, where p: P > P is the covering

define charts 3 x U > MQ

projection of P. /!

Examples 6,5 Clearly M(B x B) =7(8) for B a connected, admissible space. For G a
connected admissible topological group and H a closed subgroup, let K = w—l(H) where
P 6 + G is the covering projection. Then K is a closed subgroup of E, the

spaces G/K and G/H are equivariantly homeomorphic, and Eké?x, K) is the universal
covering bundle of G(G/H, H).

In particular, the universal covering bundle of So(3)(52, S0(2)) is
SU(2)(52, U(1)) (see 2.24). Tet the universal covering ¢: SU(2) x SU(2) + SO(4)
be realized as the map (p, q) F+ (h F+ phq_l) mentioned in T 1.11 and let

A £ S0(3) act on S0(4) as [(l) g] s then the universal covering bundle of
80(4)(33; S0(3)) is SU(2) x SU(2)(S3, SU(2)), where SU(2) acts as the diagonal
subgroup. Thus both bundles are trivializable.
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More interestingly, consider so(a)(so(A)/TZ, T2) where T2 is the maximal
torus {[? g]‘A, B € S0(2)} in SO(4)., The homogeneous space SO(A)/T2 is the

Grassmannian E& ) of oriented 2-planes in R, and a calculation shows that ¢_1(T2)
’ T
is the maximal torus K = {((eie, 0), (eie , 0))|9, 8' & R} where the notation for

elements of SU(2) is as in 2,24,

Now the action of K on SU(2) x SU(2) is the cartesian square of the action
in 2.24 of U(1) on SU(2), so the universal covering bundle of SO(A)(E4 9 Tz) is
SU(2) x sU(Z)(s2 X sz, U(1) x U(1)). Note that the restriction of ’

$: SU(2) x SU(2) > SO(4) to K » 7 is

i8 ie Fo-or ‘
((e”, 0), (e , 0)) ==
0 Rorer
cos & -sin a
where Ra is the rotation matrix [ oin o c0s a] . //

Proposition 6.6 Let P(B, G) be a principal bundle with P connected and admissible,
and let F(B, H) be the universal covering bundle. Then
[ v

(1)  the sequence ﬂlP +-+ H =** G is exact;

~

(ii) T,H = m B under the boundary morphism of the long exact homotopy sequence

of B(B, H);

(1i1) an = ker(an > an).

Proof: (i) is immediate from the definition of H and (ii) and (iii) follow from the
diagram

~-> nzB -+ T H=-> 0 -> nIB -+ 1T H->0

' A A |

-+ nzB - ﬂIG - an - nlB - nOG -+ 0

where the rows are the long exact homotopy sequences for E(B, H) and P(B, G) (see,
for example, Hu (1959)). /!

We now treat the problem of globalizing a local morphism of topological

groupoids.
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Definition 6.7 Let 2 and Q' be topological groupoids on bases B and B'
respectively. A local morphism of topological groupoids, denoted ¢: Q ~> Q',
consists of a continuous map ¢:2[ + Q' defined on an open neighbourhood % of the
base of Q, together with a continuous map ¢0: B » B', such that x'e¢ = ¢67a’
Blop = ¢: B, ¢oe = €'°¢0, and such that

(1)  ¢(ng) = ¢(n)$(£) whenever an = BL and each of £, n, n& is inf; and
(ii) ¢(£—1) = ¢(5)—1 whenever both of &£ and E-l are in /.

Two local morphisms ¢, $: Q@ ~* Q' are germ—equivalent if the maps ¢ and ¥

are equal on an open neighbourhood of the base of Q.

A local morphism ¢: @ ~ Q' ¢0: B + B' is a local isomorphism if there

exists a local morphism ¢': Q' ~+ Q' such that ¢e¢' and ¢'o ¢ are germ—equivalent

to idQ, and id //

Q°
Example 6.8 Suppose that £ is a locally trivial topological groupoid with

a section-atlas {Oi: U; > Qb] which has the property that each tramsition function

s13° Uij > G = QE is constant. Let 2( be the open neighbourhood g)(Ui x U;) of the

base in B x B and define 8: 2‘ > @ by 8(y,x) = cri(y)oi(x)_1 whenever
(y,x) € U; x Us. It is easy to see that because the transition functions {sij} are

constant, 8 is well-defined, and so gives a local morphism B x B =+ & over B.

Conversely, let @ be a transitive topological groupoid on a space B and

suppose there exists a local morphism 6: B X B ~+ Q over B. Choose b € B and an

open cover {Ui] of B such thatU(Ui x U;) is contained in the domain of 6. In
i X
i
each Ui choose an X, and for each i choose Ei € Qb . Define Oi' Ui i ﬂb by

ci(x) = 8(x, xi)Ei. Then the transition functions for {ai} are constant, and the

local morphism iaduced by {ci} is 0, 1/

6.8 applies in particular to the groupoids’T&B) = M(B x B) of 1.l4,

providing that B has a cover by canonical open sets U, such that each nonvoid

i

intersection Ui N Uj is path-connected. This is the case, for example, if B is a
smooth paracompact manifold, for B then possesses an open cover {Ui} such that

each Ui and each nonvoid multiple intersection Uy N e N U3 is couatractible
1 n

(reference in 6.10 below). Such a cover is called simple.

In general one expects that the covering projection ¥: MQ + @ will admit a

local right—inverse and in order to obtain this, one needs the following
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correspounding concept.

Definition 6.9 Let P(B, G) be a principal bundle. A G-simple cover of P is a
simple cover {Ui} of P such that given i and given g € G there is a j such

that Rg(Ui)SE Uj. We say that P(B, G) is locally simple if it admits a G-simple
cover and P is admissible.

A locally trivial topological groupoid is locally simple if any one of its
vertex bundles is locally simple. //

Proposition 6.10 Let P(B, G) be a smooth principal bundle. Then P(B, G) is locally
simple.

Proof: By A 4.20, P admits a G-invariant Riemannian metric. Let {Ui} be the set of
all open subsets of P such that any two points lying in Ui can be joined by exactly
one geodesic in Ui' By Helgason (1978, pp 34-36), {Ui} covers P and since the
metric is invariant under the right action of G, it follows that {Ui} is stable

under G in the sense of 6.9. By construction, {Ui} is simple. 1/

Theorem 6,11 TLet & be a locally trivial and locally simple a—-connected

topological groupoid. Then $: MQ + @ has a local right-inverse.

Proof: Choose b & B and write P = @, G = n‘;, Q= Mﬂlb =P, H=mM :L Let {0}
be a G-simple cover of P. For each i choose Ei € Ui’ a path Yi from b to Ei

within P and (as in 1.14) a function ei which to £ ¢ Ui assigns a path in Ui
from Ei to &. Define o, Ui * Q by oi(g) = <6i(g)yi>, the homotopy class of the

concatenation of Yi followed by ei(g). We will show that

U, xU,
o —i—G—-—l— > L;.Q by <E', £> k> <o, (£'), 0, (£)> is a well-defined local
morphism P g P ~> g—%—g .

Consider oj(gg) where £ ¢ Ui’ g € G and Rg(ui)g; Uj' Let

« +

A= ;
Rg(Yiei(E) )ej(Eg)Yj,

A is a path in P from % to g and thus defines an element <A> of H., Clearly

Oj(Eg) = Oi(§)<k>. Let A' denote the element obtained similarly from £'. To show

that <A'> = <A>, it suffices to show that
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R (6,(5))6,(£8) ~ R (8,(£) )0, (£'g);
g 1 3-8 g i joo 88

where both sides are paths from Ej to Eig, as

Eig
70
* Py
Rg(ei(e) ) R (85(E")7)
&g ., - g'g
8. '
J(Eg) ej(é g)
[
h|

in the diagram. Since Rg(Ui)SE U,, it follows that all four paths in the diagram

j’
lie in Uj and so the deformation can be carried out.

Considering the ai as local sections of the bundle Q(P, WIP), it is clear
that their transition functions are constant, and the remainder of the proof follows
as in 6.8, /!

Corollary 6.12 Let @ be a locally trivial and locally simple o-connected
topological groupoid. Then M2 is locally isomorphic to £ under the covering
projection .

Proof: Let ¢: @ ~> MQ be the local right-inverse to ¥ constructed in 6,11,
Then ¢oPped = ¢ and so $°¥ is equal to the identity on the image of ¢, which is
clearly open. /!

We now prove that a local morphism of topological groupoids can be
globalized if the domain groupoid is o-simply connected and principal. This result
was proved in Mackenzie (1979) and although there it is restricted to the case of
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local morphisms over a fixed base, it is easy to see that the same proof applies in
general. The proof given here, however, is taken directly from Almeida (1980, 4.1)
and shows that the only use made of the hypothesis of principality for the domain
groupoid, need be to deduce continuity of an algebraic morphism from its continuity
in a neighbourhood of the base (see 1.21(ii)). It should be noted that Almeida's
proof is for differentiable groupoids and that it includes a demonstration that an
algebraic morphism of differentiable groupoids is smooth if it is smooth in a
neighbourhood of the base; Almeida's result thus needs no hypothesis of principality
or local triviality for the domain groupoid.

First recall the monodromy theorem of Chevalley (1946).

Theorem 6.13 Let P be a simply-connected and counected admissible space, and let U

be an open connected neighbourhood of the diagonal AP in P x P. Suppose that for

all £ & P there is a (not necessarily topologized) non~empty set EE and to

each (n, &) € U a bijection £ : E_ + E_ such that f of = f _ whenever all three
n 13 n n ng 43

pairs (g, n), (mn, &), (g, &) are in U.

Then there exists a map ¥: P » UEE such that P(&) € EE’ ¥£ € P, and such

£
that y(n) = fng(¢(5)) whenever (n, £) € U. Further, ¢ is uniquely determined by

these properties and its value at any chosen { ¢ P. //
(This result may itself be expressed in terms of topological groupoids.)

Theorem 6.14 Let @ be an a-connected and o~simply connected principal topological
groupoid on B with @ admissible, and let Q' be an arbitrary topological groupoid
on B'. Let ¢: Q ~ Q' ¢°: B + B' be a local morphism with a-connected domain Zﬂ

Then there is a unique extension of ¢ to a global morphism y: & + Q' of

algebralc groupoids over ¢o, and it is continuous.

Proof: Let D = (WS @ %X © and, for any x € B, denote D N (Qx x Qx) by D_.

Clearly Dx is an open neighbourhood of the diagonal in Qx x & . Now it is easy to
X

prove that

p = U RUUg * &)

X
geﬂx

and since each RE(Zég) x {€} is comnected and intersects the diagonal of g x Q ,
X x

which also is connected, it follows that Dx is connected.
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9 (BD)

Write x' = ¢o(x) and for & € Qx’ let E. be the set 9;, . For

N 1 f : -1,
(n, &) €D let f . a(ne”ly3

unique map ¥ : & + Q' , not necessarily continuous, such that
X X X

3

Eg > En be left-translation [, by 6.13 there is now a

Bloy, = 498, v () =%, and v (n) = ¢(n€-1)wx(5) whenever (n, £) € D_.
Putting £ = ; in this last equation shows that wx(n) = ¢(n) for n e Z&.

We now show that ¢ =LJ¢X is a morphism of algebralc groupoids. First

x
take n € ztand any & € Q such that n& is defined. Then (n&, &) ¢ Dag and

B(NE) = $(REE IW(E) = WMU(E). Next Lf n=mn ... n with all n, %,
and £ is arbitrary with ng defined, then

¥(ng) = ¢(n1)W(n2 nni) = e = tp(nl) w(nn)lb(i).

~

Taking £ = R in this gives ¥(n) = W(nl) ves w(nn) and therefore Y(n&) = Y(n)Y(&).

Since § is a-connected, ilgenerates @ and this shows that ¢ is an algebraic
morphism. Since Y(n) = ¢(n) for n € Zﬁ Y is continuous on a neighbourhood of the

base of © and since @ is principal, 1.21(ii) applies, and ¥ is continuous.

The uniqueness of ¥ follows from the fact that?‘ generates Q. /7

Corollary 6.15 Let ¢: @ ~ Q', ¢0: B + B' be a local morphism of topological
groupoids with § a-counected, locally trivial and locally simple. Then there is a
unique coutinuous morphism ;: MQ + Q' over ¢o such that $ = ¢oy, //

As 1n the case of topological groups, it follows that two a-connected,
locally trivial and locally simple topological groupoids are locally isomorphic iff

thelr monodromy groupoids are isomorphic.

§7. Path connections in topological groupoids

Path connection is the abstraction of the differential-geometric concept of
parallel translation. It differs from the concept of path lifting studied in the
theory of fibrations (for example, Hu (1959, III§12), Spanier (1966, 2§7)), in that
the differential geometric concept embodies a requirement of invariance under

reparametrization, and most of the geometric interest follows from this condition.

This section contains some basic definitions and results which are needed in
the account of Cw—path connections in Lie groupoids given in III§7, but which are of

a purely topological nature. 1In 7.3 we prove that a path connection induces a
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lifting of l-parameter groups of homeomorphisms; this is a consequence of
lovariance under reparametrization and may be regarded as a continuity condition,

We do not uneed to assume that the path connection is itself a continuous map.
Continuity in this latter sense appears to be necessary only in order to deduce that
the holonomy subgroupoid is locally trivial (7.7) but this is only a curiosity since
in the case of Cw—path connections, the local triviality of the holonomy subgroupoid

is not necessarily with respect to the relative topology.

The main body of this section, from 7.4 on, treats the formal aspects of the
concept of holonomy subgroupoid and its equivalence to the concept of holonomy
bundle.

Until 7.8 we consider a single topological groupoid Q on a base B; we
assume B to be a connected C°-manifold and @ to be admissible (as defined in 6.1)
and to have projections a,B: § + B which are open. We use the notations

P* = Pa(Q) and Pg = P:(Q) of §6, although we do not assume that Q is a—connected.

Definition 7.1. A Co—path connection in Q is a map T: C(I,B) + P:(Q), usually

written ¢ > E, satisfying the following conditions:
- p— -
(1) e(0) = ¢(0) and Boc = ¢;

(i1) 1If ¢: [0,1] » [a,bl&= [0,1] is a homeomorphism then

cod = R_ JRACTIR

c(4(0))

I' is a continuous Co—path connection if I is continuous with respect to the
compact-open topologies on C(I,B) and ch; c(1,Q). 7/

The definition of a path connection with reparametrization in a groupoid

first appeared in Virsik (1971).

c(t)

with c(t) € Qc(O)

From (1) it follows that ¢ is a path in QC(O) for all t,

often called the I'-lift of c.

(ii) is called the reparametrization condition. It is geometrically natural

inasmuch as it guarantees that the images of paths in B can be meaningfully lifted
to the images of o-paths in R. It also allows the definition of ¢ to be extended to

open paths of the form ¢: (-e,€) + B, or ¢: R > B, and so to lift local l-parameter
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groups of local transformations on B. This will be important in III§7. For

simplicity of notation we work with the global case.

Lemma 7.2, Let T be a Co—path connection in  and let c¢: R + B be continuous.
Then there is a unique continuous ¢: R + 8, with ae(t)) = c(0) for all t,

- - r—
Boc = ¢, ¢(0) = ¢(0) and such that for every closed interval [a,b]& R, the

c is R-, oT
restriction c [ s =(a) (Cl[a,b])’ both restrictions being reparametrized by

a,b]
the same homeomorphism [0,1] + [a,b].

If T is a continuous Co-path connection, then the induced map

o
C(R,B) + C(R,R) is continuous with respect to the C topologies.

Proof: ¢ is most conveniently defined by lifting a suitably reparametrized
c'[n a1l for each n € Z, and right-translating the results, so that the relevant

’
endpoints match. The uniqueness result is then easy to see. The continuity of the

associated map C(R,B) x R + 2 is a local matter, and follows directly. //
We refer to ¢, for c: R+ B or c: (-¢,€) + B, as the I-lift of c.

Proposition 7.3. Let T be a Co—path connection in 2 and let ¢: R x B + B be a
global l-parameter group of transformations of B. For each x € B, let T(¢,x)
denote the lift of t > ¢t(x) constructed in 7.2, Then $: R x 2 + Q defined by
Et(g) = I'($,BE)(t)E is a global l-parameter group of transformations on Q and
B°¢t = ¢t°B for all t € R.

¢ _(BE)

Proof: Clearly @t(g) € 902

Since ¢t: B + B is continuous, and B is open, it follows that 3: is continuous;

, and this establishes the last equation.

once we have established the group property, it will follow that ;t is a

homeomorphism. Likewise, to prove that $: R x  + Q 1s continuous, observe that

RxQ ———i—-+ Q

o] s

$

RxB ——— B

commutes.,

It remains to prove the group property. Given & € Q and s,t € R, consider

the curves t 3”5(5) and t $t($ s(E)). Clearly both project under B to the
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curve t > ¢t+s(§) = ¢t(¢s(£)) in B and both have value ;S(E) at t = 0. It is
easily checked that both are I'-lifts (in the sense of 7.2) of the corresponding

curve in B. So, by 7.2, ¢t+s(§) = ¢t(¢s(£)). !/
The reparametrization condition also guarantees that I preserves the
algebraic operations on the sets of paths. The numbering of the following three

results continues the numbering in 7.1.

Proposition 7.4, Let I be a Co—path connection in fi. Then

(iii) ;x < (where Kp, as in I 1.8, denotes the path comstant at p).

X

(1iv) ¢©

R. ()" (where ¢* denotes the reversal,
(1)

. c
e (t) = c(l - t), of c).

) oe = (Rc(l)°27)z (where juxtaposition denotes the usual concatenation
of paths).

Proof: These all follow from 7.1(ii). For (iii), take t € (0,1] and
define p : [0,1] » [0,t] by s > st, Then Ex(t) = (Exapt)(l) =

(REX§0)°(KX°pt))(1) = KXODC(I);X(O) and since EX(O) = % and Keop, = K this is

x?

just Kx(l). So E;(l) = E;(t) for all t > 0, and since ;; is continuous, it follows

that Kx(l) = KX(O) also.

For (iv), use (1i) with ¢(t) = 1 - t. The proof of (v) is similar. /1!

Corollary 7.5, Let I be a Co-path connection in Q. For ¢ € C(I,B) let ¢ denote
c(1). Then

CEEDANPIE X

A “
' =@
(v)' ¢'e = ;';. /!

Definition 7.6, Let I be a Co-path connection in Q. Then

¥ = WD) = (c] e = C(1,B)}
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is the holonomy subgroupoid of T, The vertex group Wi at x € B is the holonomy
group of T at x. 1/

From 7.5 it is clear that Y is a wide subgroupoid of 2; since B is path-
connected, ¥ is transitive. The terminology will be justified in 7.14 below.

Proposition 7.7. Let I be a continuous Co-path connection in Q. Then ¥ is locally
trivial, as a topological subgroupoid of Q.

Proof: Let U be an open ball in B and let 6: U »-C(I,B) be a continuous map with
0(x)(0) = L) fixed in 1, and 8(x)(1) = x for all x € U. Denote the composition

[*] r a
U — c(1,8) — P SLAS

where the last map is evaluation at 1, by ¢; then o(x) ¢ W: for all x £ U,
Therefore ¥ is weakly locally trivial and, since it is transftive, it follows from

2.4 that it is locally trivial, 1/

If ¥ is locally trivial, then f must be so; thus a topological groupoid
which admits a continuous Co-path connection must be locally trivial. The converse
is also true: a locally trivial admissible topological groupoid on a connected
Co manifold admits a continuous Co—path connection. This result can be proved by a

modification of the usual local patching argument (Spanier (1966, 2.7.12)).

Proposition 7.8. Let I be a Co—path connection in 2. Then for each c € ¢(I1,B),

the T-1ift c lies entirely in ¥ and, in particular, ¥ is a-connected,

Proof: For each t € (0,1] consider c, = cop, where P is s > st as in the proof of

7.4(111). Then c = c(t) and this establishes c(t) & ¥. /1
7.8 is also, of course, true for any open path c¢: (-€,e) + B or c: R » B.

Example 7.9. The cartesian square groupoid B X B admits a single Co-path
connection, namely I'(c)(t) = (c(t),c(0)).

Slightly less trivially, the fundamental groupoid 7r(B) adnits a single
Co—path connection, namely T(c)(t) = <cvpt>, where Pt [0,11 » [0,t] is the
reparametrization of 7.4 and 7.8. The easiest way to see the continuity of ¢ is by

regarding the topology on 7((B) as the quotient topology from C(I,B).
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Both connections are continuous and in both cases the holonomy subgroupoid

is the whole groupoid. /!

Definition 7,10, Let £ and Q' be admissible topological groupoids on B with open
projections o,8: @ + B, a',8': Q' + B, Let ¢: Q@ + Q' be a morphism of topological

groupoids over B, and let T be a Co-path connection in Q.

Then ¢oT denotes the map ¢ ++ ¢ol'(c), easily seen to be a Co—path

connection in Q', and is called the produced (Co—path) connection in ', 7/

The terminology “produced” is an extension of the usage proposed after
11 2.22.

Example 7.11. Let @ be a principal, o-connected, admissible topological groupoid on
B, and let T be a Co-path connection in Q. Then there is a unique Co-path
comection T in the monodromy groupoid M such that the covering projection

¥: M2 > 2 maps T to I.

Namely, given c & C(I,B), define ¢ = I(c) by o(t) = <Cop > = <cop >
vhere, again, Pe is [0,1] *» [0,t], s * st. Again, T is continuous iff T is.
The uniqueness of T follows from the uniqueness of 1lifts across the

universal covering projections MQ'X > Qx' //

Proposition 7.12. Let ¢: R + Q' be a morphism of topological groupoids over B,
with @ and Q' as in 7.10. Let T be a Co—path connection in @ and T' = ¢°T the
produced connection. Then ¢(¥) = ¥', where ¥ and ¥' are the holonomy subgroupoids
for T and T'.,

Proof: Immediate. 1/

Remark: If Q and ' satisfy the conditions of 6.15 and ¢: & ~> &' is a local
morphism of topological groupoids, then a Co—path connection I' in Q induces

a Co-path counection T in MR (by 7.11) and T then induces a Co-path connection

' = $(F) in @', by 6.15. In this case ¢(¥) = ¥', but, as 7.9 shows, equality need
not hold. //

Example 7.13. Let (E,p,B) be a C°° vector bundle on a connected C°° manifold B, and
let T be a Co-path commection in N(E). Then, for ¢ € C(I,B) and t € I, c(t) is an
isomorphism Ec(O) i Ec(t)’ generally known as parallel translation along c. 7/
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P xP
Example 7.14. Let P(B,G,m) be a principal bundle and let & = be the

assoclated groupoid. Let T be a Co-path connection in Q. TFor any given

c e c(1,B), ¢ starts at the identity é?B; which can be written as <u,u> for any

u € ﬂ_l(c(O)). Fix such a u. Since oac(t) = c(0) for all t, each c(t) can be
written as <{c*(t),u> with c*(t) uniquely determined by c(t) and u. From

Be(t) = c(t), it follows that m(c*(t)) = c(t). Clearly c*(0) = u. We call

c* € C(I,P) the I'-lift of c starting at u, and will denote it by I(c;u) when it is
necessary to indicate the dependence of c¢* on u. This I' is a map ev:P + ¢(1,P),
where ev:P is the pullback bundle of P(B,G) over evo: Cc(I,B) > B, ci-+ c(0).

If instead of u ¢ n—l(c(o)) a second choice u' € n—l(c(o)) is made then
u' = ug for some g € G and from <c*(t),u> = <c*(t)g,ugd> it follows that
T(ciug) = Rg° T(c3u).

Suppose that I is a continuous C -path connection in @, and choose a
reference point b € B and u_ € ﬂ_l(b), as in 1.19(i). Then <c*(t),u°> =

<e*(t),w<u,u > = >9c)(t). 1t is easy to verify the countinuity of
[

(R<u,u
[

eng + C(1,2.), (c,u) -+ R<u’uO>oz

and since P + Qb’ A g <v,uo> is a homeomorphism by 1,19(1i) it follows that
T: evt? + C(I,P) is continuous.

This proves one half of the following: There is a bijective correspondence
between continuous maps T: C(I,B) + P:(Q) which satisfy (i) of 7.1 and continuous
maps T: ev:P + C(I,P) which satisfy mel(cju) = ¢, I'(c3u)(0) = u and
T(cj;ug) = R°T(c;u). The other half may be proved similarly. The reparametrization
condition (ii) of 7.1 becomes, in principal bundle terms,

T(cod; T(c;u)(9(0))) = T(csu)ed

where ¢ and ¢ are as in 7.1(ii) and m(u) = ¢(0). Compare Kobayashi and Nomizu
(1963, 11.3).
P x P
Returning to P(B,G,7) and Q = 3 , let ¥ be the holonomy groupoid of T.
The holonomy group Wz at x € B consists of he set of all E where £ is a loop in B at

X, Choose u € ﬂ_l(x) as reference point for all £ at x; then 2(0) = <u,u> and
L =2Q) = <2*(1) ,u>, where &* = TI'(Z;u). Since w&*(1) = (1) = x there is a unique
g € G such that £%(1) = ug and this g, which is the holonomy of £ with reference
point u e n—l(x) in the sense of Kobayashi and Nomizu (1963, 11.4), corresponds
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to E € Wi under the isomorphism of 1.19(i), using u as reference point. Similarly
it may be seen that ¥ corresponds, under the isomorphism of 1.19(i) with

u e n—l(x) as referen:e point, to the holonomy bundle of P(B,G) through u, in the
sense of Kobayashi and Nomizu (1963, I1.7). The variety of mutually conjugate forms
of "the"” holonomy group of P(B,G) and the variety of mutually isomorphic holonomy
bundles, are now explained by 1.20. 1/



CHAPTER ITI LIE GROUPOINS AND LIE ALGEBROIDS

The philosophy behind this chapter is that Lie groupoids and Lie algebroids
are much like Lie groups and Lie algebras, even with respect to those phenomena -
such as connection theory - which have no parallel in the case of Tie groups and Lie

algebras.

We begin therefore with an introductory section, §1, which treats the
differentiable versions of the theory of topological groupoids, as developed in
Chapter 1T, §§1-6. Note that a Lie groupoid is a differentiable groupoid which is
locally trivial. Most care has to be paid to the question of the submanifold

structure on the transitivity components, and on subgroupoids.

§2 introduces Lie algebroids, as hriefly as is possible preparatory to the
construction in §3 of the Lie algebroid of a differentiable groupoid. The
construction given in §3 is presented so as to emphasize that it is a natural
generalization of the counstruction of the Lie algebra of a Lie group. One
difference that might appear arbitrary is that we use right-invariant vector fields
to define the Lie algebroid bracket, rather than the left-invariant fields which are
standard in Lie group theory. This is for compatihility with principal bundle

theory, where it is universal to take the group action to be a right action.

In §4 we construct the exponential map of a differentiable groupoid, and
give the groupoid version of the standard formulas velating the adjoint maps and the
exponential. The greater part of this section is concerned with the use of the
exponential map to calculate the Lie algebroid of the frame groupoid I(E) of a
vector bundle E, and of the reductions of N(E) defined by geometric structures on E.
This calculation relies on the exponential map, in the same way as does the

corresponding calculation of the Lie algebra of the general linear group.

A Lie groupoid, as well as being a generalization of a Lie group, is an
alternative formulation of the concept of primcipal bundle, and there is therefore a
version of connection theory applicable to Lie groupoids. Moreover a very great
part of standard connection theory - those parts which do not refer to path-lifting
or holonomy — can be presented entirely within the setting of abstract Lie algebroid
theory and without reference to any groupoid. We refer to this as infinitesimal
counection theory, since the Lie algebroid of a Lie groupoid is a first-order
invariant. 1In the first part of §5 we present this infinitesimal connection theory
in the setting of abstract Lie algebroids. 1In the second part we introduce the

concept of transition form for a transitive Lie algebroid arising from a Lie
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groupoid. The transition forms are the right derivatives of the tramsition
functions of the groupoid and are, in the same way, a complete invariant of the Lie
algebroid. Transition forms may also be regarded as the overlap isomorphisms for a
system of local isomorphisms from the given Lie algebroid to a trivial one; they
thus allow problems for transitive Lie algebroids to be broken down into a local
problem and a globalization problem. We will prove in IV§4 that every abstract Lie
algebroid admits a classification by transition forms, and these results will then

be central to the study, in Chapter V, of the integrability of Lie algebroids.

In §6 we return to the generalization of the elementary theory of Lie groups
and Lie algebras and prove, firstly, that there is a bijective correspondence
between a-connected reductions of a Lie groupoid and transitive Lie subalgebroids
of its Lie algebroid and, secondly, that there is a bijective correspondence between
germs of local morphisms of Lie groupoids over a fixed base, and wmorphisms of their

Lie algebroids. Both results are in fact related to connection theory.

§7 treats the theory of path connectiouns in Lie groupoids, that is, those
parts of connection theory which do use the concept of path-lifting and holonomy.
Here the point of view is that a path connection in a Lie groupoid is the integrated
version of the corresponding infinitesimal counnection in its Lie algebroid; we thus
subsume connection theory under the generalization of the elementary theory of Lie
groups and Lie algebras., In particular, we see that the Ambrose~Singer theorem for
Lie groupoids and Lie algebroids is an immediate consequence of the correspondence
between Lie subalgebroids and Lie subgroupoids (together with the correspondence
between path connections and infinitesimal connections and the fact that the
holonomy groupoid is Lie). 1In the second part of the section we give a detailed
analysis of connections in vector bundles on which a Lie groupoild acts; these

results are central to Chapter IV,

§1. Differentiable groupoids and Lie groupoids.

A Lie groupoid is a differentiable groupoid which is locally trivial. This
usage differs from that of some authors, but has the advantage that the briefest

expression is used for the most frequently occurring case.

This section treats those parts of the theory of differentiable and Lie
groupoids which are refinements of the theory of topological groupoids as treated in
Chapter 1I,§§1-6.
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The concept of differentiable groupoid is due to Ehresmann; the definition
used here is from Pradines (1966). In 1.4 we prove a crucial result due to
Pradines, communicated to the author in 1979, that in a differentiable groupoid
@ the maps Bx: Qx + B are subimmersions. This result sets the theory of
differentiable groupoids apart from the theory of general topological groupoids. 1In
1.8 we use l.4 to prove that a differentiable groupoid is locally trivial over each
of its tramsitivity components; in particular, a transitive differentiable groupoid
is a Lie groupoid. The proof depends strongly on the fact that we assume manifolds

to be paracompact, Hausdorff, and of constant, and finite, dimension.

In 1.19 we apply 1.4 and 1.8 to actions of differentiable groupoids and
deduce, in particular, that each orbit is a submanifold and each evaluation map is
of constant rank. In 1.20 we prove that isotropy sub-groupoids for actions of Lie
groupoids are closed embedded reductions. This result was given by Ngg (1967), but
the proof given here appears to be the first to address the global problem. TIn 1.26
to 1.30 we apply 1.20 to various standard actions of frame groupoids N(E), where E
is a vector bundle, to deduce that the frame groupoids for geometric structures
defined by tensor fields are themselves Lie groupoids. This result, in terms of
principal bundles, is due essentially to Greub et al (1973); the proof given here

is new, and slightly more general.

Definition 1.1. A differentiable groupoid is a groupoid Q on base B together with

differentiable structures on @ and B such that the projections a,B: @ + B are
surjective submersions, the object inclusion map €: x k+ ;, B + Q is smooth, and the

partial multiplication 2 * © + Q is smooth.

A morphism of differentiable groupoids, or a smooth morphism, is a morphism

of groupoids ¢: £ + Q', ¢o: B + B' such that ¢ and ¢o are smooth. /!

Here @ * @ = (a x B)—l(AB) is an embedded submanifold of £ x @, for since o
and B are submersions, a x B is transversal to A . The tangent bundle to  * @ is
R * TQ = {Y ® X e T(Q x Q) | T(a)(Y) = T(B)(X)}; the only formula for the tangent

to the multiplication which we need is the following special case.

Lemma 1.2. Let Q be a differentiable groupoid on B, and let k: © * @ + Q denote the
multiplication. Then for Y ¢ T(Qan)n’ X € T(QBE)E,

T(x)(Y © X) = T(Rg)n(Y) + T(Ln)ﬁ(x)° /1
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Using this, we prove that the inversion in a differentiable groupoid @ is a
smooth map. Define 6: @ * @ » Q E Q by (n,&) ++ (n,ng). Then 6 is a bijection, by
the algebraic properties of . To see that 6 is an immersion, take
Y o Xe TR *Q) (n,E) and sBugppose T(8)(Y # X) = 0 @ 0. Since 112°e =T, it follows
that Y = 0. Hence X ¢ T(Q )E and 1.2 can be applied to show that X = 0. Since
a and B are both submersions, € * f and @ X Q have the same dimension and so 8 is
étale everywhere on 2 * Q. Hence it is a giffeomorphism and the composite of
Q-+ Q E Q, nk> (n,§ﬁ), followed by 0—1, followed by ™, Q* Q@+ Q, is smooth; this
is the inversion map. Inversion is its own inverse and is therefore a

diffeomorphism.

Note further that the object inclusion map € in a differentiable groupoid is
an immersion, since either projection is left-inverse to it, and is a homeomorphism
onto B by II§l. B is therefore a closed embedded submanifold of Q. The a-fibres
and B-fibres are also (pure) closed embedded submanifolds of Q. Lastly, in the

definition of a smooth morphism, the condition that ¢° be smooth is superfluous, as
in the topological case.

Definition 1.1 is taken from Pradines (1966). TEhresmann (1959) requires
o —

only a differentiable structure on @ for which & + (&) and £ ++ B(E) are
subimmersions and multiplication 2 * @ » Q is smooth; Kumpera and Spencer (1972)
and ver Eecke (1981) require differentiable structures on @ and B such that the
projections and object inclusion map are smooth, @ * Q is an embedded submanifold
of @ x @ and multiplication is smooth. Ver Eecke (1981) gives a proof that even in
this more general case the smoothness of the inversion map follows from the other

conditions, though not so easily.

It must be admitted that the condition that a and B be submersions is a
strong one; 1.9 shows that a transitive differentiable groupoid is actually locally
trivial. Nomnetheless, this author does not know of any example, much less a
substantial class of interesting examples, of an a-connected, transitive groupoid
which is differentiable in one of these more general senses, but for which the
projections are not submersions. None of the three works cited above develops in
any substantial way the theory of groupoids which are differentiable in a more
general sense; mnor do they give examples of the more general concept. According to
Kumpera and Spencer (1972, p. 258) a simple argument shows that an a-connected
groupoid which is differentiable in theilr sense, actually satisfies 1,1, In the
absence of definite motivation for the more general concept, we accept the

substantial conveniences offered by 1.1.
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It may be asked why we do not carry this attitude further and restrict
ourselves from the outset to differentiable groupoids which are locally trivial.
Firstly, the elementary parts of the theory are not simplified by this assumption,
and it is valuable to see at what points local triviality is actually necessary.
Secondly, there is a substantial and important theory of microdifferentiable
groupoids (see Pradines (1966) and Almeida (1980); the definition is given in 6.3)
the value and interest of which lies almost entirely in the non locally trivial
case. For example any foliation defines a microdifferentiable groupoid which is non
locally trivial (providing the dimension and codimension are positive) -~ see the
discussion following 6.3. Though this book does not cover that theory, it will
serve as a better introduction to it if local triviality is only imposed when it is

actually needed.

Consider now a differentiable groupoid § on B. The vertical subbundle
of T for a: & + B is denoted by 1% and called merely the vertical bundle for Q.
Tt is an involutive distribution on @ whose leaves are the components of the

a-fibres of Q.

Proposition 1.3. Let R be a differentiable groupoid on B. Then the a-identity-

compounent subgroupoid ¥ is open in Q.

Proof. Let ¢: R® x R} » ¥ &0 be a distinguished chart for the foliation induced
by Taﬂ, where Un 3 # P and ¢({0} x rY = UnT. Then clearly 2 S¥. Taking the
union of such Z( we obtain an open neighbourhood of B in @ which is contained in ¥.
Now Y is the union of those leaves of the foliatlion which intersect the open

neighbourhood and so is itself open. 1/

Theorem 1.4. Let @ be a differentiable groupoid on B. For any x € B, Bx: Qx + B is

a subimmersion,

Proof. Let & denote the set of values taken by the local admissible sections of

clearly ¢ is a wide subgroupoid of Q. We prove that each @x is open in QX.

Let ¢: RP x Rq->ZZ < O be a distinguished chart for the foliation induced
by TaQ, with ¢(0,0) a point of &. Choose ¢ so that U = a(ab is the range of a
chart ¢: g > U; we identify a with the projection R® x RY » RY and B with a
submersion R® x RY » Y ( & s@%)), also denoted B. A local admissible section o
can now be identified with a map s: Y ~s R” such that Be(s x id): R ~>» 8 15 a
diffeomorphism.
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By assumption there exists an s with s(0) = 0 and Be(s x id) étale at O or,
equivalently, such that the graph of s in transverse (in the strong sense of a
direct sum) to the B-foliation of R® x R} at (0,0). Now one can see that there is a
neighbourhood N of 0 in R® such that ¥ to € N there is a local diffeomorphism
X2 RP+q ~ RP+q near (0,0) which takes (0,0) to (to,O), maps each a-fibre
® x {u} into itself, and maps the graph of s to the graph of a new map s' which is
still (strongly) transverse to the B-foliation at (to,O). This proves that ¢x (for
x = P(0)) is open in ﬂx.

By II 3.11 it follows that ¢ contains ¥, the a—identity-component subgroupoid

of @, Fix x € B and take £, n in a common component of Qx. Then g = En-l € ¥ and
so there is a local admissible section ¢ € FUQ with Bn € U and o(Bn) = ;. Now
LU: Qg > QZ (where V = (B20)(U)) maps n to & and BX"LO = (B°0)°Bx. Hence the ranks

of Bx at £ and n are equal. //
1.4 and its proof were communicated to the author by Pradines in 1979.

Corollary 1.5. Let Q be a differentiable groupoid on B. Then for all x,y € B, ﬂz
is a (pure) closed embedded submanifold of Qx, @’ and Q. In particular, each vertex

group Qi is a Lie group.

Proof. Only the purity needs to be established and that follows from the fact that

for £,n ¢ QZ, there is a diffeomorphism @ + @ carrying £ to n, namely R,, where
-1
A=E n. //

Theorem 1.6. Let @ be a differentiable groupoid on B. Then ¥ x € B, Mx = BX(QX)
is a submanifold of B.

Proof. Denote QX by P and Qz by G. Then, by 1.5, the restriction of the groupoid
multiplication to P X G + P is a smooth action of a Lie group on a manifold. It is
easily seen to be proper: if K,LE& P are compact then {gec | Kgn L # @} is the

image under P E P+ G, (n,E) > n"LE, of the closed subset X X L = (K X L) N (e x p)

x X X
of the compact set K X L and is therefore compact. Since the action is also free,

it follows that {(£g,5) | EeP, g € G} is a closed embedded submanifold of P X P

and so there is a quotient manifold structure on P/G (see, for example, Pieudonné
(1972, 16.10.3)).

Define j: P/G > B by j(&G) = BX(E). Then j is smooth and injective. Since
P + P/G is a submersion, rkgG(j) = rkE(Bx)’ ¥ £ ecP, and so j is a subimmersion.
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Now an injective subimmersion is an immersion. //

Corollary 1.7. BX: Qx + B is of constant rank.

Proof. For rk _(B ) = dim__(P/G) = dim P - dim G, /1
e £ x EG
MX 1
Since o is a submersion, it follows that QM = QM =a (M) is a
X x * M
submanifold of Q, However it is not clear that the groupoid operations in QMX are
M X

smooth, since it is not clear that QMX is a quasiregular submanifold of Q. One may
X
define a distribution-with-singularities I on B by Ix = im T(Bag)g’ for any £ € Qx,

and the components of the MX are clearly the leaves of this distribution, but it is
not clear that the leaves of a distribution-with-singularities are necessarily

quasiregular. However this awkwardness can be circumvented:

Theorem 1.8, Let £ be a differentiable groupoid on B and let M be a transitivity
component of B. Then there is a manifold structure on Qﬁ with respect to which it
is a submanifold of 2 and a differentiable groupoid on M. Further, Q: is locally

trivial,

Proof. Choose x € M, From 1.6, Bx: Qx + M is a smooth surjective map. By Sard's
theorem, it must be a submersion somewhere, and therefore, by 1.7, it is a

submersion everywhere.

Now consider the division map Gx: Qx x Qx * Q. We claim it also is a
subimmersion. Take n and n' in a common component of Qx and £ and &' likewise.
From the proof of 1.4 we know that there exist T € FVQ, g€ PUQ such that LT(n) =n'
and LO(E) = E', Now the following diagram commutes where V' = (Bo1)(V), U' = (Beo)(U)

8
v U x v
QX X ﬂX QU
s
VAR L x v
S SN
Q. xa Th

and the right~hand map is ¢ k> I(Bc)cc(ac)—l. Since both vertical maps are
diffeomorphisms, it follows that GX has the same rank at (n,&) and (n',5').

Now we proceed as in 1.6, using the diagram
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(The existence of the quotient manifold follows from the fact that B : Q +Mis a
submersion.) The image of 5 is nﬁ and j' is, by the same argument as in 1.6, an

injective immersion.

Since B : Qx + M is a submersion, § (M Q B ) is a principal bundle. The
proof that QM is a (locally trivial) differentiable group01d on M is now reduced to

showing that, for any principal bundle p(M,G,n), the associated groupoid Eiigli is
a locally trivial differentiable groupoid. This follows the same formal outline as
in the topological case (IT 1.12 and II 2.7). //

Corollary 1.9. A transitive differentiable groupoid is locally trivial. 1/

Corollary 1.10. 1let Q be a differentiable groupoid on B, and let x € B. Then

GX: nx X QX +  is of constant rank and Q is locally trivial iff GX is a submersion.

Proof. From 1.8, GX is known to be a subimmersion; the same argument as in 1.7

shows that it is actually of constant rank. The second statement follows as in II

2.6 (and does not depend on 1.8). !/
1.4 and 1.9 constitute a version of Théorgme 4 of Pradines (1966)
appropriate to the category of pure, paracompact, Hausdorff manifolds. See also

Pradines (1986).

Definition 1.11. A Lie groupoid is a locally trivial differentiable groupoid. //

It is clear from what has been said in the course of the preceding results,
that the equivalence II 1,19 and II 2.7 between locally trivial topological
groupoids and principal bundles remains valid for the case of Lie groupoids and
(Cm) principal bundles. Since an open subimmersion is a submersion, there is no

place for a concept of "principal differentiable groupoid”.

Clearly the examples of trivial groupoids (II 1.9), frame groupoids (II
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1.13), and group bundles (II 1.17) remain valid in the c” case.

Example l.12, Let B be a manifold and let X& B X B be an equivalence relation on B
which is a closed embedded submanifold of B x B. Then X, with its submanifold
structure, is a differentiable groupoid on B iff the projection nzz‘X > B,

(y,x) ++ x, is a submersion. By Godement's criterion (Serre (1965, LG 3.27)) this
is the case iff there is a quotient manifold structure on B/X. In this case X is

the foliation defined by the submersion B + B/X, at least if it is a-connected. 1/

Example 1,13, If G x B + B is a smooth action of a Lie group on a manifold then the
action groupoid G x B is a differentiable groupoid on B. 1.7 shows that each
evaluation map is a subimmersion of constant rank, 1.6 that the orbits are
submanifolds of B, and 1.9 that if G acts transitively, then B is equivariantly
diffeomorphic to a homogeneous space; 1.9 also includes the existence of local

cross-sections for closed subgroups of Lie groups.

In other words, these results are consequences of Pradines' result 1.4 and
Godement's criterion. The standard proof of these results is essentially the same
(see Dieudonné (1972, XVI.10)). /1l

Example 1.14. Let B be a connected manifold, and consider the fundamental groupoid
M(B) (see IT 1.14). Since the anchor [B,al: 7((3) + B x B is a covering, there is a
unique manifold structure on 7T(B) for which [B,a] is smooth and it is then étale
(see, for example, Dieudonnd (1972, 16.8.2)). Because this manifold structure is
U,
defined locally, in terms of open sets 7((3) J, it is easy to see that F(B) is a
i
differentiable groupoid on B with respect to this structure and is locally trivial,
Similarly, the monodromy groupoid MQ of an a-connected Lie groupoid Q has a
natural smooth structure with respect to which MQ is a Lie groupoid and the

projection ¥: M2 + Q is smooth and &tale. See IT 6.4. /1l

Example 1,15, Let R be a differentiable groupoid on B and denote the multiplication
by k:  * @ > Q. Then TQ is a differentiable groupoid on TB with projections T(a),
T(B) and multiplication T(k): T(Q) * T(R) > T(N). /]

The sheaf topology on a germ groupoid JA(Q) (see 1T 1.15 and II§5) is non-
Hausdorff and therefore will not admit a differentiable structure in our seuse. For
A
the differentiable version of JCO(P), see, for example, Kumpera (1975) or ver Eecke
(1981).
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Much of Chapter II remains valid for differentiable and Lie groupoids and we
have already used concepts such as local triviality and admissible section without
comment, taking as obvious the fact that these refer to C°° analogues of the cncepts
defined in Chapter II. Those parts of Chapter II which refer to subgroupoids and
quotient groupoids cannot be assumed to remain valid; these questions are briefly
treated below, as is also the theory of smooth actions and representations of Lie
groupoids. With these exceptions, and excluding also the examples with sheaf
topologies and example IT 1,16, the material of §§1 - 6 of Chapter II is taken over
without comment. The C analogue of 1I§7 is treated in III§7.

It is clear from the example of the groupoids B x B that a differentiable
groupoid need not have a unique underlying analytic structure, and that a given
topological groupoid may have several non-diffeomorphic underlying structures of
differentiable groupoid. A continuous morphism of differentiable groupoids need not
be smooth, even if it is a base-preserving morphism of trivial differentiable
groupoids — consider B x B + B x G x B, (y,x) > (y,e(y)e(x)_l,x) for suitable
8: B >+ G,

Definition 1.16. Let § be a differentiable groupoid on B. A differentiable
subgroupoid of 2 is a differentiable groupoid Q' on B' together with a morphism
of differentiable groupoids ¢: Q' + £ which is an injective immersion. A
differentiable subgroupoid (R',¢) of 2 is an embedded differentiable subgroupoid
if ¢ is an embedding. A differentiable subgroupoid (R',¢) is wide if B' = B and

¢o = idB.

Let @ be a Lie groupoid on B. A reduction of &, or a Lie subgroupoid of %,
is a wide differentiable subgroupoid (Q%¢) such that Q' is locally trivial. //

The obvious concept of equivalence for differentiable subgroupoids will be

used without comment.

To generalize to differentiable or Lie groupoids the well-known results for
the existence and uniqueness of Lie subgroup structures on subgroups of Lie groups
seems to be difficult, and we will not treat these questions. In view of the
examples B' x B'eC B x B, an immediate restriction must be that the subgroupoids are
wide. Conjectures can be manufactured almost indefinitely, as the choice of
hypotheses varies; if one is only interested in reductions of Lie groupoids, the
nature of the problems is of course much changed. Some small results will appear in
the course of subsequent sections; for example, 1.21 shows that a closed reduction

of a Lie groupoid is an embedded submanifold. Together with 1.9, this implies that
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if a closed, wide, transitive subgroupoid of a Lie groupoid has a structure of
differentiable subgroupoid, then it is an embedded and locally trivial
differentiable subgroupoid. This observation may help attack the existence problem,
perhaps by using a closed graph theorem and approximating a continuous classifying

map by a smooth one.

Proposition 1,17. Let @ be a differentiable groupoid on B. Then GR is a closed
embedded submanifold of @ and is a differentiable subgroupoid of f.

Proof. As in 1.4, represent a: % + U= a(ll) locally by w: P x Y » Rq, for some
open /< @ which intersects GQ, and represent B by a submersion B: g x r? - gY.
Then G n ¥ is {(t,u) e R x RY | B(t,u) = u}, that is, it is the pullback

D

@AY —-— *® 4

x R

Rpqu———B—-> R .

Hence GQOZL is an embedded submanifold of % and since the ZL are open in £, GQ is

an embedded submanifold of @, closed since it is [B,a]—l(AB).

since 8: B” x RY » R is a submersion, 6o + R® x &Y is a submersion, and

so the composite map eanU » R is a submersion. This is the restriction of

a: GO > B to G Y.

That GQ satisfies the other conditions for a differentiable subgroupoid is
obvious. 7/

For our later purposes, the most important examples of differentiable
subgroupoids are closed, embedded reductions and arise as the isotropy groupoids of

smooth actions:

Definition 1.18. 1Let Q be a differentiable groupoid on B and let p: M + B be a
smooth map. Denote the pullback of p over the submersion & by @ * M. A smooth
action of  on (M,p,B) is a smooth map € * M » M which satisfies the algebraic

conditions of I1 4.1. /!
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It is easy to see that the action groupoid 2 * M (see II 4.20) is a

differentiable groupoid on B. From this ohservation comes the following result:

Proposition 1.19. Let  * M + M be a smooth action of a differentiable groupoid

Q on a smooth map p: M + B. Then

1)

(i1)

(1i1)

(iv)

(v)

each orbit Q[u]l, u € M, of R is a submanifold of M;

each evaluation map Q + M, £ > Eu is a subimmersion of constant

p(u)

rank;

if the action is transitive, then each evaluation map is a surjective

submersion;

if Q is locally trivial, then (M,p,B) is a fibre bundle and so too is
each orbit (Q[ul,p,B);

the set M/Q of orbits has the structure of a quotient manifold from M
iff the graph T' = {(u,Eu) e M xM | ueM, £ ¢ ﬂp(u)} of the action is
a closed embedded submanifold of M x M.

Proof. (1) - (4ii) follow from 1.4, 1.6, 1,7, 1.8 and 1.9.

(iv) follows as in 11 4,9,

(v) follows from Godement's criterion and the observation that the

following diagram commutes

Q*M

where the vertical map is (E,u) ++ (u,£u). 1/

Theorem 1.20.

Let @ be a Lie groupoid on B and let @ * M + M be a smooth action

of 2 on the fibre bundle (M,p,B). Let y € ™ be an Q-deformable section. Then the

isotropy groupoid $(u) of Q at u is a closed embedded reduction of Q.

Proof. u takes values in a single orbit of @ so, by 1.19, we can assume that Q

acts transitively on M.

Define £: @ + M x M by £ k> (u(BE),&u(ag)). Then

- hich
o(w) = £ Hap, Y
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shows that ¢(u) is closed in @, We prove that fﬁANl in M x M. TFor Eo € ®, choose
decomposing sections U + Qb and V + Qb in neighbourhoods U V of xo = an,

y = BEO; then f has the local expression
[
VxGxU=>(VxF)* (VxF)
(y,8,x) F* ({y,a'(y)), (v,8a()))

where F = Mb, G = QE and a: U+ F, a': V » F are the local expressions of u. Let Eo
correspond to (y ,g ,x ), and note that a'(y ) = g a(x ) because £ & ¥(n).
o0 o [ o o o

Given X,Y € T(F) , there is a W e T(G) such that evaluation G + F,

a'(y)) o

g ga(xo) maps W to X ~ Y. This is because the action G x F + F is smooth and
transitive and therefore each evaluation is a submersion. Hence, given also

Z e T(V)y , we have £ (0 @ W @ 0) + (Z e Y) #(Z@Y) =(Z oY) ¢ (Z®X) and this

proves th3t fAAM. Hence ¢ is an embedded submanifold of Q.

To show that ¢ is a differentiable subgroupoid of @ it is only necessary to

show that the projections & + B are submersions. In fact B8: ¢ + B is the composite
m
s N by L, 0w 2 3
in which each map is a submersion.

That ¢ is locally trivial follows from 1.9, /!

This theorem is taken from Ngg (1967, I.3.a); the proof given there,
however, seems to address only the local problem. There is a coanverse, which goes
back to Ehresmann (1959) and whose principal bundle formulation is well-known from

Kobayashi and Nomizu (1963, 1 5.6):

Proposition 1.21. Let @ be a Lie groupoid on B and ¢ a reduction of Q whose vertex
groups are closed (and hence embedded) subgroups of the vertex groups of Q. Choose
b € B, write G = Q:, H = @:, P = Qb and let M be the fibre bundle 3_1_éELEL
corresponding to the standard action of G on G/H, and © * M + M the associated

action &<n,gH> = <&n,gH> (see II 4.8, II 4.9).

For x € B choose ¢ € Q; and define u(x) = <g,H>. Then u is a well-defined,
smooth, Q-deformable section of M, and ®(u) = ¢. 1In particular, ® is a closed,

embedded reduction of f.
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Proof. That p is smooth follows from the facts that Bb: Qb + B is a surjective
submersion, and Qb is a submanifold of Qb. That ®(u) = ¢ is a trivial algebraic

manipulation. //

1.21 shows that a closed reduction of a Lie groupoid is an embedded
submanifold. It would be very interesting to know if every closed transitive wide
subgroupoid of a Lie groupoid is an embedded submanifold, and a differentiable

subgroupoid.

1,20 and 1.21 give a classification of those closed embedded reductions of a
Lie groupoid which have a specified vertex group at a chosen point of the base. A
closed embedded reduction may of course fail to he trivializable over open subsets
of the base over which the larger groupoid is trivializable, as the following

example shows.

Example 1,22. Let G be a Lie group and H a closed subgroup of G. Then

G xG
H

+ (G/8H) x G x (G/H)
g,z > (81, ggr, g )

2°%1 27 %271 2y

is a smooth morphism over G/H and an embedding. //

Proposition 1.23. Let Q be a differentiable groupoid. Then Q * G > GQ,
-1
(E,2) > IE(A) = EAEZ ~ is a smooth action of Q on the inner subgroupoid GQ.

Proof. Since GR is an embedded submanifold of Q (1.17), this is trivial. //
The following construction is needed in 1.25.

Proposition l.24. Let Q and Q' be differentiable groupoids on B, and let 9 be

Lie. Then the product groupoid B:B Q' defined in I§3 has a unique differentiable
structure with respect to which it is a differentiable groupoid on B, the
projections w: Q B:B Q>+ Q, w': Q :B Q' > Q' are smooth, and 7' is a submersion.
Q2 x Q' is Lie iff Q' (in addition to Q) is Lie, and this is the case L1ff T (in

BxB
addition to w') is a submersion.

Proof. The differentiable structure on Q R:B Q' is of course the pullback structure

of {B,a] over {B',a']., The stated properties are easily verified. /1l



CHAPTER III 96

The following proposition and examples are basic to connection theory.

Proposition 1.25. Let (E,p,B) be a vector bundle.

(1) The action T(E) * Hom (E; B x R) » Hom (E; B x R) defined by
g = ¢°(E_l)n is smooth.

(ii) The action M(E) * Homn(E;E) > Homn(E;E) defined by £¢ = go¢o(§-l)n is

smooth.

(iii) Let (E',p',B) be another vector bundle.on the same base. Then the
action (II(E) B:B N(E')) * Hom(E;E') » Hom(E;E') defined by
(,8')¢ = E'°¢GE—1 is smooth.

Proof. The bundles Homn(E; B x R), etc., are commonly defined in terms of charts
induced from charts for E (for example, Nieudonné (1972, XVI.16)). Since charts
for E are decomposing sections for II(E), the results reduce locally to the
smoothness of the corresponding actions of Lie groups on vector spaces,

GL(V) x Hom (ViR) » Hom (V3;R), etc. /1

Homn(E;E') of course denotes the vector bhundle on B whose fibre over x € B
is the space of n-multilinear maps Ex X see X Ex > E; and whose bundle structure is
induced from the bundle structure of E and E' as in the reference cited above. The
actions (i) and (ii) clearly restrict to the subbundles Altn(E;E') and Symn(E;E') of
the alternating and symmetric multilinear maps; further, Hom(E;E') in (iii) could
be replaced by Homn(E;E') and the obvious action. Lastly, there are analogous
actions of H(E) on the tensor bundles ﬂ: E. We take all these variations of 1.25 to

be included in its statement.

Example 1.26. Let (E,p,B) be a vector bundle, and let < , > be a Riemannian
structure in E, regarded as a section of Homz(E; B x R) (see, for example, Greub
et al (1972, 2.17)). Then < , > is N(E)~deformable with respect to the action of
1.25(1i), since any two vector spaces of the same dimension with any positive-
definite inner products, are isometric. Let IKE> denote the isotropy groupoid of

<, > By 1.20 it is a Lie groupoid on B, the Riemannian or orthonormal frame

groupoid of (E, < , >). A decomposing section o: U + H<E>b of IIKE> is a moving
frame for B, and the local triviality of I(E) is in fact equivalent to the existence

of moving frames in E. 1/
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Fxample 1.27. Similarly, if A is a determinant function in a vector bundle (E,p,B),
regarded as a never—zero section of Altr(E; B x R) (r = rank E), then A is IN(E)-
deformable and the groupoid of orientation-preserving isomorphisms between the
fibres of £ is a closed embedded reduction of N(E), denoted H+(E). 1/

Example 1.28, vlet (L,p,B) be a vector bundle and let [ , ] be a section of

AltZ(L;L) such that each [ , ]x: Lx x LX > Lx is a Lie algebra bracket. We call

such a section a field of lLie algebra brackets in L.

A field of Lie algebra brackets need not be II(L)-deformable. For example,
1et5 be a non-abelian Lie algebra with bracket [ , ] and in L = R XB define
[, ]t = t[ , ). However 1.20 implies that if [ , ] is a field of Lie algebra
brackets in a vector bundle L and if the fibres of L are pairwise-isomorphic as
Tie algebras, then L admits an atlas of charts which fibrewise are Lie algebra
isomorphisms. 1In this case, (L,[ , ]) is a Lie algebra bundle, as defined in 2.3
below, and we denote the isotropy groupoid by IN[L]. //

Example 1.29. Llet u be a section of a vector bundle E on a connected base B. Then,
by a similar argument, E has an atlas of charts U x V + EU such that the local
representatives U + V of p are constant, iff u is either never-zero or always

zero. This (trivial) result is well-known in the case of tangent vector
fields. 1/

Greub et al (1973, Chapter VIII) introduce a concept of I-bundle, defined as
a vector Eundle E together with a finite set I of sections ci of various tensor
bundles Dsi(E), such that E admits an atlas with respect to which all the 0i are
constant. Their Theorem 1 (loc.cit.) follows from 1.20 by considering the natural
action of M(E) on the direct sum of the relevant tensor bundles. It is interesting

to compare the proof of their result with that of 1,20,

It is worth noting that in 1.28 and 1.29 the condition of pairwise
isomorphism, or of being never-zero or always zero, need hold only on each component

of the base separately. A similar comment applies to the next, and last, example.

Fxample 1.30. Let (Ev,pv,B), v = 1,2, he vector bundles on base B, and let
R El + Ez—be a morphism, considered as a section of Hom(El;Ez). Then ¢ is
n(E) B:B NM(E')-deformable iff it is of constant rank. Now 1.20 shows that if this

is the case, there are atlases {w;: Ui x Vu > EJ }, v = 1,2, and a linear map
i

f: V1 > V2 such that ¢: Eé > E2
i

U is represented by (x,v)  (x,f(v)).
i
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This is of course a vector-bundle version of the standard characterization
of a subimmersion; note, however, that it does not apply to general subimmersions
M + N since we are working with a fixed base. The result, nonetheless, is important

in the abstract theory of transitive Lie algebroids (see IV§1). /1
The following result is often used.

Proposition 1.31. Let ¢: & » Q' be a morphism of Lie groupoids over a connected
base B. Then

(i) ¢ is of constant rank;

(1i) if oz is injective for some b € B, then ¢ is an injective immersion;

(ii1) if ¢2 is surjective for some b € B, then ¢ 1s a surjective submersion.

Proof. Follows from II 2.13 and the corresponding results for Lie group morphisms.

/!

Proposition 1.32, Let ¢: @ + Q' be a morphism of Lie groupoids over B. Then
K = ker ¢ is a closed embedded submanifold of GR, and a sub Lie group bundle of GQ.
Further, im(¢$) is a submanifold of Q' and a reduction of Q'.

Proof. Let {oi: u, > Qb} be a section-atlas for f, and denote by y; = Iqi the

induced charts for GR. Since ¢§ is of counstant rank, Kb is an embedded submanifold
of QE. Clearly lbi(Ui x Kb) = KU , SO KUi is an embedded submanifold of GQ Ui-
Since the GQ'U are open in G, it follows that K is an embedded submanifold of GR.

Since K = ¢-1(§), it 1s obviously closed.

Let X denote the equivalence relation {(EA,E) | EefR, XA eK, af = B?} on
induced by K. As in 1.10, it is easy to see that §': Q E Q+Q () F+mn Eis a

submersion; since 6'—1(K) = X it follows that X is a closed embedded submanifold of
m
Q ; f, and hence of @ x 2, The projection X ——2+ @ 1s a submersion, since

2 * K
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commutes; here R * K+ X is (£,)) ++ (EA,E) and Q * K » @ 1s (£,)) 1=+ £; this
latter map is a submersion because in the pullback square defining @ * K, the

projection K + B is a submersion.

So, by Godement's criterion, the quotient manifold /X ~ that is, Q/K -
exists. It is easy to adapt the proof of IT 1.6 to show that /K is a
differentiable groupoid; since #: Q + Q/K is now a smooth morphism over B, it
follows that Q/K is Lie. Now the induced morphism 5: Q/K + Q' is smooth and
injective; since ¢ is of constant rank (by 1.31(i)) it follows (as in 1.6) that

% is also. It is therefore an immersion. This completes the proof. //

1.32 is the only result concerning quotient differentiable groupoids that we

will need. A more general result is stated in Pradines (1966).
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2, Lie algebroids.

This section introduces the concept of Lie algebroid, preparatory to the

construction in §3 of the Lie algebroid of a differentiable groupoid.

The concept of Lie algebroid, as a generalization of the concept of Lie
algebra, and obtained from a differentiable groupoid by a process clearly
generalizing that by which a Lie algebra is obtained from a Lie group, first
appeared in Pradines (1967). Tt was not used by Ehresmann (1951, 1956) in his
definitions of a connection. Atiyah (1957) had earlier constructed from a principal
bundle an exact sequence of vector bundles which is the Lie algebroid of the

corresponding groupoid (see 3.20); see also Nickerson (1961).

Related to the concept of Lie algebroid is the purely algebraic concept of
Lie pseudo-algebra over a (commutative and unitary) ring, which stands in the same
relationship to the concept of Lie algebroid as does that of module over a ring to
the concept of vector bundle. The concept of Lie pseudo-algebra has been introduced
by Herz (1953), Palais (1961b), Rinehart (1963), Hermann (1967), Nelson (1967) and
Pradines (1967), and by other writers since Pradines, usually with a view to

studying de Rham cohomology and Lie algebra cohomology simultaneously.

Rinehart (1963) proves a Poincaré—Birkhoff—Witt theorem for projective Lie
pseudo-algebras and this 1s the only result of substance in the theory before the
announcement in Pradines (1968b) of the integrability of Lie algebroids. A
treatment of the material of this section, as well as parts of §5 and §7, and much
of IV§l, in terms of Lie pseudo—algebras, was given in Mackenzie (1979). We manage

to avoid here the explicit use of the concept of Lie pseudo-algebra.

The basic examples of Lie algebroids first appeared in Ngd (1968).

Definition 2.1. Let B be a manifold. A Lie algebroid on B is a vector bundle
(A,p,B) together with a vector bundle map q: A + TB over B, called the anchor of A,
and a bracket [ , }: TA x TA + TA which is R-bilinear and alternating and satisfies
the Jacobi identity, and is such that

(1) q([X,Y])

[a(X),q(V) ] X,Y € TA

2) [X,u¥] = ulX,¥Y) + q(X)(u)Y X,Y € TA, u € C(B).

The Lie algebroid A is transitive if q is a submersion, regular if q is of

locally constant rank, and totally intransitive if q = 0, B is the base of A.
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Let A' be a second Lie algebroid, on the same base B. Then a morphism of
lie algebroids ¢: A + A' over B is a vector bundle morphism such that q'e¢ = q and
¢[XsY] = [¢(X)3¢(Y)], ¥X,Y € TA. // »

The simplest examples of Lie algebroids are Lie algebras, lie algebra
bundles, and the tangent bundle to a manifold., The reader familiar with principal
bundles should at this point read A$2-§3 where it is shown that the Atiyah sequence

of a principal bundle is a transitive Lie algebroid.

Pradines (1967) named the map q: A + TB the "fliche” of the Lie algebroid.
The usual translation, “arrow”, is a much-used word and we propose to call this map
the "anchor” of the Lie algebroid. It tles, or fails to tie, the bracket structure
on T'A to the Poisson bracket on TITB.

The anchor of a Lie algebroid A encodes its geometric properties. If A is
transitive then right inverses to the anchor are connections in A (see §5). 1If A is
regular then the image of the anchor defines a foliation of the base manifold and
over each leaf of this foliation, the Lie algebroid is transitive. Compare the
situation with groupoids, where local right-inverses to the anchor correspoand to

decomposing sections.

Proposition 2,2. Let A be a Lie algebroid on B, and U& B an open subset. Then the
bracket TA x TA > TA "restricts” to PUA x PUA +* FUA and makes AU a Lie algebroid on
U, called the restriction of A to U.

Proof: It suffices to show that if X,Y € TA and Y vanishes on an open set U& B,
then [X,Y] vanishes on U. For X, € U take u: B + R with u(xo) =0, u(B\J) = {1};
then [X,¥](x ) = [X,u¥](x ) = u(x )X, Y1(x ) + a(D)(w)(x )¥(x ) = 0. 1/

For the restriction of Lie algebroids to more general submanifolds of the

base, see Almeida and Kumpera (1981).

The following examples are basic.

Definition 2.3. A Lie algebra bundle, or LAB, is a vector bundle (L,p,B) together
with a field of Lie algebra brackets [ , ]: TL x I'L > TL (see 1.28) such that L
: Ui x ﬂ > LUi} in which each wi,x is a Lie algebra isomorphism.

admits an atlas {wi

A morphism of LAB's ¢: L+ L', ¢ : B + B', is a morphism of vector bundles
———— o

such that each ¢ : L =+ L' is a Tie algebra morphism. !/
x x ()
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An LAB is clearly a totally intransitive Lie algebroid. On the other hand a
totally intransitive Lie algebroid is merely a vector bundle with a field of Lie

algebra brackets, as in 1.28, and need not be an LAB.

Example 2.4, Let B be a manifold and lets be a Lie algebra. On TB & (B Xﬂ)
define an anchor q = M TB @ (B x 5) and a bracket

(KoY, YeW = [X,Y] & {X(W) - ¥(V) + [v,W]}.

Then TB ¢ (B x 5) is a transitive Lie algebroid on B, called the trivial Lie
algebroid on B with structure algebraH.

Let ¢: TB @ (B xﬂ) +TB @ (B XB') be a morphism of trivial Lie algebroids
on B, Then the condition q'¢¢ = q implies that ¢ has the form

3 (X e V) =X ® (u(X) + ¢T(M)

+
where w: TB + B XS' is a 5'-valued 1~form on B and ¢ : B ><3 + B XH' is a vector
bundle morphism. Writing out the equation

BEev), (Y #W)] = ¢[X 2V, Y &¥]

and setting firstly X = Y = 0, then V = W = 0, and lastly V = 0, we obtain,

successively

(4) 7, ¢l = ¢° (v, W)

(5) Sw(X,Y) + [w(X),w(Y)] =0

(6) XN - ¢y + e, 67 0] = o.

(4) is the condition that ¢+ be an LAB morphism, (5) is the condition
that w be a Maurer-Cartan form. We call (6) the compatibility condition.

It is easy to see that, coanversely, a Maurer—Cartan form w € Al(B, ')
and an LAB morphism ¢+: B Xﬂ + B x S' which satisfy (6), define by (3) a morphism
of Lie algebroids TB & (B XH) + TB @ (B Xﬂ').

This decomposition should be contrasted with the decomposition T 2.13 of
morphisms of trivial groupoids. Given a morphism ¢: B x G x B+ B x G' x B
over B, if we define F: B x G » B x G' by (x,g) ++ (x, n20¢(x,g,x)) and 6: B + G'
by 6(x) = 1r2°¢(x,l,b), where b 1s fixed, then 9§ and F must satisfy a compatibility
condition comparable to (6), See 3.21 and 7.30.
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in terms of w and a single morphism of Lie algebras f = ¢+

Similarly, it is possible to describe ¢: TB ® (B x§) » TB ¢ (B XH')
b +0'. Here,

however, f and w must still obey a compatibility condition; see 7.30. 17

Example 2,5. Let E be a vector bundle on B and consider the jet bundle exact

sequence (see, for example, Palais (1965))

=
End(E) +—+ Diff (E) -3» Hom(T*(B),End(E)).

Here Diffl(E) is the vector bundle Hom(Jl(E),E), whose sections can be naturally
regarded as first or zeroth order differential operators from E to itself, and the

symbol map, 0, maps D € FDiffl(E) to
8f =+ (p > D(fu) - £D(n)) f € C(B), u € TE,
Map TB injectively into Hom(T*(B),End(E)) by
X+ (0w (> o(X)u) w € I'T*(B), v € TE

and construct the inverse image vector bundle over B (see C.5),

CDO(E) _— TB

| ;

piffl(E) ——2 5> Hom(T*(B),End(E)) .

The inverse image exists because 0 is a surjective submersion and since the right-
hand vertical arrow is an injective immersion, it follows as usual that the left-—
hand arrow is also and we can therefore regard CDO(E) as a subvector bundle of
Diffl(E). Similarly, because ¢ is a surjective submersion, it follows that the top
arrow is also; we denote it by q. Clearly the kernel of q is still End(E), and we

have an exact sequence of vector buandles over B,

End(E) +—+ CDO(E) -3» TB

where the sections of CDO(E) are those first— or zeroth-order differential

operators D: I'E + TE for which
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(8) o(D)(8£) (u) = X(£)u
for some X = q(D) € T'TB and all f € C(B), u € TE. Equivalently,
(8a) D(fu) = £D(u) + q(D)(f)u f & C(B), u ¢ TE.

A (first- or zeroth-order) differential operator D with the property (8) for
some vector field X is usually called a derivation in E. We will not use this term
because when E = 1. 1s an LAB it would unavoidably lead to confusion with the concept
of derivation which refers to the Lie bracket. Instead we call such a D a covariant

differential operator in E, since for any connection V in E and vector field X on B,

the covariant derivative Vx obeys (8).
For D,D' ¢ PDiffl(E), the bracket
[D,D'] = DeD' - D'eD

is also in PDiffl(E) and it is easy to check from (8a) that if D,D' € TI'CDO(E),
then [D,D'] € TCDO(E), and q([D,D']) = [q(D),q(D')]. Lastly, one can also easily
check, again from (8a), that

{D,fD'] = £[D,D'] + q(D)(£)D' D,D' € ICDO(E), t € C(B)

and so CDO(E) is a transitive Lie algebroid on B, the Lie algebroid of covariant

differential operators on E.

Let E = B xV be a trivial vector bundle, and define a morphism from the
trivial Lie algebroid TB & (B x SI(V)) into CDO(B x V) by

(X @ ¢)(u) = X(u) + ¢(u) u: B >V

where X(u) is the Lie derivative. It is easy to check that this is an isomorphism
of Lie algebroids over B.

In general, CDO(E) plays the role for E that is played for a vector space V
by the general linear Lie algebra HI(V). This will become apparent in the course of
the following sections.

See also the original construction in Atiyah (1957,84), where the bundle
D(E) is a form of the dual of CDO(E). //

Example 2,6. An involutive distribution (without singularities) A on a manifold B
is a regular Lie algebroid on B with respect to the inclusion ASE TB as anchor and

the standard bracket of vector fields. 1/
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Example 2.7. Let B = R and define a bracket [ , ]' on TB by

4

at E,nt B+ R

d d - .
[Ea't-, nag]' = t(En - £n)

%{J =t %E . It is straightforward to check that

TB is a Lie algebroid on B with this structure, and that it is not regular. !/

and an anchor q: TB + TB by q(&

Let A be a transitive Lie algebroid on B. The kernel L of q: A -++ TB
inherits the bracket structure of A (by (1) in 2.1) and is itself a totally
intransitive Lie algebroid on B. We usually write a transitive Lie algebroid in the

form

L »is & -3 18,

The notation j allows L to be any totally intransitive Lie algebroid isomorphic to
the kernel of q; for example,"in the case of the Atiyah sequence of_a principal

Px (see A§3).

bundle P(B,G,n), the kernel e of m, is usually replaced by T

G

We call L the adjoint bundle of A. The reason for this terminology will
gradually become clear - see, for example, A§3, 3.18 and 3.20, and 5.8, In IV§1l we
will prove that L is actually an LAB.

A morphism ¢: A + A' of transitive Lie algebroids over B obeys
q'e$¢ = q and therefore induces a morphism of the adjoint bundles ¢+: L=+L'.
This is a morphism of totally intransitive Lie algebroids. In IV§1l we show
that ¢+ (and hence ¢) is of locally constant rank,

The following version of the 5-lemma is extremely useful.
Proposition 2,8, Let ¢: A *> A' be a morphism of transitive Lie algebroids over B.
+
Then ¢ is a surjection, injection or bijection iff ¢ : L > L' is, respectively, a

surjection, injection or bijection.

Proof: This is a diagram-chase in

o
v
~
O
<
~

TB

L o— A —Lps T, /1
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If A is a regular Lie algebroid on B then I = im q i3 an involutive
distribution on B and L = ker q is still defined. Such a Lie algebroid could be

written in the form

Loadsa 91

and a version of 2.8 would continue to hold. However in this case L need not be an
LAB and morphisms need not be of locally constant rank (as the totally intransitive

case shows).

The regular case may to some extent be reduced to the transitive case, since
the restriction of a regular Lie algebroid to a leaf of the foliation defined by
I = im q is transitive. However there remains the question of how the restrictions

are bound together, and we will not address this problem.

We conclude this section with some basic algebraic definitions. These are
kept to the minimum needed in the present chapter, since little of substance can be
said except in the transitive case and then only by using results which will not be
proved until IV§1.

Definition 2.9. Let A be a Lie algebroid on B and let E be a vector bundle, also on
B. A representation of A on E is a morphism of Lie algebroids over B,

p: A + CDO(E).

Let p': A > CDO(E') be a second representation of A. Then a vector bundle

morphism ¢: E > E' is A-equivariant if #(p(X)(W)) = p(X)(¢(n)) for X € A, p € E.

Let pi: A} > CDO(Ei), 1 = 1,2 be representations of Lie algebroids over B on
vector bundles over B, let ¢: A" + A" be a morphism of Lie algebroids over B, and
let Y: El + E2 be a morphism of vector bundles. Then ¥ is ¢-equivariant if

v W) = 2N, ¥ e A, w e g,/

In IV§1 we will see that if A is tramsitive, then equivariant morphisms are

of locally constant rank.

Example 2.10. Let A be a Lie algebroid on B and let V be a vector space. The
trivial representation of A on B x V is

p%(X) (£) = q(X)(f) £: B+ V, X ¢ TA. /!
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Example 2,11. Let A be a transitive Lie algebroid on B. The adjoint representation

of A is the representation

ad: A + CDO(L)
of A on its adjoint bundle L defined by
ad(X)(V) = [X,V] X eTA, VeTIL, 1/
We return to the adjoint representation in §4 and §5. It plays a crucial

role in the developments of Chapter IV.

X
Example 2.12. Let P(B,G) be a principal bundle and let E = L4 ¢ v be an associated

vector bundle., Given X ¢ FCEEJ denote by X the corresponding G-invariant vector
field on P; and given y & TE denote by u: P + V the corresponding G-equivariant
map. Then the Lie derivative i(;) is also G-equivariant (see A 4.4); denote the
corresponding element of TE by X(u). Then A 4.6 shows that X + (u > X(u)) is a
representation of Ig- on E. /1l

Example 2.13. Let E be a vector bundle on B, and let V be a flat connection in E.
Then X > VX is a representation of TB on E. //

Definition 2.14. An exact sequence of Lie algebroids over B is a sequence of

morphisms of Lie algebroids over B
A' +l-> A -E-) A"

which is exact as a sequence of vector bundles over B. 1/

The Lie algebroid A' must be totally intransitive, for
q' = qet = (g"s7)e1 = 0. The basic example is of course L +i» A -3+ TB for A a
transitive Lie algebroid.

Definition 2.15. Let A be a transitive Lie algebroid. A is abelian 1f its adjoint
bundle is, that 1is, if

fv,wl =0 YV,W e L. 1/

Proposition 2.16. Let E NN A' N A be an exact sequeunce of Lie algebroids over B
with E abelian. Then
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WpX)(w)) = [X',1(w)] X € TA, u € TE,

where X' € TA' has n(X') = X, defines a representation of A on E.
Proof: Exercise. 17/

In particular, if A is transitive and abelian, there is a natural

represeatation of TB on the adjoint bundle L (compare the final remarks in I§3).

Definition 2.17. Let A be a Lie algebroid on B. A Lie subalgebroid of A is a Lie
algebroid A' on B together with an injective morphism A' »-+ A of Lie algebroids

over B.

If A is transitive, a reduction of A is a Lie subalgebroid of A which is
itself transitive. //

Proposition 2.18. Tet A and A' be Lie algebroids on B and let A be tramsitive.

Tet A %B A' denote the inverse image vector bundle over B

A ey A

(see C.5). Let ;: A ;B A' » TB be the diagonal composition and define a bracket on
TAe A" b
( TB ) by
xex', vyey]=([X¥] e [X,1'].

Then A %B A' is a Lie algebroid on B, and the diagram above is now a
pullback in the category of Lie algebroids over B. Lastly, A %B A' is transitive
iff A' (as well as A) is transitive and this is so iff A ;B A' + A
(as well as A fB A' > A') is surjective.

Proof: Straightforward. !/

A %B A' is called the direct sum Lie algebroid of A and A' over TB. Note
that the trivial Lie algebroid TB # (B XH) is not a direct sum of TB and B Xﬂ.

Concepts of kernel, 1deal and quotient Lie algebroid are defined in IV§l.
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3. The Lie algebroid of a differentiable groupoid.

This section gives the construction of the Lie algebroid of a differentiable
groupoid and works the basic examples. The construction follows very closely the
construction of the Lie algebra of a Llie group. However since the right translations

on a groupoid, the R QQE’ are diffeomorphisms of the oa-fibres only and not

g % ”
of the whole groupoid, a vector field X on a differentiahle groupoid Q@ can be
defined to be right-invariant only if it is tangent to the a-fibres. Having noted
this, a right-invariant vector field on f is determined by its values on the

unities %, x € B, and we define the Lie algebroid of @ to be A2 = {J (R, )y with
x€B
the natural vector bundle structure over B which it inherits from TQR. The Lie

bracket is placed on the module of sections of AR (not on AQ itself) via the
correspondence between sections of AQ and right-ianvariant vector fields on Q. This

bracket 1is not bilinear with respect to the module structure on TAQ but obeys
IX,£Y] = £[X,Y] + q(X)(£)Y f € C(B), X,Y € TAQ

where q: A2 + TB is a vector bundle morphism over B which maps each X € TAQ to
the B-projection of the corresponding right—-invariant vector field. The map q,
which we are calling the anchor of AQ, ties the bracket structure on TAQ to its
module structure, and is the only feature of the Lie algebroid concept which does
not appear in the case of Lie algebras. The anchor q: AQ + TB is, further,

essential to the connection theory of f; for this see §5.

The construction of the Lie algebroid of a differentiable groupoid is due to
Pradines (1967).

Let Q be a differentiable groupoid on a manifold B.

Definition 3.1. The vector bundle AQ + B is the inverse image of Tuﬂ > Q
across the embedding €: B + Q. Thus

]

is a pullback. /!
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Since € is an embedding we will usually regard AR as the restriction
of 199 to B and we identify the fibres AQ < with the tangent spaces T(Qx);,

X € B, and regard AQ > TGQ as an inclusion.

Definition 3.2. A vertical vector field on 2 is a vector field X which is vertical

with respect to a; that is, XE € T(QGE)E for all £ in the domain of X.
A global vector field X on @ is right-invariant if it is vertical and

X(ng) = T(RE) r](X(n)) for all (n,£) € O * Q, 1/

A trivial manipulation shows that a vertical vector field X is right-
invariant iff X(§) = T(RE)(X(§E» for all £ € Q. Thus a right-invariant vector field
is determined by its values on the submanifold of identity elements. We denote the

section of AR corresponding to the composite Xoe: B + TS by Xl The next result

B
provides an inverse for X +> XlB.

Proposition 3.3. The vector bundle morphism

o R

T Q e AQ

]

8

§ — B

where ﬁ

g = TR _

g

)E: T(Qag) > T(Q is a pullback.

1 £ BE)BE’

Proof: The composite of T(§): T(R x Q) + TR with the tangent to & + 2 x Q,
o o

~ a a a
gr (af,f), restricts to T Q » T Q; factoring this map over the pullback AQ + T Q
givesﬁi, which is therefore smooth.

EachﬂQE is clearly an isomorphism of vector spaces, so 5215 a pullback by
c.2. /1

Corollary 3.4. Given X € TAR, the formula

e = TR (X(BE)), & €2,

defines a right-invariant vector field on Q.

Proof: For, in the notation of C.3, % =5Q #(X). I/



Corollary 3.5 The map

[+ 1 >
c(Q) = TAQ > TT Q, f & Xp+ fX
c(B)
is an isomorphism of C(Q)-modules.

Proof: See C.4. /!

12

For a Lie group G it is well-known that I'TG = C(G) ® 5 and since a Lie
R

algebra is free as a vector space 1t follows that any vector field X on G can be
written as
(3 X = £X + «o0 + £ X

171 nn
where {Xl,...,Xn} is any basis for‘ﬂ. For a vertical vector fleld X € FTGQ, 3.5
states that there are Xi € TAQ for which (3) holds, but since TAQ is in general only

a projective C(B)-module, and not free, the X, and n may vary with X.

i

The two pullback diagrams (1) and (2) show that Taﬂ + Q is trivializable

1ff AQ + Bis so; this generalizes the fact that the tangent bundle of a Lie group
is trivializable.

I

Denote the set of right-invariant vector fields on 2 by FR Tuﬂ. It is a

C(B)-module under the multiplication fX = (fe¢B)X and the maps

(4) RIt% > rag, xm x| raq M, xe X
are mutually inverse C(B)-module isomorphisms.

Lemma 3.6. FRITgQ is closed under the Poisson bracket.

Proof: X € I'TR is vertical iff X 2 0 ¢ ITB and X € I'T"R is right-invariant
R
iff X'Q ~E X‘Q for each § ¢ 9;, X, ¥ € B, The result now follows from the fact
y X

¢ ]
that for any smooth map ¢: M + N, and X,Y & ITM, X',Y' ¢ P'TN, X ~ X' and Y ~ Y¥'
imply [X,Y] ~ [X',Y']. 1/

1

3.6 permits the Poisson bracket on ™ T2 to be transferred to TAf}, that is,

we define
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(5 1%,Y] = [X,¥) LB X,Y € TAQ.
This bracket is alternating, R-bilinear and satisfies the Jacobi identity; these
follow immediately from the corresponding properties of the Polsson bracket. For a

function f € C(B) and X,Y € TAQ we have

— > >
[X,£Y] = [X,(feB8)Y]

(£98) [X,¥] + X(foB)Y

TIX, 1] + X(£o8)Y.

Now because B8: & + B 18 a surjective submersion and B.RE = B, ¥ € Q, every right-
{nvariant vector field X is B-projectable; that is, there is a vector field X' on B
such that

X' (£)e8 = X(£°8)  ¥f € C(B),
and in terms of X', we obtain
[X,£Y] = £[X,Y] + X' (f)Y.

X' is the B-projection of the right-invariant vector field associlated to X,

and is described more simply as follows.

Q
Definition 3.7. The anchor q = q : AR + TB of AQ is the composite of the vector

bundle morphisms

AR ——p T

Lo

B —=» @

and

1% — 2 LBl g

£ l l /1

=== -—E—# B
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Since Bee = idB, q 1s a morphism over B.
Lemma 3.8. For X ¢ TAR, X is B-related to q(X).

Proof: T(B)(X(E)) = T(B"Rg)(x( BE)) = T(B)(X(BE)), and clearly
q = T(B ) T(Q )~ + T(B) . 1/
x x'x x'x X

It now follows that for any X,Y € TAQ and any £ € C(B),

(6) [X,£Y) = £[X,Y] + q(X)(£)Y.

Further, since i is B-related to q(X) and { is B-related to q(Y), it follows

that [i,;] is B-related to [q(X),q(Y)]. But [)-{),{I)] = [X,Y] is also B-related to
q({X,Y]) and since B is surjective it follows that

@ q(1%,Y]) = [q(X),q(V)].

These results permit the

Definition 3.9. The Lie algebroid of @ is the vector bundle AQ + B defined in 3.1
together with the bracket [ , ] defined in (5) and the anchor q defined in 3.7. 1/

It 1s worth noting that the vector bundle AQ + B 1s always locally trivial
and that this is anot related to the local triviality of Q. The local triviality
of AR goes back ultimately to the assumption that B is a submersion.

We now need to make a few comments on the local version of the correspoadence
between sections of ARl and right-invariant vector fields on f2. For %EQ open, a
local right—-invariant vector field on% 18 a vertical vector fileld onZ[such that
X(ng) = T(R )(X(n)) whenever an = B£ and both nf and nare inl. If X ¢ T AQ,
where UC'-‘B is open, then 3.3 shows that X( £) = T(R )(X(BE)) defines a smooth local
right-invariant vector field on Q . On the other hand we have

Lemma 3,10, Let X ¢ I‘RITGQ be a local right-invariant vector field on an open

set Y= 2. For x € B(Y) choose any £ €YU and define

X6 = TR _)X(E)).
£

Then X is a well-defined and smooth local section of AQ on B(&).
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Proof: That X is well~defined follows from the right-invariance of X. Let
U= B(&) and note thath restricts to Tu9|a? AQLU. Now XeB =JloX is smooth, and
since B is a submersion it follows that ¥ is smooth. !/

RI

If we now take X e T TaQ, where UE q is open, and apply first 3.10 to

RI

~1
B (BE)
invariant vector field defined on the B-saturation of % which is equal to X onzz.

get X € FB(u)Aﬂ and then 3.3 to get (g) el Taﬂ, then we obtain a right-

We call (z) the B-saturation of X and any right-invariant vector field defined on

a B-saturated open subset of @ will be called a B-saturated right-invariant vector

field. The above shows that we need not consider right—iuvariant vector fields

defined on more general open sets. Clearly (g) is the only right-invariant vector
fleld on 8 ~(8(%)) which coincides with X on%.

If Zlis itself B-saturated, sayi‘ = B_l(U) where U is open in B, and
X € ngTgQ, then X is actually the restriction of X to %UnB = U. In this case we

write Xlu, rather than X, and there are mutually inverse C(U)-module isomorphisms

(8a) xrs X, raasrl o 1%
B (M
and
(8b) x> x|, erl %0 + T A
B (M)

It is straightforward to show that the bracket on PUAQ transported from
FRzl T Qvia (8) colncides with the bracket induced from the bracket on TAQby
()]
the method of 2.2.

Now consider a morphism ¢: Q@ + Q' of differentiable groupoids over B. We

construct the induced morphism ¢,: AQ > AQ' of Lie algebroids over B.

Since a'e¢ = &, the vector bundle morphism T(¢$) restricts to

o o a
T($): TQ > TQR'. Since $oc = €' the composition

[+ ]
m — 1% I8 g%,

b

B —— o —~a g

is a vector bundle morphism over £': B + Q' and so there is a unique vector bundle
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morphism ¢_: A% + AQ' over B such that the composition

¢

* [+
AQ ~—— AQ' —— T Q'

b

B acowoew B [ —— Qr

is equal to (9).

From B'¢ = B and the definition of the anchors on AR and AQ' it follows

immediately that q'e ¢, = q. It remains to prove that ¢, preserves the brackets.
[ ] ' ",Q"T
Lemma 3.11. Let X € TAQ, X' € TAQ', Then X' = ¢*(X) 1ff X 4 X',
Proof: This is a straightforward manipulation. 1/
Now take X, Y € TAQ and write X'

that X 4 X and Y 2 ;T, 80 [X,Yi = [2,;]
have [X',Y'] = ¢,([X,Y]).

$,(X), Y' = ¢,(Y). From 3.11 it follows
2 - ——
[X',¥'] = [X',¥'] and by 3.11 again, we

e I

The constructions £ ++ AQ and ¢ i ¢, constitute a functor from the category
of differentiable groupoids on a given base B and smooth morphisms of differentiable
groupoids over B to the category of Lie algebroids on B and Lie algebroid morphisms
over B, It is called the Lie functor.

The construction of the induced morphism of Lie algebroids [ AQ +AQ' can
be extended to the case where ¢:  + Q' is a morphism of differentiable groupoids
over an arbitary smooth map ¢o: B + B'. TFor this see Almeida and Kumpera (1981);
the difficulty lies not in the construction of ¢, but in giving an abstract
formulation of the bracket-preservation property of 0*. The case where ¢° is a
diffeomorphism does not present this difficulty and is treated in §4.

Example 3,12, The Lie algebroid of a cartesian square groupoid B % B is naturally
isomorphic to TB. For any differentiable groupoid 2, the anchor map

[B,a]: & + B x B, considered as a morphism over B, induces the anchor q: AQ * TBof
AQ. //

We now need a series of results concerning the relationship between

properties of ¢ and properties of ¢,.
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Proposition 3.13. Let ¢: 2 > Q' be a morphism of differentiable groupoids over B.
Then

(1) ¢ is a submersion iff each ¢x: Qx > Q'x is a submersion, and

iff ¢*: AQ + AQ' 15 a fibrewise surjection;

(i1) ¢ is an immersion iff each ¢x is an immersion, and iff by is a fibrewise

injection;

(ii1) ¢ is of locally constant rank 1ff ¢* is.
Proof: We prove (i111); the other results can be proved by the same method.

(=>) Let the components of @ be Ci and let the rank of ¢ on Ci be ki' Take

£ € Q and write x = af, y = BE, From the diagram

(R ) md T(R) —P T(B)
x'& 3 y

TG, l (6, l l

T(Qy)¢(5) —r T(Q)

[1€9) 7 T(B)y

it follows that rk£(¢a€) = ki - dim B, for £ € C Now for any £ € £ we have

i
¢BE.R§ = R¢(E)°¢GE so rkgé(‘tsg) = rk5(¢ag)' Therefore, rk;(‘bx) = ki - dim B is
constant for x € B(Ci) and since B is open, this shows that rk;(¢x) is a locally

constant function of x.

({=) Let the compounents of B be B, and let the rank of ¢, on Bi be ki' By
B
- = i
the same argumeant it follows ;hat rk€(¢a§; = rk§2(¢65) ki for £ €  ~ aund so
rk£(¢) =k, +dim B for £ ¢ @ 1 since o lis open in @, this completes the
proof. //

i

Recall from 1.31 that every base-preserving morphism of Lie groupoids is of
locally constant rank, and that such a morphism is a submersion if it 1is surjective
and is an immersion if it is injective. It is not true that every base-preserving
morphism of differentiable groupoids is of locally constant rank, even if the base
is connected: let Q be an action groupoid G x B where G X B + B is a smooth action
with a fixed point X, and all other orbits of dimension » 1. Then
[B,a] is G x B+ B x B, (g,x) k> (gx,x) and the rank is not constant in any
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neighbourhood of (l,xo). Since [B,a]X = Bx is known, by l.4, to be of locally
constant rank for any differentiable groupoid this example also shows that 3.13

(i1i) cannot be strengthened to make it similar in form to (i) and (ii).

The following result is used in §6.

Proposition 3.14. Let ¢: @ + Q' be a morphism of differentiable groupoids over B.

If Q' is o-connected and ¢, AQ + AR' is fibrewise surjective, then ¢ is surjective.

Proof: By 3.13, ¢ 1s a submersion and so ¢(2) is a symmetric oa-neighbourhood

of the base in 2'. By II 3.11, ¢(92) generates Q'; since ¢(Q) is a subgroupoid
of Q' it follows that ¢(R) = Q'. 1/

Proposition 3.15. Let M FEILEN Q' — @ be an exact sequence of differentlable

groupoids over B; that is, 1 and ™ are morphisms of differentiable groupolds over

B, 1,1is an embedding, 7 is a surjective submersion, and im(1) = ker(a). Then

*
AM = AQ' ~=— AQ is an exact sequence of Lie algebroids over B.

Proof: All that need be proved is that the sequence of vector spaces

T(lx); T(nx)~
T(M, )y »——> T(Q' )~ —5 T(Q )y

is exact, and this follows immediately from the fact that nx: Q; + Qx is a
submersion with (wx)-l(;) =M. /!

3.15 asserts that the Lie functor is exact.

Corollary 3,16. Let R be a differentiable groupoid on B. TIf 2 is locally trivial
then AR is transitive. If AQ is transitive and B is conunected, then @ is locally
trivial.

Proof: Since [B,a], = q: AR > TB, the first result follows from 3.13 (i) and the
second from 3.14. 1/

If @ is a Lie groupoid on B then

G P> Q lﬁ‘gi B xB
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is an exact sequence of differentiable groupoids over B, and GQ is a Lie group
bundle on B; 1if {o Ui > Q } is a section-atlas for Q then {Ia B Ui x Qg + GQ U }
is an LGB-atlas for GR. Since [8, u] = q: ARl + TB, the adjoint %undle of AQ is t%e

Lie algebroid of GQ as a differentiable groupoid; the following calculation

confirms that this coincides with the Lie algebra bundle associated to GR.

Example 3.17. Let (M,p,B) be a Lle group bundle. (See A§l.) The Lie algebra
bundle asociated to M is denoted M, and defined as follows (Douady and Lazard
(1966)):

Let M, be the inverse image of TPM + M across the identity section

B+M, x lx’ of M. The fibre of M, over x is then the Lie algebra of Mx'

Let {w H Ui x G *> MU } be an LGB atlas for M; then the induced chart for TPM is the
i
composite of w x ids: MU xQ » Ui x G x ﬂ followed by Ui X G x 5 > T(Ui x G),

(x,8,X) +* 0 0 T(R )(X), followed by T(w ): T(Ui x G) + TM. The restriction of
this chart to the identity section Ui" is therefore
i
G, O F> T, ® 0 = (v )X

and is denoted wi*: Ui X 5 > M*'U ;s fibrewise wi* is the Lie algebra isomorphism
i

H * M*lx induced by wi’x: G » Mx' Thus M, with the Lie algebra bracket on each
fibre
bundle.

nduced from the Lie group structures on the fibres of M, is a Lie algebra

It is clear that the construction of M, as an LAB coincides with the
construction of the Lie algebroid AM of M considered as a totally intransitive
differentiable groupoid. /1!

Definition 3.18. Let 2 be a Lie groupoid. The LAB associated to GQ is
denoted L& and 1s called the adjoint Lie algebra bundle of Q. !/

Proposition 3.19., Let 2 be a Lie groupoid. For £ ¢ 2 define Ad(E): LQL“E > LQ!BE
to be T(IE)GE° Then Ad: @ +» N{LQR] is a smooth representation of Q on LR, called the

adjoint represeantation.

Proof: The proof is straightforward, using either local triviality to reduce to the
case of Lie groups, or 1.23. 1/
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If Q 1s abelian then, as in I§3, Ad(Z) depends only on af and BE and so
there is a global chart B X3 + LQ, where5 is the Lie algebra of a vertex group
of Q.

For an arbitrary differentiable groupoid £, the adjoint representation can

be defined and shown to be smooth as a map R * A(GR) > A(GR), by using 1.23,

The construction of the Lie algebroid of a differentiable groupoid, as we
have presented it here, emphasizes that it is a direct and natural gemeralization of
the concept of Lie algebra of a Lie group. The next result shows that, for a Lie
groupoid 2, the Lie algebroid L > AQ —»» TB ié the Atiyah sequence of any of the
principal bundles assoclated to Q. See AS3 for the construction of the Atiyah

sequence of a principal bundle.

Proposition 3.20. Let @ be a Lie groupoid on B, let b € B and write P = Q_,
) a

G = ﬂb and p = Bb: P + B, Then the restriction offz: T Q + AQ to TP + AQ induces an

isomorphism

R: 2% + AR

of Lie algebroids over B, The induced morphism

+ px§
R : r

+ 19

is <E,X> > AM(E)(X).

Proof: Clearlygi: TP + AQ, p: P > B is constant on each orbit of the action of G so

by A 2.2 it quotients to a vector bundle map R: I% + AR over B, given by

R(<KX >) = T(R )(X). Sincej? is fibrewise bijective, it follows that R is also,
and it is thesefore a vector bundle isomorphism, That qeR = p, is a straightforward
consequence of BeR -1 =8, ¥& e Q; it remains to verify that R is bracket-
preserving. &
Take X, Y ¢ P(%;b; it suffices to verify that [R(X), E??’] and ETij?? are
equal on P; that they are equal on 2 then follows from the transitivity of Q.

Now [R(X,, RzY’]|P = [R(i3|P, R(Y3|P], because RZX"Pand R(Y 'P are tangent to P,
and (R, |} = (5,01 = TGIT = @G

|p‘

Lastly, the map EL€§H— Fm—> %2 , <EXD> k> <T(mE)(X)> of A 3.2 can be

rewritten as <§,X> &> <T(L€)(X)> since mE: G + P is precisely the restriction of
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LE: Qb > QBE

to G = n'; > sszg P. Consequently, R'(<E,X>) = T(R _ L)) = ad(O)X®).
g
/1

We now give some simple examples of the coastructioan of the Lie algebroid of a

differentiable groupoid. Further examples are developed in the following sections.

Example 3.21. Let B be a manifold, G a Lie group, and Q the trivial Lie groupoid
B.x G x B.

* *
1 TB @ Ty TG

of the laverse image bundles nl*TB and ﬂZ*TG over B x G x B, Since the compositions

a is the projection LY BxGxB +8, so Tuﬂ is the Whitney sum %

(1
mee and 1r2°e are x+ x and x+ 1 respectively, the Ilnverse image of T @ over ¢ is

(nloe)*TB ® ("i €)*TG = TB ¢ (B XH), where the Whitney sum is now over B. This is
the vector bundle Af.

We will write a general vector field on £ in the form X ¢ V ¢ Y where X, V,
Y are sections of nl*TB, w *TG, n,*TB, respectively. Such a field is vertical iff

2 3
Y = 0. The right-translation R : Bx Gx {y} B x G x {z} has tangent

(y,h,2)

T(R (y.h, z))(x’g’y)- X ®V, #0 P> X @ T(l\])(v ) ®o0,

and so X @ Vo O is right-invariant iff V(x,gh,z) = T(Rh) (V(x,g,y)) and

X(x,gh,z) = X(x,g,y) identically in x, y, z, g, h., This is so iff V(x,g,y) is
independent of y and right-invariant in g and X(x,g,y) depends only on x. When this
is so, V can be identified with the function x b+ V(x,1,x), B *-ﬂ, also denoted by
V, and X can be identified with the vector field x ++ X(x,1,x) on B, algo denoted by
X; with this notation X ¢ V is the section X ¢ V @ OlB of TB ¢ (B XH ).

Conversely, given X € I'TB and V: B *5 , the right-iavariant vector field i‘E’? is

(x,8,7) > X _® T(Rg)(v(x)) ° 0.

To simplify the calculation of the bracket on A, temporarily denote by

> >
V and X the right—invariant vector fields 0 ¢ 3 and X ® 0. With this notation, for
any V,W: B *ﬂ and X,Y € TTB,

(Fol, Tom =X+, ¥+

It is easy to verify that ¥ has the global flow w (y,g,x) = (y,exptv(y)g,x) and that
if {¢ } is a local flow for X on U< B then {¢ } defined by ¢ (y,2,x) = (¢t(y),g,x)
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is a local flow for X on U x G x B. Using thegse flows it is straightforward to show
that [6,&] = TVTWT, where {V,W] is the map x > [V(x),W(x)], B *S ; that
[i,ﬁ] = i?ﬁ$, where X(W) is the Lie derivative of the vector-valued function W: and
that [ﬁ,?] = Tij?T. Consequently the bracket on TB # (B XS ) is given by

[XeV, Y oWl = [X,Y] € {X(W) - Y(V) + [V,W]}.

The anchor q: TB ¢ (B XB) + TB is clearly the projection X ® Vi~+ X and the adjoint
bundle is, by the formula for the bracket in TB @ (B XS ), the trivial Lie algebra
bundle B XB . Thus A(B x G x B) is the trivial Lie algebroid on B with structure
algebra ﬂ constructed in 2.4.

Now consider a morphism ¢: B x G x B » B x H x B of trivial Lie groupoids
over B, By I 2.13, ¢ can be written in the form

8(y,8,0) = (v, 8(NEEINT, %)

for some morphism of Lie groups f: G + H and smooth map 6: B + H. 1In terms of this

description T($)(X ® V & Y), where X ¢ T(B)x, Ve T(G)g, Y e T(B)y, is given by

X e {T(® JT(8) (X) + (L,

- IR ITENW
f()e( ! eyt

(

- (L _I)T(R _1)T(6)(Y)} ® Y.
8(x)f(g)8(y) 8(y)

Setting Y = 0 and y = x, g = 1, this reduces to X ¢ {A(8)(X) + Ad(8(x))E (V)} @ O,
where A is the right-derivative (see B§2). Hence $,: TB © (B XB) + TB ¢ (B Xh)
is

$, (X ® V) = X & {A(8)(X) + A(B) (V)]

In terms of the description (3) in 2.4, ¢* is formed from the Maurer-Cartan
form A(8) and the LAB morphism Ad(8)ef,. The compatibility condition
for A(8) and Ad(e)of* is proved directly in B 2.1, //

Example 3.22. Let m: G X B > B be a smooth action of a Lie group G on a manifold B,
and f the corresponding action groupoid (see I 1.6). Then, as in the preceding
example, Tgﬂ = wl*TG ® 0 and AQ = B x as a vector bundle on B. A vertical vector
field V: G x B > TG is right-invariant iff V(gh,y) = T(Rh)(V(g,hy)) identically in

g, hy, yo For V: B *B the corresponding right-invariant vector

field V is g(g,x) = T(Rg)(V(gx)). The anchor q: B X 3 + TB is (x,X) += T(m(-,x))l(x).
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It would be interesting to have a simple formula to describe the bracket on TAf in
terms of the isomorphism AR = B XB: it is certainly not the case that the Lie
algebroid bracket on ['(B XE) is the pointwise bracket ofﬂ—valued maps, since if the
action is transitive and abelian, the pointwise bracket on T(B XB) is identically
zero and the anchor surjective, but the bracket on I'TB will only be zero in

degenerate cases. //

Example 3.23. Let G be a Lie group and H a closed subgroup of G. The Atiyah sequence

of the principal bundle G(G/H,H) is calculated in A 3.9 and, by 3.20, is the Lie

G x G
algebroid of the Lie groupold — (see 1II 1,12).

By II 1.12, the Lie groupoid g ; & is isomorphic to the Lie groupoid

G x (G/M) of 3.22, where G acts on G/H in the standard fashion; the isomorphism is

<g2,g1> (g (gzg_ll,gll-l). The induced isomorphism of Lie algebroids lg- + (G/H) Xﬂ is
described in A 3.9. tH

The following result is a straightforward exercise.

Proposition 3.24. Let 2 and Q' be differentiable groupoids on B and let Q be Lie.

Denote by T and 7' the projections € x Q' » Q and 2 x 2' » 2%, Then A(Q x Q')
BxB BxB BxB
is naturally isomorphic to AQ @ AQ' under X ++ X e n;X. !/
TB

We insert here some remarks about differential forms on differeatiable
groupoids which will be needed in later sections. Until 3.28, let Q be a
differentiable groupoid on B.

Definition 3.25. (i) Let 8 be a vector bundle on 2. Then I‘Altn(Tuﬂ;g) is denoted
An(ﬂ,g) and elements of An(ﬂ,g) are called fibred n-forms on Q with values in 8 .

(1i) Let E be a vector bundle on B; rtecall that B*E is the inverse image of E
over B: & + B, A fibred n-formw € An(Q,B*E) is called right-ianvariant 1if

W(T(R) (V)50 e, TR (V1)) = 0(V,00n V)

for all V1 € T“(rz)n and £ € 2 such that ng is defined.

The subspace of right—-invariant fibred n-forms is denoted A;I(Q,B*E), 1/

Whereas A“(Q,B*E) is a C(Q)-module, A;I(Q,B*E) is only a C(B)-module, with
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u € C(B) acting by ueB £ C(Q).

Definition 3.26. Let E be a vector bundle on B. Then the vector bundle Alt“(AQ;E)
is denoted Cn(Aﬂ,E) and elements of FC“(AQ,E) are called n-cochains on AR with values
in E, /1

Proposition 3.27. There is an isomorphism of C(B)-modules

rc®(aQ,E) — A;‘ Q,B*E)

which to w ¢ FCn(Aﬂ,E) assigns @ defined by
>
WV ,eee,V ) = MBE(T(RE_I)(Vl),...,T(Ra_l)(vn))

for Vl,...,Vn € Tuﬂ|g, £ € 2, and which to w € A;I(Q,B*E) assigns w B defined by

wLB(xl,...,xn) =0 (X, X))
X
- Q,
for X ,..0,X & Aﬂlx =T sz|~_
Proof: Straightforward. 1/

Taking E = B X R we obtain the vector bundle dual CI(AQ, B x R)
= Hom(AR, B x R) = AQ*, By 3.27, the module of global sections of this dual can be
identified with the C(B)-module of real-valued right-invariant forms ARI(Q Q x R).
Given o ¢ I‘C (AQ, B xR) and X € I‘AQ one can form <X,w> = w(X): B + R and
<X o> = m(x) Q2 + R and m(x)(E) =% (T(R )(X(BE))) =, (X(BE)), for all £ ¢ Q, so
w(X) = w(X)eB. One could call the elements of ARI(Q Q x R) the Maurer-Cartan forms
of R.

Taking E to be the vector bundle AQ itself, let 6 ¢ FCl(Aﬂ AQ) be the identity
map A » A2. Then B e ARI(Q B*AQ) maps V € T Q,E to T(R )(V) and is essentially the
map 52 of 3.3, One could call & the Maurer-Cartan form gf Q.

If now (M,p,B) is a fibred manifold and f: M > Q is a smooth map with
a°f = p, one can define a right derivative
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P 28Dy g

N

M .._f___+ o)

by A(f) = T(R ) T(f ) , where u € M , x € B, Then A(f) is, in an obvious
u £ -1 x'u X

u
extension of 3.25, a fibred form on M, and A(idn) = 3. We will not pursue this
concept here.

Pradines (1967) obtains B as A(8), where § is the division map

Q é Q-+ Q, (n,E) nE_l, regarded as a morphism of differentiable groupoids over
B: @ + B (see 1 2,14).

Proposition 3.28. Let @ be a Lie groupoid on B. Choose b € B and write
P= Qb’ G = ﬂ:. Let V be a vector space and G x V + V a linear action of G on V;
let E = 3 2 v be the associated vector bundle.

Then there are natural isomorphisms of C(B)-modules

~

1M (AQ,E) — A"(p,v)°

where AP(P,V)G = {w ¢ A"(P,V) (Rg)*(w) = g_lw, ¥g € G} 1s the C(B)-module of G-
equivariant V-valued forms on P.

Proof: See A 4,12(1). /!
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§4. The exponential map and adjoint formulas.

The exponential map with which this section deals associates to a local
section X of the Lie algebroid of a differentiable groupoid @, a l-parameter family
ExptX of local admissible sections of Q. Namely, the right-invariant vector field
i has flows consisting of local left-translations, and the local admissible sectiouns
corresponding to these left-translations are the ExptX. There is a second concept
of exponential map, which maps AQ into @ itself and is étale on a neighbourhood of
the zero section of AQ; 1t however depends on a choice of coanection in the vector
bundle AR, For this see Pradines (1968a) or Almeida (1980, §9).

The exponential map for a Lie groupoid is used in the same way, and for the
same purposes, as the exponential map of a Lie group. The first major use (4.5) is
to identify the Lie algebroid AN(E), for a vector bundle E, with CDO(E). This
result is from Kumpera (1971), though the proof has been simplified. TVsing 4.5, we
calculate in 4.7 the Lie algebroid of an isotropy subgroupoid; this result is
central in the connection theory of §7. 1In 4.8 we use the exponential to
differentiate the standard representations of the frame groupoild N(E) of a vector
bundle E on the associated bundles Hom (E; B x R), Hom (E;E), etc. From 4.7 and 4.8
it follows that, for a vector bundle E and a geometric structure on E defined by
tensor fields, the Lie algebroid of the frame groupoid consists of those covariant
differential operators with respect to which the tensor filelds are constant (or
parallel), This result encapsulates a number of calculations usually regarded as
part of conmection theory. Here we need only the cases of Riemannian bundles and

Lie algebra bundles.

In the remaining part of the section we give formulas for the adjoint
representations of a differentiable groupoid and its Lie algebroid which generalize

the well-known formulas for Lie groups and Lie algebras.

The definition and basic properties of the exponential, the fundamental
theorem 4.5, and the adjoint formulas in 4.11 are due to Kumpera (1971). (Except
for 4.5, this material also appears in Kumpera and Spencer (1972, Appendix).) The

remainder of the section 1s due to the author.

Let @ be a differeatiable groupoid on B and take X € TAQ. Let
2‘ z[ } be a local flow for Xe TTQ. Siace X s a~vertical, we have
ompt = o go for x € B with ﬂnﬂ # 0, each ¢ restricts to Zlnﬂ *2[ N Qx. For
- Qy where anﬂ 0, %nﬂ # P, we know (RE)*(X|‘1 XlQ 80 ¢°R =R °¢
for all t. y
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Now define U = B(u), Ut = B(?lt) and wt: U Ut so that

¢
/4 £ Uy
JEN
U —T Ut

commutes; that is, 'Jit(x) = B(¢t(n)) for any n e % with 8n = x. Since
¢t(ﬂ5) = ¢t(n)§, this is well-defined, and since B is a submersion wt is smooth.
Since (o, y L= ¢_, has the same properties as ¢ , it follows that (y_e¥ )8 = B

and wt is therefore a local diffeomorphism. Now, for x € U,
d d >
E?“'c(") . -3 8(¢t(n)) . = Bu(X(n))

for any ne Un Qx, and so {ll)t: U »> Ut} is a local flow for q(X) = B*(i).

Lastly, ¢t:% ?(t and wt: U > Ut satisfy the conditions of IT 5.8 and so

U
each ¢t is the restriction of a unique local left-translation L‘J : QU >qt

where o, € I‘UQ is defined by at(x) = ¢t(n)n—1’ where n is any element of
ﬂn szx. This proves the following result.

Proposition 4.1. Let £ be a differentiable groupoid on B, let W& B be an open
subset, and take X ¢ I‘wAﬂ. Then for each X, € W there is an open neighbourhood U

of X in W, called a flow neighbourhood for X, an € > 0, and a unique smooth family

of local admissible sections ExptX € I'UQ, Itl < €, such that;

(1) %EEXth = X,

(ii) ExpOX = id ¢ I‘Uﬂ,
(iii) Exp(t + s)X = (ExptX)*(ExpsX), whenever |t|,|s',|t + S| <,
(iv) Exp-tX = (Exth)-l,

(v) {BeExptX: U » Ut} is a local l-parameter group of transformations
for q(X) € I‘WTB in U. //
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(iii) may be expressed more fully as follows: if x € U, if
Is',‘t‘,ls + t| < £ and if B(ExpsX(x)) € U (which is true for all Isl < § for

some § > 0), then (Exp(t + s)X)(x) = ((ExptX)(B(ExpsX(x)))ExpsX(x).

The family t +> ExptX is smooth in the sense that R x U ~+ @,
(t,x) > ExptX(x) is smooth; this follows from the smoothness of the local flow
>
R X 9~ 9, (£,8) F*+ ¢ (§) = ExptX(BE)E for X.

A well-defined exponential map X K+ ExpX may be defined on the sheaf of
germs of local sections of AQ with values in the sheaf of germs of local admissible

sections of 2, We will use the term "exponential map” in the obvious loose sense.

The following result is proved in Kumpera and Spencer (1972, Appendix).

Theorem 4.2, Let Q be a differentiable groupoid on B, let X & TAQ, and let

Eo € Q with BEO =Yy Then the integral curve for i through 50 is infinitely
extendable in both directions iff the integral curve for q(X) through v, is
infinitely extendable in both directions. In particular, i 1is complete iff q(X) is

complete. 1/

Proposition 4.3, Let ¢: & > ' be a morphism of differentiable groupoids over B,
Then 1f U is a flow neighbourhood for X & TAQ, it is also a flow neighbourhood
for ¢,(X) and

$(ExptX) = Expto, (X)

for all t for which ExptX is defined.

Proof: It is easy to verify that t r> z(Exth) has the properties which
characterize t > Expté,(X). /!

Examples 4.4. Let @ = B x B and let X € TAQ = ITB have a local flow {ot: [V Ut)'
Then {¢t x idB: UxB > Ut x B} 1s a local flow for i = X # 0 and ExptX can be
identified with ¢t € FU(B x B) (see II 5.3).

Let M be an LGB on B, and let X ¢ F(M*). Then ExptX is the global section
x F+ exptX(x) of M whose value at x € B is the Lie algebra exponential of

X(x) € M*Ix-
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Let P(B,G,m) be a principal bundle and let X ¢ I‘(——) It is shown in A 3.7
that the local flows of X ¢ I’ TP are of the form ¢ ('1' ,id ), where {‘1' LS U } is a
local flow for w (X) and {¢ (U) > (Ut)} is defined on ﬂ—saturated open sets.
It is easy to see that if X is regarded as in I‘A( ) (see 3.20) then ¢t(¢t,idc)

corresponds to ExptX under II 5.6. !/

Theorem 4.5. Let E be a vector bundle on B, For X € TAI(E) defineeD(X); TE + TE
by

D (D) (W(x) = - g—x Exth(u)(x)'o

where u € TE, x € B, and the expouential is taken in a flow neighbourhood of x.

(The bar notation is defined in IT 5.4.)

Then oD(X) e TWO(E), and aD: TAI(E) + TCDO(E) defines an isomorphism
AI(E) + CDO(E) of Lie algebroids over B.

Proof: Choose b € B, write P = II(E) and V = Eb and for u € TE define

u P + V by u(g) -1 u(BE). For X & TAI(E), let X denote the restriction of

Xe I'R T ]'l(E) to P. Then it is straightforward to verify that

e’ -~
DX = XW.

Now for f: B + R it follows that

P et
D (X (£w)

x(fosb)(u)

(£28)X(W) + X(foB du

and hence that o (X)(fu) = f.a(X)(u) + q(X)(£)u. This shows thataa(x) i1s a first

or zeroth order differential operator and, further, an element of I'CDO(E).
Similarly it is easy to verify that

D+ v = Dx) + Dy, X,Y € TAL(E),

and oD (X)) = £5XX), f: B + R,

and so D induces a morphism D: AI(E) + CDO(E) of vector bundles over B, It
follows from what we have already done that aD respects the anchors on All(E)
and CDO(E). As for the bracket condition, for X,Y & TAN(E) and u € TE,
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]
ey
=
~~
=2
Ad

T —””
DX, YD) (w)

[
=
-
L
~
=2
A

= XA - WERG))
= D (X) (DD (1)) = D)D) (1))

and so JD is a morphism of Lie algebroids over B.

Lastly, éﬂ+: LI(E) + End(E) is fibrewise the realization of T(GL(Ex))id
asﬂ(Ex), x € B, (see B§1), and is therefore a vector bundle isomorphism. By 2.8 it
follows thatei? is an isomorphism. /!

A proof of 4.5 first appeared in Kumpera (1971). The proof given here is a
simplification of Kumpera's. A similar construction occurs in Kobayashi and Nomizu

(1963, p. 115).

In what follows we will identify AIN(E) with CDO(E) via this isomorphism

without comment.

Definition 4.6, Let p: @ + I(E) be a representation of a differentiable groupoid

L on a vector bundle E. Then the induced representation p, of AR on E is

d P
P () (W) = -~ a;-p(Exth)(U)|0,
X € TAQ, u € TE, 1/

The notation p is introduced at the end of II§5. The next result
generalizes a simple formula for Lie groups and Lie algebras. In the present

generality it is essentially a part of connection theory.

Theorem 4.7. Let p: @ + N(E) be a representation of a Lie groupoid £ on a vector
bundle E. Let u € TE be Q~deformable and let & be the isotropy groupoid of u. Then

TA® = {X e TAQ ' P (D) = 0},

Proof: If X e TA$ then each ExptX takes values in &, Hence E(Exptx)(u) = p for all
t and p (X)(r) = 0 follows.
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Conversely, take X € TAQ and suppose p,(X)(u) = 0. Since X = gE-Exth 0’

and ¢ is an embedded submanifold of Q, it suffices to show that each ExptX takes
values in ¢. Take x € B and ExptX defined in a neighbourhood of x. Consider the
curve
-1
c(t) = p((ExptX(x)) Yu((BeExptX)(x))

in Ex; that is,

c(t) = p(Exp-tX)(n)(x).

Now, fixing t,, we have

%E-c(to + g = g; B(Exp-(to + t)X)(u)(x)'O

B(Exp—toX)(gf-B(Exp-tX)(u)‘OJ(X)

B(Exp=t_X) (p, (X) (1)) (x)

so c(to) = 0 for all to and hence ¢ is constant at c(0). Therefore
-1
p(ExptX(x) “)u((BeExptX)(x)) = u(x),

which shows that ExptX(x) € ¢, as required. //

The proof of 4.7 of course relies on the fact that & is already known to be
a differentiable (in fact, a Lie) subgroupoid of Q. In the applications of 4.7 we

need the following formulas for induced representations.

Theorem 4.8. Let E be a vector bundle on B.
(1) Let T(E) * Hom™(E; B x R) » Hom"(E; B x R) be the action of 1.25(i).

Then the induced representation of CDO(E) on Homn(E; B x R) is given by

n
KO W pyeensn ) = a0, 00,0 ) - 151 ICIPIPIN (I PRN R B

(11) Let N(E) * Hom™(E;E) + Hom™(E;E) be the action of 1.25(ii). Then the
induced representation of CDO(E) on Homn(E;E) is given by
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n
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(ii1) Let E' be a second vector bundle on the same base, and let
(ICE) BiB NMCE')) * Hom(E;E') » Hom(E;E') be the action of 1.25(iii). Then the
induced representation of CDO(E) ;B CDO(E') on Hom(E;E') is given by
(X @ X)) = X' (¢(u)) - ¢(X(w)).

Remark: These formulas generalize results which are well-known in the case of
general linear groups of vector spaces. As with 1.25, we take 4.8 to include the
restrictions of (i) and (1i) to ALt" and Symn and the corresponding formulas for

general tensor bundles, exterior algebra bundles, and symmetric bundles.

Proof: To illustrate the use of the groupoid exponential, we prove (ii) with n = 1,
The adaptation of the proof to the other cases follows as in the case of general

linear groups of vector spaces.

Take X € T'CDO(E), ¢ € THom(E;E), n € TE and x € B, Let ExptX be defined in

a neighbourhood of x and write X, = (BvExth)_l(x). Then (all limits are taken
as t + 0)

d

X($)(x) = - o= Exth(w(X)lo

1
= ~lim — {ExptX(x ) (6(x ) - $(x)}

= -lim %‘{Exth(xt)°¢(xt)°(Exth(xt))-1 - #(x)}

80

X(¢) (u) (%)

-1im 1; {ExlstX(xt)° d(x Jo(ExptX(x t))-1) (x)) = o(x)(u(xN}.

On the other side we have

X(4(1) () = -Lim £ {(ExptX(x, )0 6(x, ) (n(x,)) = 0G0 (u(x))}
and
HEMI(E) = -lim% {(¢(X)°Exptx(xt))(u(xt)) - ¢ (uxN}.
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Define a curve c(t) for t near 0 € R with values in Hom(Ex;Ex) by
c(t) = Exth(xt)-‘t»(xt)e(Exp(:)((xt))_1
and a curve f(t) for t near 0 € R with values in Ex by
f(t) = Exth(xt)(u(xt))-
Note c(0) = ¢(x) and £(0) = u(x). Then the left-hand side of our equation is

1
-lim T {c()£(0) - c(0)£(0)}
and the right-hand side is

1
-lim T {e(e)E(t) - c(0)£(t)};
both limits being taken in the one vector space Ex. It 1s elementary that these
limits are equal. /!

Corollary 4.9. (i) Let E be a vector bundle on B, and < , > a Riemannian structure
in E. Then the Lie algebroid of the Riemannian frame groupoid IIKE)> (see 1.26) is
given by

TAICE> = {X € TAI(E) | q(X)(<u,W>) = <X(W),v> + <u,X(V)>, ¥u,v € TE}.

In particular, the fibres of the adjoint bundle LIKE> of AIIKE> are the Lie
algebras QD(EX), x € B.

(ii) Let L be a Lie algebra bundle on B, Then the Lie algebroid of the LAB
frame groupoid N[L] (see 1.28) is given by

TAT[L] = {X & TAN(L) | XC[u,v]) = [X(#),v] + [u,X(v)], ¥u,v € TL}.

In particular the fibres of the adjoint bundle LI[L] of AN[L] are the Lie algebras
Der(Lx), X € B. //

4,9 and 1,20 (on which 4,9 strongly depends) show that (i) given a
Riemannian vector bundle (E, , >) there is a well-defined transitive Lie algebroid,
which we will denote

End<E> +-+ CDOKE> -++ TB,

which 1s the reduction of CDO(E) characterized by the equation in 4.9(1), and (i)
given an LAB L there is a well-defined transitive Lie algebroid, which we will
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denote
Der(L) +-+ CDO[L} =-*+> TB

which is the reduction of CDO(L) characterized by the equation in 4.9(ii). We will
in what follows identify AIKE> with CDOKE> and AN[L] with CDO[L] without comment.
It is possible to construct CDOCE> and CDO[L] without use of the underlying
groupoids if one grants the existence of Riemannian and Lie connections in E and L
respectively ~ this method is used in 7.22 in another case. It is also possible to
construct CDOKE> and CDO[L] from transition forms - this method will be clear after

§5 and IV§4, The method used above seems the most natural.

If (E,Z) is a I-bundle in the sense of Greub et al (1973, Chapter VIII) then
clearly 4.7 and 4.8 may be used to calculate the Lie algebroid of the Lie groupoid
of L-preserving isomorphisms, Its adjoint bundle is the Lie algebra bundle which is
constructed in Greub et al (op. cit., 8.4).

It would be interesting to know of useful conditions under which, given a
representation p: A + CDO(E) of an abstract transitive Lie algebroid A and a
section u € T'E, there is a reduction A' of A characterized by the condition
X € TA' <=> p(X)(u) = 0.

We turn now to the adjoint representations of Lie groupoids and Lie

algebroids. The first result is an immediate consequence of the Jacobl identity.

Proposition 4,10, Let & be a Lie groupoid on B. Then the adjoint representation
ad: A2 + CDO(1Q) of its Lie algebroid (defined in 2.11) takes values in CDO[LR]. 1/

This is actually true for all transitive Lie algebroids (see IV 1.5) but we
have not yet established that the adjoint bundle of a transitive Lie algebroid is an
LAB. '

We are now concerned to establish that the representation Ad: @ + N[LQ]
induces ad: AQ + MO[LR)., We in fact prove a stronger version of this result, and

for this we need to generalize the construction of induced morphisms.

Let ¢: @ + Q' be a morphism of differentiable groupoids over ¢ : B+ B'. As
in §3, a'e¢ = ¢ & o implies that T(9) restricts to T % + ¢ 9' and o = e'O¢
(where € and €' are the object inclusion maps B + Q and B' + Q') implies that
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= '
AQ > 5> 1% o
(1)
B E > 9 5 o

is a vector bundle morphism over e'e 00. Now the composite

PRAR! ey AR ————) 1

B ———3% B —

is a pullback because each factor is, and so there is a unique vector bundle

morphism AQ + ¢;AQ' over B such that the composite

Ay prAQ" > A > TR
(2) .
A
B meme—— B 2 B — o

is equal to (1). We denote the composition of the first two squares in (2) by
A($): M2 > AQ', or by ¢,

It is easy to see that B'e ¢ = ¢°° 8 implies that q'e ¢»* = T(tto)Oq. Further,
just as in 3.11, it is easy to see that if X € TAQ and X' € TAQ, then

(3) 4,08 = X'0 §_ <=> 3
o
and from this it follows, also as in §3, that for X,Y € TAQ and X',Y' ¢ TAQ',
(%) $0X = X'o g and oY = Y'e 9, imply 4,0 [X,¥1 = [X! ,Y’]°¢o.
If ¢o: B + B' is a diffeomorphism, then (4) may be expressed by saying that

the map

-1
0.t TAQ » TAR X k> ¢,0%00-
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which is semi-linear with respect to
-1
c(B) > C(B") £ > fo4 7,
sdtisfies the equation
(5) 3 ([X,Y]) = [4,(X),¢,(D)] X,Y € TAQ

and in this sense we will say that ¢ ,: AQ + AQ' 1s the morphism of Lie algebroids
over ¢o: B + B' induced by ¢: & + @', It is easy to modify the definition of a
morphism of ahstract Lie algebroids in 2.1 to include this case.

When ¢o: B > B' {s allowed to be an arbitrary smooth map a different
approach is needed to the definition of a morphism of Lie algebroids A + A'

over ¢o. B + B'., For this see Almeida and Kumpera (1981)., The construction of

¢*: A > AQ' from ¢: R » Q' is however as we have given it here, and (4) still
essentially expresses the fact that by is a morphism of Lie algebroids. We will use
only the case in which ¢° is a ditfeomorphism,

Let  be a differentiable groupoid on B, until we reach 4.14, Let

o€ FUQ be a local admissible section with (Beo)(U) = V., Then IO: n% *> Qg is a

morphism of differentiable groupoids over feo: U + V and we define
= : AR Ql .
4d(0) (10)* AQf > A |v
Proposition 4.11. With the notation just introduced

(i) For X,Y € rUAQ, Ad(0) [X,Y] = [Ad(0)X,Ad(0)Y].

(4i) If X e T AQ and U is a flow neighbourhood for X, then V = (Beo)(U) is
flow neighbourhood for Ad(o)X and, for |t| sufficiently small,

ExptAd(o)X = T (ExptX)

where IU(Exth) € Fvﬂ is
-1
y > I _(ExptX((Beo) "(y))).
(111) If X,Ye FUAQ and U is a flow neighbourhood for X, then

[X,Y] = - $= Ad(ExptR) (D) | -
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Proof: (1) is the equation (5) for ¢ = IO.

(i1) is a version of 4.3 for the case in which ¢o is a general

diffeomorphism, and is easily established.

(i1i) can be deduced easily from the formula for [i,{] as a Lie derivative of
¥ with respect to the flow L of i, and we urge the reader to work through the

details. //

ExptX

The results 4.11 generalize well-known identities for the relationship
between vector fields and their flows. For example, (i1) generalizes the following:
1f {¢t} is a local flow for a vector field X on a manifold M and ¢: M + M is a
diffeomorphism, then {¢O¢t°¢_l} is a local flow for ¢,(X). 1In turm, (ii) ca: be
deduced from this result by applying it to the right-invariant vector field X
corresponding to X ¢ FUAQ.

Similarly we obtain the following formula for "canoaical co-ordinates of the

second kind” on a differentiable groupoid Q.

Proposition 4,12, Let xl,...,xr be a local basis for AQ on an open set U& B and
suppose that U is a flow neighbourhood for each Xy Then the map

(t ,...,tr) > (Expt * Expt X, % oee¢ * Ethrxr)(x)’

1 lxl 272
where x € U is fixed, is a diffeomorphism of an open neighbourhood of Q ¢ R" onto

an open neighbourhood of % in ﬂx.

Proof: This follows immediately from the result: 1If Xj,...,X,. are linearly
independent vector fields on an open subset U of a manifold M, and if for each i,

{¢i} is a local flow for X, on U, then the map

i

1
(tlt"-:tr) [ (¢t° ‘1’

T
sev 0 )(x),
1 t

2
. °
2 r

where x € U is fixed, is a diffeomorphism of an open neighbourhood of Q ¢ R® onto

an open neighbourhood of x in M. //

If U itself is the domain of a chart for B, we obtain coordinates

Ranr:UXRrM)XZU.
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Remark: Compared to the corresponding result for Lie groups, the proof of this
result is immediate. However the purpose of the more delicate analysis in the case
of Lie groups is to prove the existence of analytic co-ordinates; such coordinates
need not exist for differentiable (or Lie) groupoids.

Proposition 4.,13. Let X,Y e PUAQ where U 18 a flow neighbourhood for both X and Y.
Then

(1) If [X,Y] = 0, then Expt(X + Y) = ExptX * ExptY on U;

4

1) g

(Exp—/tY * Exp—vTX * Exp/ty * Exp/EX)|O = [X,Y] on U.
Proof: (i) From [X,Y] = O it follows that [i,f] = (0, Hence the local flows

¢t(€) = ExptX(BE)E and wt(E) = ExptY(BE)E commute. It is now easy to check that
Ot = ¢€lb is a local l-parameter group of local transformations, and that
gg et(g) 0 i(i) + ?(6). Lastly, et’ being a composition of left-translations, is

itself a left-translation and corresponds to ExptX * ExptY.

(i1) follows, in the same way as does (1), from the corresponding result for

general vector fields (see, for example, Spivak (1979, I, pp. 220 e.s.)). 1/
From 4.11(iii) the following result is immediate.

Proposition 4.14. Let @ be a Lie groupoid on B. Then

Ad_ = ad: AR + cpo[L@]. !/
For Lie groups, the formula in 4.11(i11) follows as a special case from

4,3, However in the groupoid setting, we cannot write [X,Y] = ad(X)(Y) for

X,Y € TAQ, and get a Lie algebroid representation and so this method is not

available. Nonetheless it is possible to overcome this difficulty by lifting to the

1-jet prolongation groupoid Ql (see Kumpera and Spencer (1972) or Kumpera (1975) for

the definition): The adjoint map defined above 4.11 i1s well-defined as a map

ol s na)
ji(d) [ (Ad(a),x: Aﬂ‘x > AQ'(BGG)(X))'

and gives a smooth representation of Ql on the vector bundle AQ, which we denote
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by Adl. Now, by Kumpera (1975, §18), A(Ql) is naturally isomorphic to the natural
Lie algebroid structure on J (AQ) and 4.11(iii) now states that the induced
representation (Adl)*: Jl(AQ) + CDO(AR) is

jlx F+ (Y -+ [X,YD), X,Y € TAQ.

Thus 4.11(iii) can now be written as [X,Y] = (Adl)*(jlx)(Y).

Lastly, we note the following for future reference.

Proposition 4.15. Let E be a vector bundle on B. Then Ad: N(E) > N(End(E)) is
given by
-1
Ad(E)(9) = EogoE

for € ¢ H(E)i, 41 E > E, %,y € B
Proof: IE' GL(E ) + GL(E ) is the restriction to open sets of the linear map

’(E ) » ’(Ey) ¢ > go¢og and is therefore its own derivative. (The change of
sign in the identification of T(GL(V));4 with EI(V) of course cancels out.) /1l
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55, Infinitesimal counnection theory and the concept of transition form

Infinitesimal connection theory is now part of mainstream mathematics and
thorough treatments of it exist (for example, Kobayashi and Nomizu (1963), Greub et
al. (1973)). We present an account of connection theory in the first part of this
section and in §7, partly because we need in Chapter IV sharper forms of some
results than are available elsewhere aund partly bhecause infinitesimal connection
theory is an integral part of the theory of (traunsitive) Lie algebroids aund this
fact has not been evidenced before. Primarily, however, we include this material in
order to show that the Lie groupoid/lie algebroid language contributes something to
elementary connection theory itself. (See also Chapter V.) Traditionally the
motivation for the constructions and results of general connection theory (i.e., the
connection theory of principal bundles) have come from the special case of linear
connections and, in particular, from Riemannian geometry. It will become clear in
the course of this and the next two sectlons that the general theory of connections
is essentially coextensive with the Lie theory of Lie groupoids and lie algebroids
and as such, granted the importance of the Lie theory of Lie groups and Lie
algebras, has a natural algebraic interpretation and justification. This cannot be
brought out in a treatment which uses only the principal bundle concept. We submit
that the Lie groupoid/Lie algebroid formulation of connection theory offers a
genuinely new insight into the theory, and that it is the first to do so since the
foundational account of Kobayashi and Nomizu (1963).

This section treats those parts of connection theory which do not use
the concept of path-1lifting or holonomy. Infinitesimal connection theory
in this sense can in fact be developed in the context of abstract transitive Lie
algebroids and without reference to Lie groupoids; this can only be done however
once some nontrivial results about transitive Lie algebroids have been established,
and these results are proved in IV§1 by making essential use of connection theory.
Once the results of IV§l are established, however, the results and proofs of this

section can be applied to the abstract situation without change.

Tt is also possible to extend the results of this section (and of Chapter
IV) to a purely algebralc setting, in which manifolds are replaced by commutative
and unitary rings and vector bundles by projective modules over such rings. This was
done 1n Mackenzie (1979).

In the second part of this section we present the concept of transition
form, introduced in Mackenzie (1979). The transition forms of a transitive Lie
algebroid play a role analogous to that played by the transition functions of a Lie
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groupoid or principal bundle. Cousider a Lie groupoid Q. Given a section-atlas
{01: Ui e Qb} there are local morphisms 91: Ui x Ui + @, induced by the 9 which
differentiate to Lie algebroid morphisms TUi > AQ'Ui' These may be considered to be
local flat connections in AQ. On an overlap Ui # P two such connections differ by
a tensor, which is essentially a Maurer-Cartan form on Ui' with values 1115. These
Maurer-Cartan forms are in fact the right-derivatives of the transition functions

-1
Gi o, for @, and we call them the transition forms of AQ. In IV§4 we will prove

that every abstract transitive Lie algebroid possesses a system of local flat
connections, and hence a family of transition forms. Here we prove (5.15) that a
transitive Lie algebroid can be constructed from a family of transition forms.
Together with the results of IV§4, this will show that there is a complete
classification of transitive Lie algebroids up to equivalence by families of
transition forms. This classification will be central to the integrability results
proved in Chapter V.

Definition 5.1 is due to Atiyah (1957) and Pradines (1967); 5.11 appears in
Pradines (1967). The formalism of induced connections in associated vector bundles
appears in, for example, Koszul (1960) and Pradines (1967), but the derivation of
them from the Lie algebroid representations 4.8 induced by the Lie groupoid
representations 1.25 is new and appears here for the first time. The concept of
transition form and 5.15 are due to the author (Mackenzie (1979), (1980)). The
local description of connections and their curvatures, and 5.19 and 5.20 are
slightly sharper and more general versions of standard results (Robayashi and Nomizu
(1963, II 1.4 and 11.9)).

Definition 5.1,

(1) Let L +1s 4 -3+ TB be a transitive Lie algebroid. A connection in A is a

morphism of vector bundles y: TB > A over B such that qey = idTB. A back-connection
in A is a morphism of vector bundles w: A + L over B such that wej = idL.

The curvature of a connection Y in A is the alternating vector bundle

morphism ﬁY: TB ¢ TB + L defined by

j(EY(x,Y» = ¥IX,¥) - [vX,vY]

for X,Y € T'TB.
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A connection y is flat 1if EY = 0; that is, iff y is a morphism of Lie

algebroids over B.
The Lie algebroid A is flat if it has a flat connection.

(11i) Let 2 be a Lie groupoid on B. An infinitesimal connection

in € 1s a connection Y in the Lie algebroid AQ. A back-connection in @ is a back-

connection in AQ.

2 is flat if its Lie algebroid is flat. /!

The term "back-connection™ is chosen to avoid the term “connection form”,

which we wish to retain in its standard meaning.

1f g +l+ E -E+ E" is an exact sequence of vector bundles over a fixed base,
then 7 has right-iaverse morphisms p: E” + E, necessarily injective, and 1 has left-
inverse morphisms A: E + E', necessarily surjective. If either of p, A is chosen
then the other is determined uniquely by the equation 10X + pew = id_; such a
pair p, A are said to be associated, or to correspond and g" +B+ E -+ E' is then an

exact sequence.

Applying this to the setting of 5.1, there is a bijective correspondence

between connections Y and back-connections ®, such that

(1) jow + Yeq = idA .
Example 5.2. Let P(B,G,7) be a principal bundle and consider the Atiyah sequence

P—;——9— +i-> T—g ——i-) TB

(see Appendix A). There is a bijective correspondence between connections
Y: TB » I% and invariant horizontal distributions Q on P, the determining
relationship being im(y) = % P(see 2§4). There is a bijectivi coriespondence
between back-connections w: :E > and connection forms w £ A (P,ﬂ); here
®w is the quotient over G of w (see A§4). For a connection y and its back-
connection w, the corresponding invariant horizontal distribution Q and connection-
form ; correspond in the standard sense of Kobayashi and Nomizu (1963, 1II.1).

) The curvature Ey: TB ¢ TB » E:{;ﬂ_ of a connection y and the curvature form
Qe A (P,E) of the corresponding invariant horizontal distribution are related in

the obvious fashion: for X,Y ¢ FCE%), R (ﬂ*X,ﬂ*Y) is the section of P x B
l T
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corresponding to the G-equivariant map Q({,;): P +5 (see A.4.16). !/

Note that a Lie algebroid q: A + TB admits a connection iff it is
transitive. 1In particular, a differentiable groupoid on a connected base B admits a

connection iff it is Lie.

Example 5.3. Let E be a vector hundle on B. Then it is easy to see that a
connection Y: TB * CDO(E) in CDO(E) or, equivalently, an infinitesimal connection

in I(E), is a Koszul connection V in E, where
v (u) = y(X)(w).
X
In what follows we will use the standard notation X ¢+ Vx for connections in CDO(E).
The curvature of V is EV: TB # TB + End(E) defined by

@ Ry(X,1)(w) = (1) = T (T, (0) + T (T, ().

Y%, 1)
This is the negative of the usual definition, but it is shown in A84 that the
definition 5.1 of iY for a connection in an arbitrary Lie algebroid correspgnds in a
natural way and with the correct sign, to the standard curvature form € A (P,ﬂ)
for a connection in a principal bundle P(B,G) and so we accept the change of sign in
the case of vector bundles. To do so does not of course oblige us to reverse the
sign of the curvature for specific Riemannian (or other) manifolds; one simply
changes the sign in the formulas by which sectional and scalar curvature are

obtained from EV'

There is of course no difference between our concept of connection in a
vector bundle and the usual one (compare the equations defining V in Kobayashi and
Nomizu (1963, III.1) with the formulas in 4.5); the change of sign in (2) is a
consequence only of the way we identify T(GL(V))I with HI(V) for V a vector space
(see B§S1). See Kobayashi and Nomizu (1963, p. 134) for the point at which this

identification determines the sign of EV'
The definition (2) has occasionally been used, notably by Milnor (1963).

If <, > is a Riemannian structure in E then a connection in CDOKED> is a

Koszul connection V in E such that
<VX(u),v> + <u,VX(v)> = X(<u,v>), X ¢ T'TB, wu,v € IE.

Such a connection is called a Riemannlian connection; 4.9 shows that such a
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connection always exists.

Let L be an LAB on B. Then a connection in CDO[L] is a Koszul connection V

in the vector bundle L such that
VX([V,W]) = [VX(V),W] + [V,VX(W)], X ¢ I'TB, V,W e I'L.

Such a connection is called a Lie counnection in L. Again, 4.9 shows that a Lie

connection always exists. //

Example 5.4, Let TB & (B X 5) be a trivial Lie algebroid. Then
TB -+ TB & (B x ﬂ ), X+ X @0 is a flat connection, called the standard flat
connection in TB @ (B x 5) and denoted by YO.

An arbitrary connection in TB & (B xﬂ) has the form X F+> X @ w(X) where
w: TB + B XS is a 5-va1ued I1-form on B. The correspondlng back-connection

is X # VI+ V - w(X). The curvature is =(6w + [w,w]) € A (B H). //

Definition 5.5. Let ¢: A > A' be a morphism of transitive Lie algebroids over B and

let Y be a connection in A, Then Y' = ¢eoY is called the produced connection in A'.

/1

Clearly, then
- + -
3 R, = ¢oR_.
(3) o =9 »
The terminology “produced” is an extension of the usage in IT 2.22 and

corresponds to that in II 7.10.

Example 5.6. Let E be a vector bundle on B, and let V be a connection in E. Then
YV induces connections in the vector bundles Homn(E; B xR, Homn(E;E) and in the
various tensor, exterior and symmetric algebra bundles built over E through the

~ n
representations 4.8, For example, the produced connection V in Hom (E; B x R) is

[AOITIRNTIDED (ISR IS 1 TCTRRSIN (TR IR
r=1

Similarly, if E' is a second vector bundle on B and V' a connection in E' then the
representation of CDO(E) %B CDO(E') on Hom(E;E') given in 4.8(iii) induces the
connection V in Hom(E;E') given by

V) = G0) - 6T (). 1
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Definition 5.7. Let ¢: E + E' be a morphism of vector bundles over B and let
V and V' be connections in E and E' respectively. Then ¢ maps V to V' if
¢(VX(U)) = V§(¢(u)) for all X ¢ I'TB and all u € IE, 1/

If ¢ in 5.7 is an isomorphism, then it induces an isomorphism of Lie
Eroupoids ;: N(E) + I(E'), E [ d ¢BE°£°(¢GE)-i' This differentiates to
¢, : CDO(E) + CDO(E') where ¢, (D)(u) = (¢eDo¢ “)(u) for D € ICDO(E) and u e TE
(see §4). Now, given a connection V in E, the produced connection g*(V) is the
unique counection in E' which ¢ maps V to.

The following case of a produced connection will be used repeatedly in what

follows.

Definition 5.8. Let § be a Lie groupoid on B and let y: TB + AQ be an infinitesimal
connection. Then the produced connection adey: TB + CDO[LQ]} in LQ will be denoted
v and called the adjoint connection of Y. !/

Example 5.9. 1If V is a connection in a vector bundle E then the adjoint connection

in End(E) is the connection
v
()W) = T (00 = $(T (),

and coincides with that induced from V via the action of II(E) on End(E). (See
4,15,) /!

Proposition 5.10. Let 22 and Y be as in 5.8. Then
(1) V' is a Lie connection in the LAB Le; and

(ii) if LY is abelian then vy is independent of y - that is, there is a
single adjoint connection in LR - and it is flat.

Proof: (i) follows from 4.10.

(i1) Let y' = v + jef be a second connection in AQ. Then j(V;EV))
= [y (X),3N] = [v(X,i(M] + 380,V] = [v(X),j(N] = j(V;(V)). By (3), the
curvature of V' ig ad+°EY, and ad': L2 > Der(LR) is zero if LR is abelian. 1/

Proposition 5.11. Let & and Y be as in 5.8. Then
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YR R -
G (7R (1,2)) - R([X,¥],2)} = 0
for all X,Y,Z ¢ ITB.

Here G; denotes the cyclic sum over X,Y,Z.
Proof: Apply j to the LHS. The result is

& {1vx,v(¥,2} - [vY,v2]] - v[IX,Y),2] + [Y[X,¥},vZ]}

=G {1vx,v1Y,21] - VK, [vY,v21] - ¥iIX,Y1,2) + [v[X,Y],vz}}.

The first and the last terms cancel, once G is applied. The second and the third
terns vanish by the Jacobi identity. 1/

5.11 is of course the (second) Bianchi identity. It does not have much
importance for this account of connection theory but has a central role to play in

the cohomology theory of Chapter IV.

We come now to the algebraic formalism of covariant derivatives. This
material will not be used in the remainder of this chapter, but will be drawn on
repeatedly in Chapter IV. Let Q be a Lie groupoid on B and let y: TB > AQ be an

infinitesimal connection.

For n > 0 denote the vector bundle Altn(TB;LQ) by Cn(TB,LQ) (compare
3.26)., Thus elements of I'Cn(TB;LQ) are alternating n-forms on B with values in the
vector bundle LQ. Treat CO(TB;LQ) as LQ itself,

+
Define differential operators VY: FCn(TB,Lﬂ) + I‘Cn l(TB,LQ) by

n+l R
AT TC SRURIC SR IS M S DRAGIR ME e SHPURRE SD)
r=1 T
(4)
T+s e
LR C VRARSE {Q P 3% 35 [ SYRURNS S I

r<s

VYis the (exterior) covariant derivative associated with the connection
)
VY. For V € TLQ = I'C (TB,LQ), the covariant derivative X -+ VY(V)(X) is the adjoint
connection X > V;(V) itself.

Observe that the Bianchi identity 5.11 can now be written VY(RY) = 0.
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Proposition 5.12. Let Y' be a second connection in AQ and let &: TB + LQ be the map
with Y' = vy + je&, Then

7|

- R, - —v'(0) + (2,20},

v
Proof: For X,Y & I'TB,
Ry,(X,Y) - Ry(X,Y) = Y'[X,Y] - vIX,¥Y) - [¥'X,¥'Y] + [¥vX,vY]
= j2[X,Y} - [vX,j2Y] - (38X, vY] - [§2X,i4Y]
= JUUKY) - VD) + VIO - [2%,29)],
which gives the result. 7/

In particular, if two connections have the same curvature, then their
difference map %£: TB > Af satisfiles Vy(l) + [2,2] = 0, which is a Maurer~Cartaan

equation with respect to the adjoint connection VY.

We also need a covariant derivative for forms on AR. With

"
c"(AR,L9) = ALL™(AQ;LQ), define D': rc®(A2,Le) » rc" l(aq,La) by

Y ntl r+l Y ~
DI (KyyeeesX g = L DT Vo (B ppeee X 0))
r=1 T
(5)
r+s .o
+ D DT XXX e X )
r<s
If Q corresponds to a principal bundle P(B,G) and I ( ———&J is identified

with " (e ﬂ) , the pseudo-tensorial n-forms on P of type (ad ﬂ) then D' is (n+1)

times the exterior covariant differentiation of Kobayashi and Nomizu (1963, II
5.1). For the proof see A 4.15. We call DY the (exterior) covariant derivative
associated to Vy;q: AR » CpPO[LR].

Proposition 5.13. Let w: AR * L2 be the back—connection corresponding to Y.
Then for X,Y € TAQ,

R (a%,qV) = (0'(w) + [w,8])(X,7).

Proof: Using jew + Yyoq = id, we expand [X,Y] and get



(X,Y] = [juX,jw¥] + [juX,vq¥] + [vaX,jw¥] + [vqX,vqY]

= 316X, 6¥] - JT (0 + 71 (WD) + [vax, vaY]

S0
[X,Y] - [vaX,vq¥] = j{[uX,u¥] - V' (wX) + V' (o1} }
r b ’ qY qX
and therefore
RY(qX,qY) = v{qX,q¥] - [vaqX,vqY]
= vq[X,Y} - [vqX,¥qY]
= [X,Y] - je[X,Y] - [vqX,vqY]
= 3{-0[X,¥] + [6X,0¥] - V' (uX) + V' (o)}
’ ’ qY qx ?
whence the result. 1/

In particular, if y is flat then w satisfies an equation of Maurer—Cartan

type. (The resemblance between 5.12 and 5.13 is explained in IV 3,10.)

If p: AQ » CDO(E) is any representation of AQ on a vector bundle E, then
exterior covariant derivatives can be defined in both C*(TB,E) and C*(AQ,E), using

the produced connection pey in place of 7' 1n equations (4) and (5).

In the connection theory of principal bundles, the definition of a
connection as an invariant horizontal distribution is usually given pre-eminence,
perhaps because one can visualize an invariant horizountal distribution more readily
than one can the associated connection form. Nonetheless it is easier to compute
with the connection form than with the associated distribution, and most

computations are done in terms of forms, either global or local.

In the connection theory of Lie algebroids we will usually work with
connections y: TB + A rather than with back-connections w: A + L. Here the reason
is that v is anchor—preserving (qeY = id) whereas ® is not and for this reason
Y fits into the algebraic formalism of Lie algebroids better than does w. This
point will be more evident after Chapter IV. For the present, note that the
definition of curvature in terms of w would need to be via 5.13 and would present

curvature as the failure of w to be a Maurer-Cartan form; the simple defiaition 5.1
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for the curvature of Y is only meaningful because Y is anchor-preserving.

On the other hand, it is desirable to have the formalism of back-connections
available, firstly to relate the global Lie algebroid formalism to the standard
theory, and secondly because the back-connection formalism is needed in the

cohomology theory of Chapter 1IV.

We come now to the local description of transitive Lie algebroids and their

connections.

Let 2 be a Lie groupoid and let {oi: Ui > Qb} be a section-atlas for Q,
U
Each ei: Ui x Ui > QUi’ (y,x) +> ai(y)gi(x)—l is a morphism of Lie groupoids over
i

Ui and 1s a local right-inverse to [B,a], so each (ei)*: TB‘U > AQ‘U is a morphism
i i

of Lie algebroids over Ui with q°(e,)* = id, and may therefore be considered to be a
i
flat connection in AQ'U . We call the (ei)* the local flat connections induced by

the section-atlas {oi}.i

When Uij # @, there are two commections in AQ'U namely (91)* and
1
(91)*, and so there is a unique vector bundle morphism zij: TB'U > LQ'U
such that 13 1]

(ej)* = (90, + Jlij.
Let {¢12 Ui x ﬂ *> LQ‘U } denote the atlas for Lf induced from {01}; that is,

] = Adci(x); and deflneﬁ -valued l-forms xij on Uij by

i,x

-1
Xij = 'Pi "Qij: Tuij *’Uij Xﬂ.

Proposition 5.14. With the notation above,
X = A(Sij))

13

where {sij} is the cocycle corresponding to {oi}. In particular, each xij is a

Maurer-Cartan form.

Proof: For X € T(Uij)x’
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(80, (%) = T(R _I)T(oj ) (X

g, (x)
3
//

Now use 0, = 0.8

3 1713°

We call the Xij the transition forms corresponding to the section-atlas

{01}, or to the cocycle {sij}' Since lij + ljk = 2, vhenever Uijk £ 0, it follows
that

6 -y 4

(6) X )<ij aij(xjk)

where {aij: Ui > Aut(ﬂ)) is the cocycle for LR corresponding to the atlas

{Wi = Adai}. We call (6) the cocycle condition for the Xy 53 it also follows
]

directly from s

=g, .8, by the product rule for right derivatives (see B§2,
ik 1§ jk

equation (1)).
Consider the Lie groupold isomorphism
Ui
Lip Uy x6xUy > 9
i
-1
(y,8,%) k> 0,(y)go, (x) .

It is straightforward to see that

(I)e: TU; (U x§) > AQ'Ui
is

) X o Vi (8),() + (M

and we call (Zi)* the Lie algebroid chart for AQ induced by o
preservation equation for (Ei)*, it follows that

From the bracket-

1°

8 (€80, (%), ¥, (M1 = ¥, (X(V)

for X ¢ T’I‘Ui and V: Ui *5 . Now (8) may be interpreted as the statement that
¢i= Ui x H *> Lﬂ'U maps the standard flat conmection V;‘V) = X(V) in the trivial
bundle U1 XB to the adjoint connection induced in Lﬂ|U by (ei)* in AQ'U .
Similarly, (8) signifies that (Zi)* maps the standard fiat connection in

B X G xB to (91)*.
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When U,, # # we obtain an overlap isomorphism

ij

-1
= (Ei)* o(zj)*: TUi ® (Uij XB ) » TUij ® (Uij XH )

(Sij)* j

XeV)k+Xe X) +a (V)).
( ) (xij( ) ij( )
Since this is a morphism of trivial Lie algebroids, the compatibility condition of

2.4 must be satisfied, that is, we must have
(9 X(ag (M) = 2, (D) + [x;,(0),a,,(N] =0

for all X and V. (9) can be proved directly from the equations a11 = Ad’sij and
X, = A(sij) by using B 2.1, and can be written more succinectly as

13

(9a) A(aij) = adox1j
where A is the right derivative for the Lie group Aut(ﬂ) (use equation (6a) in B§2).

Written in this form, the equation is an immediate consequence of a,. = Ades

1j ij°
It is to be expected that the Lie algebroid AR can be reconstructed from a
system of transition forms X5 The presence in the cocycle condition of the aij
inevitably complicates the formulation of this result and the reader is urged to

check the details in the proof of the following theorem.

Theorem 5.15. Let B be a manifold and let 5 be a Lie algebra. Let {U } be an open
cover of B and let {a j Uij Aut(ﬂ)} be a cocycle. Let {Xij €A (U 3)} be a set
of localﬂ—valued 1-forms and suppose that

(1) each x

1 is a Maurer-Cartan form,

(i1) X = X (x,,) whenever U £ 0,

19 25 Xy 13k
(ii1) A(a ) = advx 14 for all i,j.

Then there is a transitive Lie algebroid L +-+ A -++ TB on B whose adjoint bundle L

is the LAB corresponding to {a j} and which admits local flat counections
Y : TB'U i A' such that
= + y0
Yj Yi wi Xij

where {wi: U1 XH > Lui} is an LAB atlas for L with (aij} as cocycle.
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Let L +=+ A =++ TB and L' +-+ A' —++ TB be transitive Lie algebroids on B
for which there are, firstly, LAB atlases {w H +> } and

{lb‘iz U, 5 Ly } (with the same fibre type 5 and open coter {U }) for L and L'

which both have {aij) as cocycle and, secondly, local flat connections

. > ', + At =
Yy TBIU A'u and v TB'ui A |ui such that v, = ¥, + ¥°x,4 and

Y'fl = Y' + 'J)'fx 1 whenever U s # @. Then there is a unique Lie algebroid isomorphism

$: A > A' such that ¢ °\bi = wi and «ooYi = Yi for all 1.

Proof: For each i, let Ai be the set TUi ® (Ui xH) and on the disjoint sum
_U.Ai define an equivalence relation ~ by
i

A, X® V) ~(,Y®W =D X=Y and W= in(X) + aji(v).

Denote the quotient set by A and equivalence classes by <i, X & V.
Define a map p: A + B by p(<i, X ® V) = x where X ¢ T(Ui)x. Then it is
easy to see that

- -1
b;r TO, ® (Ui xg) +p (ui)

X®eVErLi, X e

is a bijection. Give A the smooth structure induced from the manifolds

U, ¢ (Ui XH) via the “’1’

Clearly (A,p,B) 1s now a vector bundle, and further, the map q: A > TB,

i, X ¢ V> I+ X, is well-defined and a surjective vector bundle morphism over B.
Denote the kernel of q by L. The -'Li restrict to charts

xH -)LU , Viri, 06V
for L and the atlas {wi} has {aij} as cocycle.

Now we define a bracket in A, For Ww,v € TA and x € B

, choose U, containing
x and write p =<i, X ® V»

i
, V=Xi, Y ® W where X and Y are vector fields on U

and V and W are maps Ui *5. Define

[, Xoe W, d, Yew] =, [X,Y] ® {X(W) - (V) + [v,¥]1D.

It is an instructive exercise to verify that this is well-defined and makes
A a transitive Lie algebroid on B with adjoint bundle L.
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The local flat connections Yi are defined by X -+ <i, X @ 0>. The remainder
of the proof is straightforward. 1/

The reader is urged to work out the relationship of 5.15 and its proof to II
2.19,

Remark., It is proved in IV§4 that every transitive Lie algebroid admits a system of

local flat connections and thus of transition forms. //

We postpone until TV§4 the concept of equivalence for systems of transition
forms and the proof that equivalent systems generate, under 5.15, isomorphic Lie

algebroids. Here we merely note that if {oi: u, » Qb} is a second section-atlas

i
with respect to the same open cover {Ui} and reference point b, then there are
maps T Ui +G = Q: guch that oi = Giri’ and the following formulae, which are
easily proved, relate the primed data to the unprimed.

(102) 81 (y,%) = ei<y,x)101(x)(ri(y)ri(xfl),
(10b) (800, = (80, + ¥ ou(r ),
(10¢) Xy ad(e )M -8, + Xy +ag;80,0),
(10d) aj, = Ad(ti)-laijAd(rj).
(10¢) also follows From sij = r;lsijrj by using 5.14 and the formulas in
BS2.

We come now to the local description of infinitesimal connections. Let
2 be a Lie groupoid on B, let Y: TB + AQ be an infinitesimal connection in @
and let (Ui: U1 > Qb} be a section atlas. Continue the notations ei’ 7

1% X5 214
used above.

F h 1, defi + TU + U x0 b
or each 1, define wi Ui i ﬂ y
av v (up) = Y"H - (8,),e

1
The w1 € A (Ui’ﬂ) are called the local connection forms for Yy with respect to the

atlas {Ui}. Clearly, on a Uij which is nonvoid,
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(12) w

= aij(wj) + X

13

and, conversely, if {mi € Al(Ui,H)} is a family of forms which satisfy (12), then
they define by (11) a connection Y in AQ. (Compare, for example, Kobayashi and
Nomizu (1963, II 1.4).)

Proposition 5.16. With the above notation, the adjoint coonnection v s given
locally by

Y

VL0 (D) = ¥ KOV + Lo (0),V]}
where X ¢ I‘TUi and V: Ui *3'
Proof: Use (11) and (8). /!
Corollary 5.17. Let @ be an abelian Lie groupold on base B. Then the (unique)
adjoint connection V in LQ is the image of the standard flat connection v° 1 B Xﬂ
under the canoanical chart y: B x H + L.
Proof: Since H is abelian the equation in 5.16 reduces to

Y
Ve (¥, (V)) = ¥, (X(V)).

Now VY is equal to \70 for any connection Y, and (because 2 is abelian) wi 1s equal

to ¥ for any 1 (see remark following 3.19). 1/

i 2
Define RY € A (Ui’ﬂ) by

i -1 -
(13) R, = R_.
y = Vi oRy
The Ri are the local cufvature forms for y with respect to {Oi}' Clearly
3. i
RY aji(RY) when Uij £ D

Proposition 5.18. Continuing the above notation,
Ri = ~(8w, + [ D)
v~ TR A B

Proof: Follows easily from (11) and (8). //
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Proposition 5.19. Let & be a Lie groupoid on B, and continue the above notations.

(1) 1f {Gi} is a section-atlas for { whose cocycle {Sij} congists of
constant maps, then

vly = @),

Ui
is a well-defined and flat (global) infinitesimal connection in Q.

(i1) If vy is a flat infinitesimal connection in © then there is a section~

atlas {oi} for @ whose cocycle consists of constant maps and for which

R ECON

YUy

on all Ui'

Proof: (i) Since Si' is constant, it follows that xij = 0 and so (12) admits the
solution w = 0 for all 1.

(ii) Let {Ui: Ui + Qb} be a section-atlas in which each Ui is connected and
simply-connected. Since y if flat, the mi are Maurer-Cartan forms and so there

exist maps fi: Ui + G such that

A(fi) = wi.

Define Ti: Ui > Qb by Ti = cifi. It is easy to verify that A(tij) = 0, where
{ti

} is the cocycle for {Ti}, and so tij is constant.

\]

Denote by 0{ the local morphism induced by Ti. Then, using

(8, (0 = 1(r IO,

Ti(x)

for X ¢ T(Ui)x’ it 1s easy to verify that

(8]), = (8)), + ¥ (&E ).

Hence (6{)* =y Ui as claimed. 1/

The following version of 5.19 is used several times in the sequel.

Proposition 5.20. Let B X G X B be a trivial Lie groupoid with B connected and

simply-connected. Then for any flat connection Yy, there is an automorphism ¢
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of B x G x B over B such that ¢*°Y° = ¥, where Yo is the standard flat connection.

1
Proof: ¥y is of the form X #+> X @ w(X) where w € A (B,ﬂ) is a Maurer-Cartan form
(see 5.4). Let f: B + G be such that A(f) = w; then ¢(y,g,x) = (y,f(y)gf(x)-l,x)
has the required property. !/

Ever since Spivak (1979, Volume II), any new account of connection theory

has to address the following result.

Proposition 5.21. Let B be a manifold and < , > a Riemannian structure in the

vector bundle TB. Let V be a Riemannian connection such that
(14) V(N - V(X)) - [X,Y] =0 X,Y ¢ I'TB.
Then 1f V is flat, B is locally isometric to Ruclidean space.

Proof: Let ¢: R" » U be a chart for B. Pull the Riemannian structure and the
connection on TB U back to T(R'). Continue to use the notations < , > and V.

By 1.26 there is a neighbourhood W of 0 € Rn, which we may assume to be connected
and simply-connected, and a decomposing section ¢: W + H<Tkn>o. This 0 defines an
automorphism of the vector bundle TW which maps the given Riemannian structure to
another, still denoted < , >, for which IKTW> is W x(@(n) x W; the value of o at O

n
can be chosen so that < , > is the standard metric on R . We transport V under

0
this automorphism also; V is still a Riemannian connection in TW and still

satisfies (14), and still is flat.

By 5.20 there is a map f: W +@(n) such that F: W x Rn + W x Rn,
(x,X) ++ (x,£(x)(X)) maps the standard flat connection V° to V; that is,

V(D = B3

we can also require that £(0) = I e@(n). Let fsz—} be the standard vector fields

on R and define Xi =F 3%— . Then for any vector %ield X,
i
as) V(%)) = F(x(5)) = 0
Xt Bxi

3
since 3 1s constant as a map W > R, Hence from (14) it follows that
i
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[Xi’Xj] = 0 for all i,j and so there is a local coordinate system {yl,...,yn}
around 0 in W such that

2

3 for all i
Y1

= Xi

(see, for example, Spivak (1979, 1.5.14)).

Now in this coordinate system the metric is canonical, for

9 9
x(< By, 3Yj >) = (%), %> + <xi,vx(xj)>
=0 by (15)
and so < =2 , = > is constant and we arranged the value at 0 to be §,,.
ayi ayj ij

/1



157

$6. The Lie theory of Lie groupoids over a fixed base

This section treats the correspondence between a-connected reductions of a
Lie groupoid and reductions of its Lie algebroid, and the correspondence between
local base-preserving morphisms of Lie groupoids and base-preserving morphisms of

their Lie algebroids.

In 6.1 we prove that if Q is a Lie groupoid and A' is a reduction of AQ,
then there is a unique a-connected reduction Q' of @ such that AQ' = A'. This
result is closely related to the Ambrose-Singer theorem of connection theory; our
proof of 6.1 is essentially a groupoid formulation of the main idea of Kobayashi and
Nomizu's proof of the latter result. Conversely, in §7 we deduce a strong form of
Ambrose-Singer as an immediate corollary of 6.1 and the correspondence between
infinitesimal and path connections. At the same time, the proof of 6.1 follows
closely the outline of the proof of the corresponding result for Lie groups and Lie

algebras.

In 6.5 we prove that if £ and @' are Lie groupoids on the same base B and
¢: AR + AQ' a morphism of their Lie algebroids over B, then if @ is a-connected
and o-simply connected, ¢ can be integrated to a global morphism f: Q + Q'., This
follows from 6.1 in a manner similar to the case of Lie groups. The local
integrability of ¢, in the case where Q is an arbitrary Lie groupoid on B, is then
deduced (6,7) from 6.5 via the results of II§6 on the monodromy groupoid of the

a-identity component subgroupoid of Q.
A second proof of 6.7, using connection theory, is given in §7.

There are generalizations of both 6.1 and 6.7 applicable to arbitrary
differentiable groupoids and not-necessarily-base-preserving morphisms, stated in
Pradines (1966, 1967) and proved in Almeida (1980) and Almeida and Kumpera (1981).
The proofs of these generalizatious are largely disjoint from the proofs of 6.1 and
6.7. 1In particular, the generalization of 6.1, or rather the recovery of 6.1 from
it, depends on the very subtle construction of the holonomy groupoid of a
microdifferentiable groupoid. This subject is essentially a geuneralization of
foliation theory; a very brief discussion is included here, following 6.3. 1In the
same way that our proof of 6.7 depends on 6.1, the general result on the local
integrability of morphisms depends on the generalized subgroupoid-subalgebroid
correspondence; here the main problem is to give a correct definition of the
general concept of morphism of Lie algebroids. We have preferred to omit these

substantial considerations and give instead proofs of the special cases which
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suffice for Chapter 1V.

In category-theoretlc terms, the main results of this section, taken
together with the results of I1§6, show that the Lie functor is both full and
faithful, regarded as a functor from the category of germs of local base-preserving
morphisms between Lie groupoids on a given base B, to the category of transitive Lie

algebroids and base-preserving morphisms over B.

The section ends with a demonstration that some smaller parts of the Lie
theory of Lie groups and Lie algebras do not generalize to Lie groupoids and Lie

algebroids.

Theorem 6.1, Let £ be a Lie groupoid on a a connected base B and let
L' +=+ A' =++ TB be a reduction of LQ ++ AQ -++ TB., Then there is a unique

o-connected Lie subgroupoid ¢ of £ such that A9 = A'.

Proof: The proof is modelled on the proof for Lie groups as given, for example, by

Warner (1971), and we deal only with the features that are new.

Denote by A the inverse image bundle B*A' on Q. Since

T8 ————p AR

-

8 —5 B

is a pullback, it follows that there is a unique injective vector bundle morphism

2

0 2y a0

A -}+ Taﬂ over £ such that

i
A ey A
commutes. By a standard result (see C.4) it follows from A = B*A' that

TA=c¢c(Q) @ TA' and using this one can mimic the proof for the case of groups and

show that 4 is an involutive distribution on Q.
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For each x ¢ B, let & be the restriction of 4 to Qx; Ax is an involutive
x
distribution on 8 . Let ¢ be the (connected) integral manifold of Ax which
~ x x
contains x and let ¢ be the union of the sets ®,x €B. For any x,y € B and

e Qi it follows from the definition of A& that T(R _1)(Ax) = Ay’ and therefore if
11

£ e ¢1 it follows that R 1(¢y) = @x. Thus ¢ is a subgroupoid of Q in the algebraic
€

sense.

Write a',B' for the restrictions of &,B to ¢, Because q': A' > TB is
assumed to be surjective, it follows that B;: Qx + B, x € B, 1s a submersion, for

T(B') , £ € ¢, is the composite
x g x

~ '

= £
4 = A —— ! —=#» T(B
T = 8 Age (B g

where the middle map is the pullback. Hence each im(B;), X € B, is open in B.
Since ¢ is a groupoid in the algebraic sense, the im(B;), x € B, partition B and

since B is counected it follows that each B; is onto B. Thus ¢ is transitive.

We now give ¢ a differentiable structure. Choose b € B and write H = Q:

Since Bg is a surjective submersion, H is a closed embedded sub-manifold of @b.

Also, Bé has a family of local right-inverses oi: Ui > @b, where the Ui cover B,

) v
gy xuxy »ed
1Y 17t

be the bijections defined using {oi}; to show that the overlap maps are smooth, it
suffices to show that the transition functions Sij: Uij +H for {Oi} are smooth.,
Now, again usiung the fact that Bg is a surjective submersion,

& %o = {(n,E) 8 x 0 | B'(n) = 8'(&)}

is a submanifold of Qb x ®b’ and hence of Qb x Qb; consider the restriction of

-1
i x>0 (0 g

to ¢b * ¢b. Since Qb is a leaf of the distribution Ab on & , it follows that

¢b * Qb > Qb is smooth as a map into Qb, and since H is an embedded submanifold

of ¢ , it follows that ¢ * ¢ =+ & 1is smooth as a map into H. Hence s, : U,  + H,
b -1 b b b ij ij

X oi(x) oj(x) is smooth, as required. Also, it follows that H x H + H,

(h,h') > h—lh' is smooth and so H is a Lie subgroup of QE. The maps Zi now define
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a differentiable structure on ¢ with respect to which it is a Lie groupoid on B.

Because the o, are smooth into ¢b with its leaf differentiable structure, it follows

that each @ < x € B, inherits from ¢ the differentiable structure it was originally

given by A, and because the 1nc1usion $ S Q is locally (with respect to the Zi)

represented by 1dU. x (H& Qb) x 1dU , it follows that @ is a Lie subgroupoid
]

of Q. i

The inclusion < Q induces an injective Lie algebroid morphism A® + AQ

over B; since A¢| = T(¢) =4 =A', ¥ €B, it follows that A? > AR is a Lie
X

algebroid isomorphism onto A'.

0
>
.

Suppose now that $: ¥ + Q is a Lie subgroupoid of @ with w*(AW)

From the diagram

%) b= T

Lo

AV _____) A' =

in which each vertical arrow is a pullback, it follows that Ta(w) is onto A and
hence for each x ¢ B, wx(Wx) is an integral manifold for A through X. So there

exists a smooth map ¢ : ¥ + & such that
X X X

¢

¥ —29 e
(1) w:\\y M//C;}
Q
x

commutes. It is easy to see that ¢ oR °¢ for each § ¢ Yy, x,y € B and

therefore ¢ =\J ¢y is a morphism of aléebrafc(ézoup01ds ¥ > ® over B. Since

¥ and ¢ are Lie and ¢x is smooth, it follows that ¢ is smooth. From (1) it follows
th?t ¢x is an injective immersion and so ¢ is an injective immersion. Lastly, from
w*(AT) = A' = A?, it follows that ¥ and ¢ have the same dimension, so ¢ is &tale,

and therefore, by 3.14, ¢ is onto ¢. 1/

A brief outline of this proof was given in Bowshell (1971).
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Corollary 6,2. Let ¢: @ + Q', ¢ : B » B' be a morphism of Lie groupoids and let
o

% be a reduction of ', Then if ¢ takes values in ¢, it is swooth as a map O + &,

Proof: First assume that & is a-connected. Let Y be the a-identity component

subgroupoid of ®. Then for each x € B, the submanifold Y of Q' is a leaf of

$,C0)

the foliation on Q' defined by A%. So ¢ : Qx +> is smooth. Hence, by the
X

¥
¢0(X)
smooth version of II 1.21(i), ¢: & + ¥ is smooth; since ¥ is open in @ it follows

that ¢: € » ¢ is smooth.

The case where  is not a-connected now follows from 1.3 and IT 1.21(ii).

/1

The assumption that A' is transitive is essential to the possibility of
transferring the differentiable structures on the Qx globally to the groupoid &, If
A' is not trausitive one obtains in general only the algebraic groupoid ¢ and a
differentiable structure on a subset W & ¢ which contains B and generates ¢. This
constitutes what was called by Pradines (1966) "un morceau différentiable de
groupoide™; we propose to call it a local differentiable groupoid structure. The

precise definition follows.

Definition 6.3. (Pradines (1966))

Let ¢ be a groupoid in the algebraic sense on a manifold B, Then a local

differentiable groupoid structure on ¢ is a subset W of ¢ together with a

differentiable structure on W such that
(1) X € W, ¥x € B and W generates 9;

(ii) af 2 W > B, B|W: W > B are smooth submersions and €: B + W is smooth;

)

(iii) (w X W) n é_l(w) is an open subset of W x W and the restriction of
§ to (W x w)n G—I(W) + W is smooth.

A locally differentiable groupoid is a pair (9,W), where & is a groupoid in

the algebraic sense on a manifold B and W is a local differentiable groupoid
structure on ¢, Two local differentiable groupoid structures W and W' on a

groupoid ¢ are equivalent if for all x & B there is a set X e V& WnNn W' such that U
is open in both W and W'. An equivalence class of local differentiable groupoid

structures on a groupoid ¢ is a micro differentiable groupoid structure

on ¢, and ¢ together with this structure is a microdifferentiable groupoid. /!
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A smooth foliation 27 on a connected manifold B defines a microdifferentiable
groupoid structure on X& B x B, the groupoid corresponding to the equivalence
relation defined by %f. Conversely a microdifferentiable structure on a wide

subgroupoid of B x B defines a foliation on B. (Pradines (1966).)

Almeida (1980) proves the following generalization of 6.1:

Theorem. Let & be a differentiable groupoid on B and A' a Lie subalgebroid of AQ on
a submanifold B' of B. Then there is a unique microdifferentiable subgroupoid ' of
2 such that AQ' = A', 1/

The proof of this result is not difficult, though the correct definition of
the general concept of Lie subalgebroid is not obvious and requires care.
However the deduction of 6.1 from this theorem depends on the construction of the
holonomy groupoid of a microdifferentiable groupoid, and this is a very subtle and
substantial theory. We have preferred here to give a direct proof for the locally

trivial case.

We come now to the correspondence between local morphisms of Lie groupoids

over a fixed base and morphisms of their Lie algebroids.

It is easy to extend the construction of the Lie functor to the case of
local smooth morphisms ¢: Q ~> Q' ¢ : B » B' of differentiable groupoids. Denote
the domain of ¢ by 2‘ Then T(¢): TQ. + TQ' restricts to T (¢) T Ql?{ + T %qr

and one can form the composition

A —— 1%y — %

o

B —S U s

and proceed as in §4. The version of equation (3) of §4 needed is that X o b i' iff
P 9X = X'°¢o, and equation (4) holds without change. The following unicity result

can now be proved in the most general setting.

Proposition 6.4. Let ¢,¥: Q ~> Q' be local morphisms of differentiable groupoids.
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If 00 = woz B + B' and ¢* = w*: AR+ AQ', then ¢ and ¥ are germ-equivalent. 1If ¢
and ¥ are global morphisms and Q is o-connected then ¢o = wo’ by = ¥, imply ¢ = ¥.

Proof: Germ-equivalence is defined in II 6.7. Let Zl be the intersection of the
domains of ¢ and ¥, From ¢, = ¢, it follows immediately that Ta(¢) and Ta(w)
coincide on Taﬂiu- Now the diagram

(2, —_ 9, RGN T(B) o
a
T (¢)§l (4) lT(%)aE
T(a')

T(

ﬂ&o(ag))¢(€) > T(Q") —» T(B")

#(8) 46 (ab)

is valid for ¢ and ¢, and ¢o = wo: B + B', so it follows that T(¢) and T(¥Y)
coincide on T( Q)u.

¢ and ¥ are now two maps Q ~* Q' which coincide on the closed embedded
submanifold B of £ and whose tangent maps coincide on an open neighbourhood of B;

it follows that ¢ and ¥ themselves coincide on an open neighbourhood of B.

The second assertion follows from IT 3.11. !/

We now address the construction of a local morphism of Lie groupoids

corresponding to a base-preserving morphism of their Lie algebroids.

Theorem 6.5. Let  and @' be Lie groupoids on base B with 2 o-connected and
a-simply connected, and let ¢: AQ *> AQ' be a morphism of Lie algebroids over B.

Then there is a morphism f: € + Q' of Lie groupoids over B such that £, = ¢

Proof: Define ¢: AR > AR & AQ' by X ++ X ® ¢(X). Then ¢ is an injective vector
B -
bundle morphism over B, ang so its image, im(¢), is a sub vector bundle

of AQ @ AQ', 1t is easy to see that im($) is a transitive Lie subalgebroid

TB
of AR @ AQ'. Therefore, by 6.1, there is a unique a-connected Lie subgroupoid
TB
dof 8 x Q' such that A® = im(¢). Let w denote the restriction of the projection
BXB

Q x Q'>Qto ¢ Then T AP +» AR is X ® ¢(X) I-+ X and is evidently an
BxB
isomorphism of Lie algebroids over B.
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From 6.6 below it follows that each ﬂx: Ox > Qx is a covering and since
% and @ are a-connected and R is oa~-simply connected, it follows that each 7 is a
diffeomorphism. So, by 3.13, 7 itself is a diffeomorphism and it is easy t: check
now that f = uzon_l: Q » Q' has the required properties. 1/

Compare the proof for Lie groups; for example, Varadarajan (1974, 2.7.5).

Theorem 6.6. Let ¢: @ + Q' be a morphism of Lie groupoids over B.

(i) If ¢ is a surjective submersion, then for each b ¢ B,

QbﬁQ',ker(¢:),¢b) is a principal bundle.

(ii) 1f ¢,: AQ > AQ' is an isomorphism and Q and Q' are o-conmected, then

each ¢b: Qb > QL is a covering. (In particular, ¢ is a surjective submersion.)

b
Proof: Use the notation P = 9, G = Qb =, H-= 'b’ = ker(¢), ™= B,
wo= g,
b
(i) From 3.13 it follows that ¢b: P + Q is a surjective submersion. The
algebraic requirements are easily verified, and it only remains to prove that

P(Q,K,¢b) admits local charts.

Given E € P, let 6: U+ P be a local section with c(x ) = o’ where
X, = w(E ). Then, under the chart U x G »> b (U) induced by o, the point
(x , 1) corresponds to E let U x H + ﬂ'—l(U) be the chart for Q(B,H) induced by

¢b°0. U+ Q. Then ¢bls 1ocally1dx¢' UxG~+>VU xH.

b
Now let t: W + G_ be a local section of ¢ : G + H , where G , H_ are the
o b o o o o

identity components of G and H, Then id X T: U X W > U x Go defines a principal
bundle chart for p(Q,K,¢:),

(i1) From 3.13 it follows that ¢ is &tale and so ¢(Q) is open in Q'. By
IT1 3.11, it follows that ¢ is onto, and so, by (i), P(Q,K,@t) is a principal bundle.

Now ¢,.: AR + AQ' is an isomorphism and so, by 2.8, (¢b ﬂ 3' is an
isomorphism and so K = ker(¢ ) € G is discrete. Since P and Q are connected, it

follows that ¢b is a covering (see, for example, Hu (1959, pp. 104-105)). 1/

We will need the full generality of 6.6 in Chapter IV.
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Theorem 6.7. Let Q and Q' be Lie groupoids on B and ¢: AQ > AQ' a morphism of Lie
algebroids over B. Then there is a local morphism F: Q ~+ Q' of Lie groupoids over

B, such that F, = ¢.

Proof: It is no loss of generality to assume that Q is a-connected. Let y: MQ + Q
be the projection of the monodromy groupoid, and apply 6.5 to ¢oy,: AMQ + AQ',
There is then a morphism f: MQ > Q' over B such that £, = ¢o¢% . Now, by II 6.11, ¢
has a local right-inverse morphism x: & ~+ MR, and foy: £ ~+ Q' is now a local

morphism over B with (fex), = ¢oy,0x, = ¢. 1

Corollary 6.8. Let ¢: @ ~> @' be a local morphism of Lie groupoids over B. Then

¢ is a local isomorphism iff [ AR + AQ' is an lsomorphism.
Proof: Follows from 6.7 and 6.4. /!
Two instances of 6.7 need to be noticed.

Example 6.9. Let 2 be a Lie groupoid on a connected base B. A flat infinitesimal
conection y: TB + AR is a morphism of Lie algebroids aund so, by 6.7, integrates to a
local morphism of Lie groupoids €: B x B ~+ @, By II 6.8, local morphisms

B x B ~+ Q are equivalent to section-atlases whose transition functions are
constant, and this argument therefore gives an alternative proof of 5.19(ii). The

reader may like to trace through ia detail the relationship between the two proofs.

Since A[(B) z TB, Y may also be integrated to a glgbal morphism
tﬁ: 7T(B) + Q, called the holonomy morghism of Y. Conversely, any Lie groupoid
morphism 7T(B) + Q differentiates to a flat infinitesimal gounnection in Q.

See also 7.29. The holonomy of general connections is treated in §7. //

Example 6.10. Let Q be an a-connected Lie groupoid on B.and p: AR + CDO(E) a
representation of AQ in a vector bundle E on B. Then, by 6.5, there is a
representation P: MQ + I(E) of the monodromy groupoid of £ in E with Pe = Pe

In the case where Q is B x B, the monodromy groupoid of 2 is I (B) and a
representation of 7{(B) in E is precisely a local system of coefficients on B with
values in E (see, for example, Hu (1959, IV.15)). 1In analogy with this case we call

a representation MQ > H(E) a local system of coefficients on Q with values in E,.

Note in particular that a flat connection in a vector bundle E on B

constitutes a local system of coefficients on B with values in E. //
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Lastly, we note for reference the following result, whose proof will now be

evident.

Theorem 6.11 Let Q be a Lie groupoid on base B. Then the covering projection

¥: MQ + Q induces an isomorphism of Lie algebroids y,: AMQ + AQ. //

Two items in the Lie theory of Lie groups and Lie algebras which do not
generalize to Lie groupoids and transitive Lie algebroids are the correspondence
between connected normal subgroups and ideals, and the result that a connected Lie

group with abelian Lie algebra is abelian.

The concept of ideal of a transitive Lie algebroid is not defined until
Iv§1l, but assume that we have some concept of ideal which satisfies the minimal
requirement that every transitive Lie algebroid is an ideal of itself. Then
the a-connected Lie subgroupoid of Q corresponding to AQ itself is the o-identity

component subgroupoid ¥ of Q@ and 11 3.7 shows that Y need not be normal in Q.

If @ is an o-connected Lie groupoid with abelian Lie algebroid then the
adjoint bundle L8 is abelian and so the ldentity components of the vertex groups
of Q are abelian. If the base B is simply-connected then the vertex groups
of Q must be connected (by the long exact homotopy sequence for the vertex bundles
(see the proof of II 6.6)), and so Q is abelian. However if B is not simply
connected, then the vertex groups of 2 need not be abelian, and I: @ *+ N(GRN) need
not quotient to B x B + M(GR): consider, for example, the fundamental groupoid of
any manifold, such as the Klein bottle, which has a nonabelian fundamental group.
(Compare II 3.7.) It is however true that if AQ is abelian, then Ad: £ + I[LQ])
quotients through a map h: 7((3) > M[LQ] with ad = heq.

There remains one major topic in the Lie theory of Lie groupoids and
transitive Lie algebroids: the integrability of transitive Lie algebroids. This
topic is treated in Chapter V.
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§7. Path connections in Lie groupoids

§7 is concerned with the relationship between the action of an infinitesimal

connection and the action of its holonomy groupoid.

The first part of this section formalizes the concept of cm-path connection
in a Lie groupoid & and establishes its correspondence with connections in the Lie
algebroid AQ. The path lifting assoclated with an infinitesimal counnection has
usually been treated as a subsidiary concept; though passing references to an
independent concept of path connection have been made in the literature (for
example, Bishop and Crittenden (1964, 5.2), Singer and Thorpe (1967, 7.1)) no full
discussion seems to have appeared. Our purpose in treating this concept here is to
keep clear the distinction between the infinitesimal aspect of connection theory,
which may be developed in the context of abstract transitive Lie algebroids, and
those parts of conaection theory - the concept of path lifting and holonomy - which
require the Lie algebroid to be realized as the Lie algebroid of a specific Lie
groupoid. The situation 1s exactly parallel to that existing with Lie groups and
Lie algebras: the one transitive Lie algebroid may arise from several distinct Lie
groupolds, which are only locally isomorphic, and although the curvature, for
example, depends only on the Lie algebroid, the holonomy, and its associated
concepts, depend on the Lie groupoid. This point does not need to be made in the
standard treatments of connection theory, because there a connection is regarded as
existing on a specific Lie groupoid or principal bundle, but we have argued
elsewhere in this book the need to regard abstract Lie algebroids as mathematical

structures in their own right.

In 7.11 we prove a very general result, crucial to the developments of
Chapter IV, concerning structures on vector bundles defined by tensor fields. 1.20
may be reformulated to state that such a structure is locally trivial iff the
structures defined on the fibres of the vector bundle are pairwise isomorphic; im
7.11 we prove that this is so iff the bundle admits a connection compatible with the
structure. From this it follows, for example, that (7.13) a morphism of vector
bundles ¢: E1 > E2 over a base B is of locally constant rank iff ¢ maps some

connection V1 in E1 to a connection V2 in Ez. The proof of 7.11 is a concatenation

of results already established. 7.11 is a slight generalization of a result of

Greub et al (1973, Chapter VIII); the proof given here is new.

In 7.25 to 7.28 we give a strong, Lie groupoid form of the Ambrose-Singer
theorem. 7.25 and 7.26 give an abstract construction of the Lie algebroid of the
holonomy groupoid of a connection which is easily seen (IV§1) to hold in any
transitive Lie algebroid.
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7.30 is a connection-theoretic analysis of morphisms of trivial Lie
algebroids over a fixed base. In I 2,13 it is peinted out that a morphism of
trivial groupoids ¢; B X G X B » B x H x B can be constructed from any morphism
f = ¢ : G + H and any map 6: B + H; however 7.30 shows that an arbitrary Maurer-
Cartan form o = A(8) € A (B, h) and Lie algebra morphism 5-*“ need to satisfy a
further compatibility condition before they define a morphism of trivial Lie
algebroids TB @ (B XH ) *TB ¢ (B Xl1). This difference in behaviour turms out to
be typical. Using 7.30, we obtain a second proof of the local integrability of

base-preserving morphisms of transitive Lie algebroids.

Throughout this section we assume that B is a connected manifold. Until we

reach 7.9, we work with a fixed Lie groupoid & on B.

We modify the notations C(I,B), Pu = Pa(ﬂ) and Pg = P:(Q) of I1§6: each now
denotes the corresponding set of continuous and plecewise-smooth paths. No topology

is required on these sets.

Definition 7.1. A Cw-path connection in R is a map T': C(I,B) =+ PZ(Q), usually

written c W+ E, satisfying the conditions (i) and (ii) of II 7.1, and consequently
(1ii)=(v) of II 7.4, and in additiom,

(vi) If c € C(1,B) is differentiable at t, €1 then c is also
differentiable at to;

dc dc

1 - —2
(vii) 1f CI’CZ € C(1,B) have Tc (to) =1 (to) for some t, € 1,
dc dc
then ——— (t,)) = (t o)}
dc1 dc2 dc3
(viii) If €1Cyicy € c(1,B) are such that —— (to) + EE—-(to) alirra (t))
de dc dc

for some t €I, then —= (t) + 3= Z (¢ o -3 (e ). 1

We refer to (vi) and (vii) as the tangency conditions and to (viii) as the

additivity condition. All three are clearly necessary, if it is to be possible to

differentiate T to an infinitesimal connection.

Proposition 7.2. Let I': ¢ F* c be a C“—path connection in Q. Then

dc

(ix) If €)sCy € C(1,B) are such that —1 (t ) =k ——l (to) for

2
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dé'l dEZ
some t € I and k € R, then I (to) =k 3= (to).

(x) 1f ¢t: U x (-e,e) + B is a local l-parameter group of local

transformations on B, then the map Et: QU x (-g,€) + Q constructed as in

IT 7.3 is a local l-parameter group of local transformations on &, and

B’Et = ¢toB

for all t € (-g,€).

Proof: (ix) follows from the reparametrization condition on T and (x) is proved

exactly as for (the local form of) II 7.3. /!

Theorem 7.3. There is a bijective correspondence between Cm-path connections
It chk+ ¢ in R and infinitesimal connections Y: TB + AQ in AR, such that a

corresponding I and y are related by

d - d
¢)) Ez-c(to) = T(RE(C ))(Y(E? C(to)))’ c e C(1,8), t, €1

Remark: Note that there is no continuity condition omn the map T.

Proof: Suppose given a Cw—path connection I'n For X € T(B)x take any c € C(1,B)

: - e i
with c(to) = x and it (to) X for some to e I, and define

d -
¥(x) = T(R_ —1)(3 c(to)) .
c(to)

Since aéc is constant, the RHS is defined, and lies in T(2) . By the
tangency conditlons, Y(X) is well-defined with respect to the cholce®of c. By
(viii) and (ix), y: (B) > sz|x is R-linear.

Now let X be a vector field on B. We prove that Y(X) is a smooth section
of AQ. Let ¢t: U x (-€e,e) + B be a local flow for X and $t: QU x (-g,e) + Q the
r-1ift of {¢t}. Let X* be the (local) vector-field on  derived from {$t}. Then,
from the definition of $t in II 7.3, it is clear that X* is right-invariant. From
the definition of Y above, it is clear that X* is the (local) vector field on @

associated to Y(X); 1in the notation of 3,10, X* = Y(X)|U- Hence, by 3.10, Y(X) is
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smooth. Therefore y: TB + AQ is smooth.

Conversely, suppose given an infinitesimal connection y: TB + AQ, and a
path ¢ € C(I,B), Let o: U + ﬂb be a local decomposing section of Q with
c(0) € U, and let L: U X G x U » Qﬂ be the corresponding chart., Let tl > 0 be such
that c([0,t]) & U and c is smooth on [0,t1] and write c on [O’tll as I¢(c,a,c(0)),
where a: [O,tl] + G has a(0) = 1. Then (1) becomes

d d
(2) a% = T(Ra(t))(w(a'%)) »

where o € A}(U,H) is the local connection form of y with respect to o, In terms of

the right-derivative of a this can be rewritten as
(2a) Aa) = c*w ,

where c*w € A!([O,tl],ﬂ) is the pullback of w, Now c*w is a Maurer—Cartan form,
since [O,tll is l~dimensional, and so there is a unique smooth solution a to (2a) on
[0,t1] with a(0) = 1. Since c has only a finite number of points where it is not
smooth, and since c(I) is covered by a finite number of domains of decomposing
sections 0 Ui > Qb’ this process yields a curve ce Pz satisfying (1) and with
properties (i), (vi), (vii) and (viii). The remaining property, (ii), is easily

seen from the form of (2) and the uniquenss of its solutioms. /1

The second part of this proof is a reformulation of that of Kobayashi and
Nomizu (1963, II 3.1).

Corollary 7.4. (of the proof) Let v: TB + AQ be an infinitesimal connection
in Q@ and let T be the corresponding path connection. Then, for all X € ITB,

Exp ty(X)(x) = T(¢,x)(t)

where {¢t} is a local flow for X near x, and I'(¢,x): R ~+ Qx is the 1ift of
t > ¢t(x).

Proof: Follows from the definition of ¥ in terms of I in 7.3 and the construction
of § in II 7.3. 1/

Corollary 7.5. Let ¢: £ > Q' be a morphism of Lie groupoids over B, let Y be an
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infinitesimal connection in &, T the corresponding path-connection, and ¥' the
produced connection, Y' = ¢,°Y. Then the C -path connection I'' associated to Y'

o0
is the produced ¢ -path connection, I'' = ¢oI, and ¢(¥) = ¥',

Proof: Take c € C(I,B). Then, since c satisfies equation (1) for y it immediately
follows that ¢OE satisfies equation (1) for $2 Y. Thus ' = ¢ol,

That ¢(¥) = ¥' follows immediately, as in IT 7.12. !/

Corollary 7.6, 1If Q' is a reduction of &, and y: TB * AQ takes values in AQ',
then ¥ < Q',

Proof: This is a particular case of 7.5. //

For the proof of the following crucial theorem, we refer the reader to
Kobayashi and Nomizu (1963, II 7.1, II 4.2).

Theorem 7.7. Let I be a Cm—path connectlion in Q. Then the holonomy groupoid
¥ of T is a Lie subgroupoid of Q. //

Using the correspondence between principal bundles and groupoids set up in
IT 1.19, and the particular account for the holonomy groupoid in II 7.14, a
translation of the proof of Kobayashl and Nomizu into Lie groupoid terms is

immediate, and need not be given here.

It would be interesting to obtain a proof of 7.7 which works directly with
the groupoids, rather than via the holonomy group and holonomy bundle. For example,
one may ask for conditions under which a “ct Yamabe theorem” for Lie groupoids is

true!

Problem. Let Q" be a wide, transitive subgroupoid of the Lie groupoid &, and

—~
suppose that each £ € Q' may be joined to af by an element of Pg(ﬂ) which lies
entirely in Q'., Find conditions under which @' is a Lie subgroupoid of Q. /7

It seems likely that a further, rather strong, condition will be needed, to
guarantee the transitivity of the associated Lie algebroid.

Still with reference to 7.7, note that no continuity or smoothness condition
on the map T is needed to guarantee that ¥ is a Lie subgroupoid of 2 (compare

II 7.7). However, Y need not have the relative topology from Q: for examples, see
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Hano and Ozeki (1956) or Kobayashi and Nomizu (1963, p. 290).

Lastly, we recall that the identity components of the holonomy groups Wx are
A X
the restricted holonomy groups Hz = {#] 2 is a plecewise smooth loop at x,
contractible in B to x}. See Kobayashi and Nomizu (1963, II 4.2) for the proof.

Corollary 7.8. Continuing the notation of 7.7, for each X € ITB and all t
sufficiently near 0,

Y(X) e TA¥Y and Exp ty(X) € ¥.
Proof: These are reformulations of 7.4. /!

Henceforth we will call a Cm—path connection simply a path connection,

unless it is necessary to emphasize the differentiability of the paths.

Later in this section we will calculate the Lie algebroid of the holonomy
groupoid ¥ and in so doing will establish a form of the Ambrose-Singer theorem. We
give now however a series of applications of the concept of holonomy, which are

fundamental to all the developments in Chapter 1IV.

Theorem 7.9. Let E be a vector bundle on (a connected base) B, and let V be a

connection in E., Let ¥ = ¥(V) be the holonomy groupoid of V.
Write
()’ = (werE | Ww = o0}

and recall (II 4.14) that

(re)¥ = (u e TE | Eu(a®) = w(BE), ¥E eV} .
Then

(re)’ = ()Y .

Remark: Equivalently, V(u) = 0 <=> ¥(V) < Qu. A section u of E satisfying
V(1) = 0 is said to be parallel with respect to V.

Proof: (2) Take u € (FE)W. Then y is Y~deformable, and so Q-deformable.
Hence, by 1.20, the isotropy subgroupoid & = ¢u is a closed reduction of N(E). Now,
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by 4.7,

TA® = {p ¢ TCDO(E) | o) = 0}

and since ¥ < & by assumption, it follows that D(u) = 0 for all D e TAY¥. But
¥ is the holonomy groupoid for V and therefore, by 7.8, VX € TAY, ¥X ¢ I'TB. Hence
V() =

(&) Assume V(u) = 0. We are to prove that &u(ag) = u(BE) for all § e V.
Since ¥ is oa~connected it is sufficient (by IT 3.11) to establish the equation for

£ e VU

v’ U the domain of a decomposing section U + H(E)b for E.

So we can assume that E is a trivial vector bundle U x V. Now
Ve TU > TU & (U x ﬂl(V)) has the form V(X) = X ¢ «w(X), where w € Al(U,HI(V)) is the
local connection form of V with respect to x +> (x,idv,x). As in 7.3, the lift of
any ¢: I + U is t > (c(t),a(t),c(0)), where A(a) = c*w and a(0) = idv.

We need to show that a(t)u(c(0)) = p(c(t)) for all t € I, where u is

regarded as a map U + V. We show that %E'(a(t)-lu(c(t))) is identically zero.

Write £ = pec: I > V. From B§2, equation (6a), we obtain

L@l = e hERE ) + e )

and from B§2, equation (2), we have
-1 -1
Ma ) = -ad(a )(A(a)).

Putting these together we get

L@ - me @ E)En) + a7 16 €

T Gin) s o)

a_l(w(d Y + (u))

Now the hypothesis V(u) = 0 is exactly that X(u) + w(X)(y) = 0 for all

d
X € T(U), and so, putting X = e

I ° the result follows. /]
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Remark: If, in the second part of the proof of 7.9, one knew in advance that u was

N(E)-deformable, then the result would follow directly from 4.7 and 7.6. /!

Corollary 7.10. Continue the notation of 7.9 and let b € B be any reference point.

There is an isomorphism of vector spaces

v H
(TE) + Vv, wr+ u(b)

b
where V = Eb and H = Wb.

Proof: Apply 1T 4.15to ¥ *# E » E. //

Theorem 7.11. Let § be a Lie groupoid on B and let p: 8 * E » E be a smooth linar
action of £ on a vector bundle E. For u € I'E, the following four conditions are

equivalent
(i) u is Q-deformable;
(i1) the isotropy groupoid ¢ of u is a Lie subgroupoid of £

(iii) Q possesses a section-atlas {oi: Ui > Qb} such that p(oi(x)-l)u(x)

is a constant map U, » H
© PU RS

(iv) @ possesses an infinitesimal connection Y such that (p*O'Y)(u) = 0.

Proof: (i) => (ii) is 1.20. (ii) => (iii) is immediate; (iii) => (i) follows from

the connectivity of B.
(ii) => (iv) follows from 4.7.

(iv) => (i) Let Y be the holonomy groupoid of v, and let ¥' < II(E) be the
holonomy groupoid of poY. Then p(¥) = ¥' by 7.5. Now (peY)(u) = 0 so, by 7.9,
ue (FE)W' and now ¥' = p(¥) shows that p is ¥-deformable. In particular, y is
Q-deformable. 1

In (iii), the various constant maps Ui + E. may be chosen so as to have the

b
same value.

7.11 includes Theorems 1 and 2 of Greub et al (1973, Chapter VIII). 1In the

following series of applications of 7.11, the first, 7.12, may be deduced equally
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well from Greub et al (1973, loc. cit.).

Theorem 7.12. Let L be a vector bundle on B and [ , ]} a field of Lie algebra

brackets on L. Then the following three conditions are equivalent:
(i) The fibres of L are pairwise isomorphic as Lie algebras;

(ii) L admits a connection V such that VX([V,W]) = [vx(v),w] + [V,Vx(w)] for
all X € I'TB and V,W € TL;

(iii) L is an LAB.

Proof: Let p: N(L) * Altz(L;L) > Altz(L;L) denote the action 1.25(ii). Then (i) is
the condition that [ , ] is NI(L)-deformable, and (iii) is the conditxon that N(L)
admits a section atlas {0 } such that the correspondlng charts for Alt (L L) via

pmap [ , ] €T Alt (L;L) to constant maps Ul + Alt (Lb Lb) So (i) and (iii) are
equivalent by the equivalence (i) <=> (iii) of 7.11.

From 4.8(ii) it follows that Pyt CDO(L) - cno(Alcz(L;L)) is
p*(D)(¢)(V,W) D(O(V,W)) - $(D(V),W) - &(V,D(W)). Therefore (ii) is the comndition
that L admits a connection V such that (o*°V3([ , 1) = 0. Hence (i) <=> (ii)
follows from the equivalence (i) <=> (iv) of 7.11. 1/

Recall from 5.3 that a connection in L satisfying (ii) is called a Lie

connection in L.

Theorem 7.13. Let E and E' be vector bundles on B and let ¢: E + E' be a morphism

over B. Then the following three conditions are equivalent:
(i) x rk(@x) is constant;

(ii) there exist connections V in E and V' in E' such that

V(o) = ¢V, (W) for all u & TE and X & ITB;

(iii) there exist atlases {wi: U, xV +E } and {w;: Ui x y' o> Eﬁ } for E

i U
i
and E' such that each ¢: EU »> EG is of the form ¢(x,v) = (x,fi(v)), where
i i
fiz V + V' is a linear map depending only on i.

Proof: This follows from 7.11 in the same way as does 7.12, using now 1.,25(iii),
4,8(iii) and the following lemma. /!
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Lemma 7.14. Let ¢1: V + V' and ¢2: W + W' be morphisms of vector spaces with
dim V = dim W, dim V' = dim W' and rk(¢1) = rk(¢2). Then there are isomorphisms
a: VW, a': V' > W' such that u'-¢1 = ¢zoa. //

In order to facilitate reference to 7.13, we use the following terminology:

Definition 7.15. Let M be any manifold, not necessarily connected, and let
¢: E > E' be a morphism of vector bundles over M. Then ¢ is of locally constant

rank if x -+ rk(¢x), M + Z, is locally constant and ¢ is a locally constant morphism
if it satisfies condition (iii) of 7.13. 1

Then 7.13 may be paraphrased for morphisms ¢: E + E' of vector bundles over
any base as follows: ¢ is of locally constant rank iff it is locally constant and
iff there are connections V,V' in E,E' such that ¢ maps V to V'. 1In 7.13 itself,

where the base is connected, the maps fj may be arranged to be identlcal.

We will also need the following LAB version of 7.13.

Theorem 7.16. Let L and L' be LAB's on B and let ¢: L + L' be a morphism of LAB's

over B. Then the following three conditions are equivalent:

(i) For each x and y in B, there are Lie algebra isomorphisms a: Lx + L
and a': L' + L' such that ¢06a = a'ed ;
X y y X

(ii) L and L' possess Lie connections V and V' such that ¢(VX(V)) = Vi(¢(v))
for all V € TL and X € TTB;
- t.
(111) there exist LAB atlases {Wi. U % B > Ly } and {wi. ]

1 1]
i " 5 +* LU } for

1L and L' such that each ¢: LU *> L& is of the form ¢(x,A) = (x,fi(A)), where
i
fi: 3 +> 3' is a Lie algebra morphism depending only on i. /1

The proof is similar to that of 7.13., We refer to a morphism ¢: L + L' of
LAB's over any (not necessarily connected) base M which satisfies (iii) of 7.16 as a

locally constant morphism of LAB's. When the base is connected, f; may be chosen to
be independent of i as well,

Further applications of 7.11 are made in IV§1,

The following result is similar in spirit to 7.12, 7.13 and 7.16.
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Theorem 7.17. Let E be a vector bundle on B, and let El and E2 be sub vector

bundles of E. Then E1f1 E2 is a sub vector bundle of E if there is a connection
1 1 2 2
V in E such that V(IE )& I'E and WIE )& IE . !/

Here V(I'E') & TE' is an abbreviation for "u' € TE',

X € TTB => Vx(u') e TE'", Though this result is related to 7.11, it requires a more
circuitous proof and will only be completed after 7.23.

Proposition 7.18. Let E be a vector bundle on B and let E' be a subbundle.

Let p: 8 * E + E be a smooth linear action of a Lie groupoid @ on E. Denote
F ' = R '

by ¢ the subgroupoid {£ & @ I E(EuE) EBE) of

Then if ¢ is a transitive subgroupoid of @, it is a closed embedded
reduction of 2.

Proof: Let q be the rank of E' and let G (E) > B be the fibre bundle with
G (E)x’ for x ¢ B, the Grassmannian of q~dimensional subspaces of Ex and charts

induced from the charts of E in the natural fashion., Then E' is a smooth

Q~deformable section of Gq(E). Now apply 1.20. !/

Definition 7.19. Let E be a vector bundle on B and E' a sub vector bundle of E.
Then N(E,E') denotes the Lie groupoid {¢ € I(E) | ¢(E&¢) = Eé¢}. i

Proposition 7.20. With the notation of 7.19, the isomorphism<15: ANI(E) + CDO(E)
of 4.5 maps TAN(E,E') isomorphically onto {D & TCDO(E) I NIE')ESTE'}.

The proof of 7.20 is completed after 7.22. Although 7.20 resembles 4.7, the
method of 4.7 cannot be used in a general fibre bundle (such as a Grassmannian) and

we are obliged to give a different proof.

Lemma 7.21. E admits a connection V such that V(TE') & TE'.

Proof: Let < , > be a Riemannian structure on E, and let E” be the orthogonal
complement to E' in E. Let V' and V' be connections in E' and E' and define V in

E=E' ®E" by V.(u' ®u") = V. (u') & V(1. /1

Propogition 7.22., There is a transitive sub Lie algebroid CDO(E,E') of CDO(E) which
has the property
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ICDO(E,E') = {D € TCDO(E) | D(TE') & TE'}.
Proof: Let End(E,E') be the sub LAB of End(E) defined by
TEnd(E,E') = {¢ € TEnd(E) | ®(TE") & TE'};

it is easy to prove (see IV 1.1 and the subsequent discussion) that a unique such

LAB exists. Let V be a connection in E such that V(TE')& TE' and define
i: TB ® End(E,E') + CDO(E)

by i(X @ ¢) = Vx + ¢. Then i is an injection slnce End(E,E') + End(E) is an
injection, and so im(i) is a sub vector bundle of CDO(E). It is easily verified
that [VX’VY] = VX' VY - VY°\7x maps TE' into TE' for all X,Y € I'TB, and that

[VX,W] = Vx"w - wovx does likewise, for X € I'TB, ¥ & TEnd(E,E'). It now follows
that im(i) is closed under the bracket on CDO(E), and hence im(i) is a reduction of

CDO(E).

If '\7 is a second connection in E such that '\;(I'E')g TE', then ; - ¢ takes
values in End(E,E') and so it is easily seen that im(f) = im(i). Denote this common
image by CDO(E,E'); if D € TCDO(E) has the property that D(TE') < TE' then

= - 1]
D Vq(D) + (D Vq(D)) shows that D € TCDO(E,E'). 1/

A similar comnstruction may be carried out with any suitable family of

connections on E.

Proof of 7.20: 1If X € TAN(E,E') then Exp tX takes values in II(E,E') for all t and

so, by the definition of ob in 4.5, na(X) € TCDO(E,E'). Thus eﬁ wmaps AINI(E,E') into
CDO(E,E").

To prove that b(AH(E,E')) = CDO(E,E'), is suffices (by 2.8) to prove that
+
D (LI(E,E')) = End(E,E'). Fibrewise, eﬁ+ is T(GL(V,V'))I 43’ (v,v'), and is an
isomorphism by the following (classical) lemma. !/

Lemma 7.23. Let V be a vector space and V' a subspace. Let GL(V,V') =
{A & GL(V) | A(V') = V'} and 1et5, w,v) = {x es’(V) | X(V')& V'}. Then H’(V,V‘)

is the Lie algebra of GL(V,V').

Proof: Take X 53’ (V,v') . Then b eﬂ' (v,v') for all integers n » 0 and
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therefore, since V' is closed, exptX maps V' into V' for all t. Thus
exptX € GL(V,V'). !/

Proof of 7.17. Let ¥ < JI(E) be the holonomy groupoid of V. Now
7, © TCDO(E,E") = TAI(E,E)) so, by 7.6, ¥ < n(g,x-:l). Similarly ¥ < I(E,E%). So
every element £ of ¥ maps Eig n Eai to EBE n EBE'

Let {¢i: Ui +* Wb} be a section-atlas for ¥. Then the associated charts

.2t U X E +E (x,v) > 0 (x)(v), restrict to charts for Eln 32. I/
i i b Ui’ i

We also uneed an LAB version of 7.17; the proof is exactly analogous.

Theorem 7.24. Let L be an LAB on B, and let L1 and L2 be sub LAB's of L. Then
Ll n L2 is a sub LAB of L if there 1s a Lie connection V in L such that

1 1 2 2
V(IrL') & v(Iry’ ) and Y(ILHYE r.°, /7

We arrive now at the Ambrose-Singer theorem. First we show that, given an
infinitesimal connection Y in a Lie algebroid AQ, there is a least reduction,
denoted (AQ)Y, of A which contains Y. As we will see in IV§1, this coanstruction
may be carried out in any transitive Lie algebroid. It then follows immediately
that this reduction (AQ)Y is the Lie algebroid of the holonomy groupoid of vy.

Until we reach 7.27, let Q be a Lie groupoid on B and let ¥ be an

infinitesimal conenection in Q,

Proposition 7.25. Let L' be a sub LAB of LQ such that
(1) Ey(X,Y) € L' ¥%,Y € T(B), and
(1) V(e .

Then there is a reduction A' < AQ defined by

rat {XeTlA | X - vyq(X) e TL'}
which has L' as adjoint bundle and is such that Y(X) € A' for all X e TB.

Proof: Define ¢: TB # L' + AQ by ¢(X ® V') = Y(X) + V', Then im(¢) = A' and,
applying the 5-lemma to
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L' p——> TB®L = TB

l

LY ) AQ -~ TB

as in 2.8, it follows that A' is a sub vector bundle of AQ.

Clearly y(X) € A' for X € TB and so the restriction of q to A' is
surjective. C(learly ker(q‘A') =L.

To prove that TA' is closed under the bracket on TA, take X,Y € TA' and
write X = ygX + V', Y = YqY + W', where V',W' € I'L'. Then

= Y
[X,¥} = ylqX,q¥] - RY(qX,qY) + VqX(W')
RO ERCAR
qY ’
and the last four terms are in TL' by (i) and (ii). I/

7.25 resembles 7.22; we give a general statement of this procedure in
v 3.20.

Proposition 7.26. There is a least sub LAB, denoted (LQ)Y, of LY which has the
properties (i) and (ii) of 7.25.

1 and L2 both satisfy (i) and (ii), then

!
Ll (3} L2 does also. The only point that is not clear is that LIIW L2 is a sub LAB,

Proof: It suffices to prove that if L

and since v’ is a Lie connection this is established by 7.24. //

The corresponding reduction of AQ is denoted by (AQ)Y and called the

Y-curvature reduction of AQ.

Theorem 7.27. (Ambrose-Singer) Let § be a Lie groupoid on B and let y: TB + AQ be
an infinitesimal connection. Denote the associated CaLpath connection by T and the

holonomy groupoid of T by Y.

Then AY = (AQ)".
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Proof: By 7.8, Yy takes values in AY, Hence LY satisfies the conditions of 7.25 and

therefore LY > (Lﬂ)Y and AY > (AQ)Y. On the other hand, y takes values in (AQ)Y and
w.

Since Y is a-connected, Y is determined by (AQ)Y via 6.1, Though 7.27 is
considerably stronger than the standard statement of the Ambrose-Singer theorem, it
should be pointed out that everything required to prove 7.27 is implicit in the
proofs of Kobayashi and Nomizu (1963, II 7.1, II 8,1); what the language of Lie
groupoids and Lie algebroids has provided is the means to formulate these results
with their full force.

To complete this account of the Ambrose-Singer theorem, we indicate how the

standard formulation may be obtained from 7.27.

Examgle 7.28. Let P(B,G) be a principal bundle and let w € A (p, 3) and
Qe A (P H) be a counection l-form and its curvature 2-form. (For the relationship

between w and y: TB + %2 and between  and R_: TB ® TB + ——;ﬂ— , see A§4,) Let A

be the Lie subalgebra ofH generated by {Q(X,Y) | X,Y € T(P)}. Since
Ag(X,T) = AT(R DX, MR _)Y), g € G, it follows that h is stable under AdG.
g

3

Let {oi: Ui + P} be a section-atlas for P and let wi: 5 .-
%
be the associated charts for P GS « Since the transition functions ¥, 1% tﬂke
values in AdG < Aut(ﬂ) it follows that h translates into a well-defined sub LAB K
P x§

of

G

From A 4.16 it follows that R (x Y) € K, ¥X,Y ¢ TB. To show that condition
(11) of 7. 25 holds, note that V (w (V)) = w (X(Vv) + [w (X),v]), where V: Ui d-ﬂ, and
the mi € A (U ﬂ) are the local connection forms of vy w1th respect to {0 } (see

5.16). From this it follows easily that Y (IK) & IK.

Hence (LQ)Y < K. Now h is the least Lie subalgebra of3 which contains all
the values of Q so, by following through the relationships between R_ and @, and K
andh , it follows that any sub LAB of LQ which satisfies (i) of 7.25, also contains
K. Hence (L®)Y » K.

Note that h is an ideal ofﬂ , since it is stable under AdG. !/

The account of flat connections given in §6 can now be made more precise.
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Progosition 7.29. Let Q be a Lie groupoid on B and let y: TB + AQ be a flat
connectlon. Then the holonomy groupoid Y of ¥ is a quotient of 7((3).

Proof: Since ﬁY = 0 we can take L' = B x {0} in 7.25. So LY = (LQ)Y = B x {0}
and Y is an isomorphism TB + AY¥., WNow, as in 6.9, Y integrates to a morphism
hY: T((B) + ¥, Since both ?T(B) and Y are o-connected, it follows from 6.6(ii)

that hY is a surjective submersion and fibrewise a covering. 1/

Thus the locally constant transition functions found in 6.9 form a cocycle
for ¥, and the path connection for y in £ is the image under hY of the unique path
connection in W(B).

In the case of flat connections in a vector bundle E, hY gives a smooth
action of <7('(3) on E.

We close this section with a more detailed analysis of morphisms of

transitive Lie algebroids, based on 7.11-7.16.

Fxample 7.30. Let ¢: TB & (B Xﬂ) + TB ® (B Xh) be a morphism of trivial Lie
algebroids. By 2.4, ¢ is ¢(X ® V) = X @ (w(X) + ¢+(V)) where w € AI(B,h) is a
Maurer-Cartan form, ¢+: B XH + B X,'I is the induced morphism of LAB's, and ¢+
and w satisfy the compatibility equation

3) (T M) - ¢t + [w0,6T (M1 = 0.

Let V° be the standard flat connection in B XS , and define a connection V1

in B Xl’l by

v;(m = X(W) + [w(X),W].

Since w is a Maurer-Cartan form, ‘7l is flat, and it is easily seen to be Lie. 1In
+ +

terms of 7.16, (3) now asserts that ¢ (V;’((V)) - V)l((:b (V)), for v: B -’5 , X € I'TB.

Hence ¢+ is a locally constant morphism of LAB's.

Further, v° and V1 together induce, by 4.8(iii), a connection V in

Hom(B XB , B Xl'l) = B x Hom(s,’l), the vector bundle whose sectlons are the vector
bundle morphisms B XH + B Xh . Vis
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1 0
vx(w)(v) V(W) = WV (0D

X)) = wX(V)) + [wX), ¥V ].

Since V° and Vl are both flat, V ig flat.

(3) now asserts that V(¢+) = 0 and, applying 7.10, ¢+ is determined by its
restriction to any single fibre, f = ¢+|b= ﬂ '*h- By analogy with the situation for
morphisms of trivial groupoids, one would expect this. However 7.10 also shows that
f cannot be an arbitrary Lie algebra morphism, but must lie in Hom(ﬂ,h)ﬂ, where H is

1 via 4,8(iii), it follows
1

the holonomy group of V. Since V is induced from v and v
(from 7.5) that H is the direct product B x Hl of the holonomy groups of 7 and v

and acts on Hom(ﬂ,h) by (ao,ul)(w) a1°¢°(a°)—l. Since \7° has trivial holonomy, we

T B 7B
conclude that f must lie in Hom(ﬂ, h ) where h 17 is the vector space of elements
of h invariant under the Vl-holonomy action of wlB (see 7.29). A direct calculation

with (2) of 7.3 shows that wlB must act by elements of 1tch).

This is a real restriction; there are certailnly Lie algebras with
nontrivial discrete groups of inner automorphisms. (An example is the 3~-dimensional

Lie algebra with [el,e2] = eq, [ez,e3] = [e3,e1] = 0; see Helgason (1978, p. 130).)

Thus if ﬂlB # 0, if w # 0, if h is not abelian, and if the action of wlB
on h induced by w is nontrivial, then there will be Lie algebra morphisms 3 + h

which are not the restriction of a Lie algebroid morphism which induces w. /!
This analysis also yields an alternative proof of 6.7.

Proposition 7.31. Let B be a simply-connected manifold and let

¢: TB & (B x 5) + TB @ (B x;l) be a morphism of trivial Lie algebroids over B. If G
and H are Lie groups with Lie algebrasB and}!, then there is a local morphism M of
trivial Lie groupoids B x G x B ~» B x H X B such that M, = ¢, and M is unique up to

germ—-equivalence.

Proof: For convenience we assume that G is connected and simply-comnected; the

general case is only notatlonally more complicated.

With ¢+ and w as in 7.30, choose b € B and define 8: B + H to be the
solution to A(8) = w, 6(b) =1, and F: G + H to be the Lie group morphism with
F, = ¢"| - Define M: B x G x B +B xH x B by My,g,x) = (y,0(y)F(g)6(0) ")+
Then, by 3.21, M, is X + V> X + {8(6)(X) + AA(8)F,(V)}; thus the Maurer-Cartan
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form for M, is A(®) = w and M: = Ad(6)F,. We need to show that M: = ¢+.
Since both M* and ¢ are LAB morphlsms compatlble with w, they are both
parallel with respect to V, Also, M*.b = (M ) = ¢ b’ since 9(b) = 1. So, as

in 7.30, it follows that M = ¢'.

+
That M_ = Ad(9)F, is parallel with respect to V also follows from B 2.1.

To prove uniqueness, let M': B X G x B > B x H x B be any other morphism

with M} = ¢, Then, by I 2.13, M'(y,g,x) = (y,e'(y)F'(g)e'(x)_l,x) where 9'(b) =
It easily follows that 6' = 6 and F' = F, 1/

Theorem 7.32. Let & and ' be Lie groupoids on B and let ¢: AR + ARQ' be a morphism
of Lie algebroids over B. Then there is a local morphism M: Q ~> Q' of Lie
groupoids over B such that M, = ¢, and M is unique up to germ-equivalence.

Proof: Let {Ui} be a simple cover of B, and let {ai: U

1, 1]
i Qb} and {Ui' U, » Qb}

be section-atlases for & and Q' over {U }. Let Ei denote the isomorphism
-1
g xGxuy, * Qu » (7,8,%) B+ (y,0,(y)go (x) ",x) and (I;),: TU; @ (U; xﬂ) + AQIUi

its derivative. Let Sij = Zi °Zj for U £ 0. Similarly with E{ and Sij'
Define oi = (Ei)*-¢0(221)*; by 7.31, Qi integrates to a well-defined local
morphism Mi: Ui X G % Ui ~> Ui x G' x Ui' In order to show that the EiaM;oE;I stick
together into a well-defined local morphism Q ~+ Q' 6 it is sufficient to prove
that (S'j)-%lfvsij - whenfver U.. # #. By the uniqueness result in 7.31, it
suffices to prove that (s' s oM o(s ) and this follows from the definition

of ¢f 0.

% ?

Likewise, the uniqueness statement may be deduced from the uniqueness result
in 7.31. 1/

The idea of this proof of 6.7 is due to Ng3 van Qua (1968). Although part
of the analysis in 7.30 relies on 6.7, it would be possible to develop connection
theory sufficiently to prove 7.32 without making use of 6.4 to 6.10. Thus this
connection-theoretic proof of 7.32 is independent of the results in §6 on the

local integrability of morphisms of Lie algebroids.
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it is one of the principal theses of this book that Lie algebroids deserve
to be recognized as mathematical objects in their own right. Tt will already be
apparent from III§5 that infinitesimal connection theory - that part of standard
connection theory which does not depend on the concepts of path-lifting or holonomy
~ can be developed entirely within the context of transitive Lie algebroids, and the
final step in demonstrating this is accomplished early in §1. The cohomology theory
which is developed in this chapter includes the equivariant de Rham cohomology
HﬁeRh(P)G of a principal bundle P(B,G) (with coefficients in vector bundles
assoclated to P(B,G) now allowed) and incidentally shows that this cohomology, which
has been the subject of an enormous body of work (see Greub et al (1976)) is
strictly an infinitesimal invariant: principal bundles which are locally isomorphic
will have the same equivariant de Rham cohomology although they need not be

isomorphic.

The advantages of this point of view, both for connection theory and
cohomology theory, are immense. One should try to imagine a situation in which Lie
group theory was actively pursued without any use being made of the Lie algebra,
The situation for Lie groupoid and principal bundle theory is exactly comparable:
it is for example well-known that curvature is a more accessible, but less subtle,
invariant than holonomy; from the results of III§7 it is clear that two locally
isomorphic bundles will admit the same infinitesimal connections and that
corresponding connections will have the same curvature, but the holonomy of these

connections will depend upon the connectivity properties of the underlying bundle.

The situation with the equivariant de Rham cohomology is similar. In the
case of cohomology theory however, there are further benefits arising from the use
of the Lie algebroid concept. Firstly the Lie algebroid cohomology produces results
for the equivariant de Rham cohomology HﬁeRh(P’v)G which, in the case of compact
groups G and trivial coefficients reduces to H;eRh(P) @ V itself; it is reasonable
to expect that the vast body of work done on the cohomology structure of principal
bundles with compact groups will generalize to the equivariant (or Lie algebroid) de
Rham cohomology. Some beginnings on this programme are made here; their

development will be continued elsewhere.

The concept of Lie algebroid also allows de Rham cohomology to be treated as
a cohomology theory of algebraic type, comparable to the cohomology theories of Lie
algebras or discrete groups. Together with the fact that coefficients in general

vector bundles are now allowed, this enables the enormous body of results and
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techniques established for discrete group and Lie algebra cohomology to be applied
to principal bundle cohomology. Again, a beginning on this programme is made in

this chapter; its development will be continued elsewhere.

The concept of Lie algebroid is due to Pradines (1967); the closely related
concept of Lie pseudo-algebra has been found (under a variety of names) by many
authors - see 11182, The cohomology of Lie pseudo—algebras has likewise been
defined by a number of authors - see §2 in this chapter. However we believe that
this is the first occasion on which the technical problems peculiar to Lie algebroid
cohomology - namely, the problems involved in staying within the category of smooth
vector bundles - have been dealt with, and we believe this account goes considerably

further than any previous account.

The central results of this chapter are two classifications of transitive
Lie algebroids. Firstly, the results of §3 give a global classification of
transitive Lie algebroids in terms of curvature forms and adjoint connections.
Secondly, 4.1 allows the classification of transitive Lie algebroids by transition
forms, which was begun in III§5, to be extended to all transitive Lie algebroids.
Both these classifications are cohomological in nature, and it should be noted that

both are classifications up to equivalence, not up to isomorphism.

The results of this chapter are from Chapter III of Mackenzie (1979), but
have been substantially revised in the account given here. The proof of 4.1 is a
revision and the detailed classification (including III 5.15) appear here for the
first time. Most of the proofs in §3 have been rewritten for clarity. As well, the
proofs of 1.6 and 1.16 now use the results of III§7 instead of the concept of local
flat connection (as in 4.7). This seems preferable, since the earlier approach was

in danger of appearing circular.

The theory of transitive Lie algebroids may be developed without reference
to the theory of Lie groupoids. A reader familiar with principal bundles may read
this chapter, together with Appendix A, II1§2 and III§5, ihdependently of the rest
of the book, although they will miss some explanatory material by so doing.

We now give a brief description of the sections. §1 proves several
technical results about transitive Lie algebroids, which enable a proper algebraic
theory to be developed. These results establish that transitive Lie algebroids do
in many ways behave like Lie groupoids. §2 defines the cohomology of an (arbitrary)
Lie algebroid and gives interpretations in degrees 2, 1 and 0. §3 deals with the

theory of general (non-abelian) extensions of Lie algebroids and their cohomological
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classification. This section embodies a re-interpretation of infinitesimal
connection theory; in particular, we obtain a necessary and sufficient condition
for an LAB-valued 2-form to be the curvature of a connection in a transitive Lie
algebroid. §4 gives the proof that every transitive Lie algebroid is locally
isomorphic to a trivial Lie algebroid; this result is central to Chapter V and
will, we believe, be central to any further development of the theory of transitive
Lie algebroids. §5 comstructs a spectral sequence for the cohomology of a
transitive Lle algebroid in terms of the cohomology of its base and its adjoint
bundle, and uses algebraic methods to calculate a few of the higher-order
differentials., The relationship between extensions of a transitive Lie algebroid

and extensions of its adjoint bundle is explicated.

§1, The abstract theory of transitive Lie algebroids

This section uses the results of III§7 to prove several algebraic results of
basic importance about transitive Lie algebroids. 1In l.4 we prove that the adjoint
bundle of a tramsitive Lie algebroid is an LAB; in 1.6 we prove that
if ¢: A+ A' is a base-preserving morphism of transitive Lie algebroids then
¢+: L + L' is a locally constant morphism of LAB's; it follows that such morphisms
have well-defined kernels and images. 1In 1.16 we prove that if p is a
representation of a transitive Lie algebroid A on a vector bundle E, then EL is a
flat vector bundle with a natural flat comnection; in 1.19 we prove that (under the
same hypotheses) (PE)A is naturally isomorphic to (VH)WIB, where V and 5 are the

fibre types of E and L and w. B acts via the holonomy of the natural flat connection

1
in E¥. These results are fundamental to the cohomology theory developed in the
following sections, and to any development of the algebraic theory of transitive Lie

algebroids,

Each of these results is an infinitesimal version of results established for
locally trivial groupoids in Chapters II and III; the groupoid results are

comparatively elementary.

The results of this section are due to the author. 1.4, 1.6, 1,15 and
several of the subsidiary results appeared (with different proofs in the case of 1.6
and 1.15) in Mackenzie (1979).

We begin with some necessary observations about LAB's. The definition,
recall, was given in III 2.3, Throughout this section, except in 1.19, B is a fixed
arbitrary manifold.
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Many constructions in the category of Lie algebras carry over to LAB's.
Examples we will need include the centre LAB ZL of an LAB L, the derived LAB [L,L],
the LAB of derivations Der(L), and the adjoint LAB ad(L). In the first two cases,
the following construction principle applies.

Proposition 1,1. Let L be an LAB oun B with fibre typeﬂ . Let h be a characteristic
subalgebra ofB s that is, ¢(h) =}l for all ¢ € Aut(ﬂ). Then there is a well-

defined sub LAB K of L such that any LAB chart y: U x H + LU for L restricts to an
LAB chart U x h » R, for K.

Proof: Immediate. /!

Taking h = 5, the centre ofﬂ , the resulting LAB, denoted ZL, clearly has
fibres ZL'x’ x € B, which are the centres of the fibres Lx of L. Further, for any
open US B, the (infinite-dimensional) R-Lie algebra PU(ZL) is the centre of FUL.
The LAB ZL is called the centre of L. The derived sub LAB [L,L] is obtained in the

same way.

For Der(L), consider first a vector bundle E on B. The vector bundle End(E)
is the unique vector bundle with fibres End(E)x = End(Ex), x € B, and
charts y: U x BE(V) > End(E)U induced from charts $: U x V > E; for E by
b (&) = b oAy ". Here V is the fibre type of E and y is the isomorphism
v -+ Ex obtained by restricting Y. It follows that End(E) is an LAB with respect to
these charts.

Now given an LAB L, with fibre type 3, observe that the Lie subalgebra
Der(ﬂ) of g'(ﬂ) is invariant under automorphisms of ﬂl(ﬂ) of the form
A F+ seAes |, where s: > is a Lie algebra automorphism. Applying the same
method of proof as for 1.1, it follows that Der(L) is a sub LAB of End(L). It is
called the LAB of derivations of L. (Der(L) was introduced in III§4 by a different

construction; the equivalence of the two definitions follows from III 3,17.)

Proposition 1.2. Let L be an LAB on B. Then the LAB morphism ad: L + Der(L),
defined as being fibrewise the adjoint map adx: Lx > Der(Lx) of the fibres of L, is
locally constant as a morphism of LAB's, in the semse of III 7.16(iii).

Proof: To prove that ad is smooth, note that [V,W] = ad(V)(W) is smooth whenever V

and W are smooth sections of L. To prove that it is locally constant, note that ad
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is locally idU xad : UXx 5 + U x Der(ﬂ), with respect to an LAB chart of L and the
corresponding chart for Der(L). 1/

It follows that ad(L), the image of ad, is a sub LAB of Der(L), called the
adjoint LAB of L. It is also an ideal of Der(L), in the sense of the following
definition, and is also called the ideal of inner derivations of L.

Definition 1.3. Let L be an LAB on B and let K be a sub LAB of L. Then K is an
ideal of L, denoted K Q L, if Kx is an ideal of Lx’ for all x ¢ B. /]

Given K an ideal of L, a quotient LAB L/K can be constructed in an obvious
fashion. 1Its elements will be written V + K or V.

The terminology of Lie algebra theory will be taken over without comment:
an LAB is reductive, semisimple, nilpotent, abelian, etc., if each of its fibres has

the corresponding property. Many deep results of the structure theory of Lie
algebras generalize without effort: for example, a reductive LAB L is the direct
sum ZL 4 [L,L].

With these preliminaries established, we turn to the abstract theory of

transitive Lie algebroids., The first result shows the relevance of the preliminary
discussion.

Theorem l.4., Let L +i* A -3 TB be a transitive Lie algebroid on base B. Then L is

an LAB with respect to the bracket structure on TL induced from the bracket on TA.

Proof: Recall the adjoint representation ad: A * CDO(L) of A on the vector bundle L
(III 2.11). Let Y be a comnection in A and consider the produced connection

V = adey: TB + CDO(L) in the vector bundle L. A calculation with the Jacobi
identity for TI'A, similar to that for III 5.10(i), shows that V satisfies the
condition (1i) of III 7.12 with respect to the field of Lie algebra brackets on L
induced from the bracket on TA (see III§2). Hence, by III 7.12, L is an LAB. /!

The following result, like III 4,10, is an immediate consequence of the
Jacobi identity. It 1s only by virtue of 1.4, however, that it is possible to
formulate 1it.

Proposition 1.5. Let L +=> A —> TB be a transitive Lie algebroid on B. Then the
adjoint representation of A on L, ad: A + CDO(L), takes values in CDO[L]. 1/
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For a connection Y in A, the produced connection adey: TB + CDO[L]
will be called, as in III 5.8, the adjoint connection of Yy, and denoted VY.

It is a Lie connection in L.

From now on we will call L the adjoint LAB of A. This should not be
confused with the expression "adjoint LAB of L“, which refers to ad(L).

The following theorem is a Lie algebroid analogue of IIL 1.31(i).

Theorem 1.6, Let ¢: A + A' be a morphism of transitive Lie algebroids over B.
Then ¢+: L + L' is a locally constant morphism of LAB's and, as a morphism of vector

bundles over B, ¢: A + A' is of locally constant rank.

Proof: Let Y be a connection in A and let Y' = ¢oy be the produced connection in
A'. Let Y and VY' be the corresponding adjoint connections in L and L'. Then it
is easily checked that ¢+: L + L' maps 7' to VY', that is, ¢+ satisfies (ii) of III
7.16. Now III 7.16 establishes that ¢+ 1s a locally constant morphism of LAB's.

That ¢ itself is of locally constant rank follows from applying the S-lemma
to ¢+ and ¢, as in the proof of III 2.8. //

Thanks to 1.6, there is a significant algebraic theory of transitive Lie

algebroids. For example, it is only by virtue of 1.6 that the following definition
is usable.

Definition 1.7. Let ¢: A + A' be a morphism of transitive Lie algebroids over B.
+
Then the kernel of ¢, denoted ker(¢), is the sub bundle ker(¢ ) of L. The image
+
of ¢, denoted im(¢), is the transitive Lie algebroid im(¢ ) +-> im(¢) -++ TB. //

Proposition 1.8, Let ¢: A + A' be a morphism of transitive Lie algebroids over B.
Then ker(¢) 1s a sub LAB of L.

Proof: Let Y be a connection in A and VY the corresponding adjoint connection

in L. Write K = ker(¢). Then VY(FK)SE K, for if V € TK and X € I'TB, then
¢+(6;(V)) = ¢([y(X),V]) = [¢Y(X),$-(V)] = 0, So K is a vector bundle with a field
of Lie algebra brackets which admits a connection — the restriction of \7Y - which
satisfies IIT 7.12(ii). //

We leave to the reader the proof that im(¢) is actually a reduction of A',
as implied in 1.7.



191

Definition 1.9, Let L #->» A —+* TB be a transitive Lie algebroid on B. An ideal of
A is a sub LAB K of L such that

X € TA, V € TK => [X,V] € TXK.
That X is an ideal of A is denoted K 9 A,

An ideal reduction of A is a reduction L' +-* A' -++ TB of A such that L' is
an ideal of A. /1

Clearly the kernel of a morphism of transitive Lie algebroids over B is an
ideal of its domain Lie algebroid. Other examples of ideals of a transitive Lie
algebroid L +-+ A —++ TB include ZL and [L,L].

Example 1.10. If 5' is an ideal of a Lie algebra 5 then B X 3' is an ideal of the
trivial Lie algebroid A = TB ¢ (B XE ), and A' = TB ® (B ><5') is an 1deal reduction
of A. But note that, for X € TA and Y' € TA', it is not necessarily true that
[X,¥'] € Ia'. //

Proposition 1.11. Let L *i* A -9> TB be a transitive Lie algebroid on B and L' an
ideal of A. Let A and L be the quotient vector bundles A/j(L') and L/L' and

let a: A > TB and 3: L + A be the vector bundle worphisms induced by q and j.
Define a bracket on F(K) by

X + TL', Y + IL'] = [X,Y] + TL'

for X,Y € TA. Then L »Ls A 3+ TB is a transitive Lie algebroid on B and the
natural projectim\%: A =+ Z, X#++ X + L, is a surjective submersion of Lie

algebroids over B, and has kernel L'.

1f ¢: A > A" is any surjective submersion of transitive Lie algebroids over
B, and K 9 A its kernel, then there is a unique isomorphism b A/3(R) + A" of Lie
algebroids over B, such that ¢ = $0#.

Proof: Straightforward. //

A = A/j(L') is the quotient trausitive Lie algebroid of A over the ideal
L'. We usually denote A/j(L') by A/L'.
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Proposition 1,12, Let ¢: @ —-**+ Q' be a surjective submersive morphism of Lie
groupoids over B, and let M denote its kernel, (See III 1.32,) Then AM = Mx is an

~

ideal of AQ and ¢,.: AR -»» AQ' induces an isomorphism 5:: AQ/M, = AQ'.
Proof: This follows by putting together III 1,32, III 3.15 and 1l.11 above. //
The following remark extends III 7.30.

Remark 1.13. Let ¢: A + A' be a morphism of transitive Lie algebroids over B. As
in 1.6, let vy be a connection in A, let Y' = ¢oy, and let vY and VY‘ be the
corresponding adjoint connections. Then the condition that ¢+ maps VY to VY' is
equivalens to $(¢+) = 0, where ¥ 1s the connection in Hom(L,L') induced from

v and V' .

$(¢+) = (0 may be paraphrased roughly as the statement that the rate-of-

+
change of ¢ : B » Hom(L,L') is zero in every direction within B; the morphisms

®o+

¢ Lx * I; are in this sense constant with respect to x. When ¢ is equal
to f,: AR > AQ' for a morphism of Lie groupoids f: & + Q' over B, we have
+ -1 b4

= -1 *, vy . e fo
¢y = Ad($(E)) o¢x Ad(E), for every & € Qi (this follows from fy = 1¢(§) fx 15).

+ '
The condition ¢ (VY) =Y is an infinitesimal version of this equation. It is
remarkable that the structure of a transitive Lie algebroid is sufficiently tight to
+
impose this local constancy on ¢ .

In §4 we will give a second proof of 1.6, which sheds further light on the

structure of ¢. !/

The following generalization of 1.6 is proved by the same method.
Theorem 1l.14. Let Al and A2 be transitive Lie algebroids on B, let ¢: A1 > A2
be a morphism of Lie algebroids over B, let pl and p2 be representations of
A1 and A2 on vector bundles E1 and EZ, and let ¥: El + E2 be a ¢-equivariant
morphism of vector bundles over B, as defined in III 2,9. Then § is of locally

constant rank. 1/

1.6 is actually a special case of 1l.14, for if ¢: A » A’ is a morphism of
transitive Lie algebroids over B, thea there is the representation ad of A on L and
+
the representation X F+ (V' +F+ ad(¢(X))(V')) of Aon L', and ¢ 1is id,—equivariant

A
with respect to them.
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For representations of transitive Lie algebroids, a refinement of 1.6 is

necessarye.

Theorem 1.15. Let A be a transitive Lie algebroid on B, and let p: A + CDO(E)
be a representation of A on a vector bundle E. Then there exist an LAB atlas
{wi: Ui x ﬂ > LU } for L and an atlas {¢i: U

XV + EU } for E, and representations
i
fi: 5 * Bl(V) of 5 on V, such that

1 1

+
p
L e End(E)
Ui Ui
2 ¥
id x f

v ~q —_—i uixsl(v)

commutes, where {$;} is the atlas for End(E) induced from the atlas {¢i} for E (see
the discussion preceding 1.2).

Proof: Let Yy be a conmectlon in A, let \7Y be the adjoint connection in L,
let poy be the produced connection in E, and let V be the connection in End(E)
induced by pey.

Let = I[L] x I(E) and consider the action of R on Hom(L,End(E))
xB
which is constructed ?rom a double application of IIT 1.25(iii). Then
Al = CcpO[L] € CDO(E); 1let V Be the counection in AR defined by 7' and peY. Then
TB

it is easy to check that $(p+) = 0,

- +
Now apply III 7.11 to @, V and p ¢ THom(L,End(E)). It is easy to see that
a section-atlas for @, with respect to which p+ is locally constant, is composed of

an LAB atlas {wi} and a vector bundle atlas {¢1} with the required property. /1

When B is connected, a single representation f of 5 on V may be used for
all 1.

Corollary 1,16, With the assumptions of 1.15, let EL where x € B, denote

|,

+
E¥={uek I p (W)(u) =0, ¥ Well. Then El = tJ EL‘ is a sub vector bundle
X X x x xeB x

of E.
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Proof: From the diagram it follows that

o7 (0 G, 1)) (8, () = 6, G, £ (WD (0))

for W 55 , u€V, From this it is easy to see that each ¢i x: vV > Ex restricts to

L b
an isomorphism V =+ Exx. //

Continue the notation of 1.15. The representation p of A on E restricts to

a representation, denoted E, of A on EL, for we have
+ + +
p (W (X)) = [p (W,p(XN (W) + p(X)(p (W (W)

for all W e I'L, X € ITB, u € I'E, and so if W € F(EL), then the second term obviously
vanishes, and the first term vanishes because [W,X] is in (the image in TA of) TIL.

- L -+ L
For p: A + CDO(E ), the representation (p) : L > End(E ) is of course zero.

Let Yy be any connection in A, and consider the produced connection
poy in EL. Since R- _ = (E)ﬁbﬁ (by equation (3) of III§5) and since
(E)+: L+ End(EL) igozero, poy Is flat, Further, if y' is a second connection in 4,
say Y' = Y + jo&, %: TB > L, then for u € F(EL) and X € T'TB,

(oY) () = (o) (X (W) + (m T (2(X)) (W)

(poY)(X) ().

Thus the representation p of A on E induces a unique flat connection in EL, which we

will denote by Vp. We summarize all this for reference.

Proposition 1,17, Let L +=> A —> TB be a transitive Lie algebroid, and p a
representation of A on a vector bundle E. Then p restricts to a representation of A
on EL, denoted 5, and p maps every counection in A to a single flat connection,

v°, in EY, /1

This phenomenon, apparently differential-geometric, is well-known in
algebra: if N +=+ G -*+ Q is an exact sequence of (discrete) groups, then every

N
representation of G on a vector space V induces a representation of Q on V .
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Definition 1.18. Let A be a Lie algebroid on B and p a representation of A on a

vector bundle E. Then
(rE)A = {ueTlE ] p(X)(u) = 0 ¥ X e TA}

is called the space of A-parallel sections of E. /1!

If A is totally intransitive, then (PE)A is a C(B)~submodule of TE.
Otherwise (I‘E)A is merely an R-vector subspace of TE. If A is totally intransitive,

(I‘E)A need not correspond to a sub vector bundle of E, even if A is an LAB.

Theorem 1.19. Let A be a transitive Lie algebroid on a connected base B, and
let p be a representation of A on a vector bundle E. Choose b £ B and write
g= Lb’ vV = Eb, HIB = WI(B,b). Then the evaluation map TE + V restricts to an
isomorphism of vector spaces

~ B
(et = i !
where m. B acts on VB via the holonomy wmorphism of Vp.

1

P
Proof: Clearly (FE)® = (r(g%))" ,

follows from III 7.10 and III 7.29. /!

in the notation of III 7.9. The result now

By way of comparison, if p is a representation of a Lie groupoid & on a
vector bundle E, then EGQ is a trivializable sub bundle of E, isomorphic to
B x VG (see 11 4,18), and (I‘E)n is isomorphic to VG (see 11 4.15). One may say that
the sections of EGﬂ invariant under the action of B X B are the constant sections,

that is, they are the elements of VG.

1.19 may be regarded as the calculation of the Lie algebroid cohomology of A
with coefficients in E, at degree zero. In §5 we will extend this to arbitrary

degrees.
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With the results of this section established, one can now develop a full

theory of abstract transitive Lie

algebroids. The greater part of the present

chapter is devoted to the development of their cohomology theory and connection

theory, two subjects which are inextricably linked.

A number of the concepts and constructions of ITI§5 and III$7 carry over to

the abstract setting immediately.
7.26 of the Y-curvature reduction
groupoid 2 and corresponding to a
transitive Lie algebroids without

where § is used is to ensure that

Likewise, the definitions
propositions III 5,10 and III 5.11
algebroid.

For instance, the construction in III 7.25 to
of a Lie algebroid AQ derived from a Lie
connection Y in AQ, may be extended to abstract
difficulty. The only point in III 7.25-7.26
LQ is an LAB.

of the exterior covariant derivatives in ITI§5 and

are valid without change, in any transitive Lie
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§2, The cohomology of Lie algebroids

This section constructs the cohomology of an arbitrary lLie algebroid with
coefficients in an arbitrary representation and gives interpretations in degrees 2,
1 and O.

The definition 2,1 is in terms of a standard resolution of de Rham, or
Chevalley-Eilenberg, type. This definition, as well as being the simplest, is the
closest to the geometric applications. We prove in 2.5 and 2.6 that when A is a
transitive Lie algebroid with adjoint bundle L, the cohomology spacesﬁﬁ*(L,p+,E) are
the modules of sections of certain flat vector bundles H*(L,p+,E). This is a
generalization to all degrees of 1.16 and is proved using a generalization of the
calculus of differential forms on a manifold, and the results of I1I§7. 1In 2.7 and
2.8 we calculate M *(AQ,p,E) for a Lie groupoid 2 and any representation p of AR, in

terms of the equivariant de Rham cohomology of an associated principal bundle.

In the second part of the section we interpret :H?(A’p,E) in terms of
equivalence classes of operator extensions of A by E. This is a straightforward
generalization of the corresponding extension theory of Lie algebras, but we have
given at least sketch proofs of most results, since there is no readily available
account of the Lie algebra theory in the detail which is required for the geometric
applications. In Lie algebra cohomology, as in other cohomology theories of
algebralc type, there is little interest in specific cocycles or in specific
transversals for extensions: one is there only interested in cohomological
invariants. In Lie algebroid cohomology, however, transversals are (at least in the
applications to geometry) infinitesimal connections and cocycles are, in degree two,
curvature forms, and, in degree three, the left-hand sides of Bianchi identities,
and the focus of geometric interest is usually on specific transversals or
cocycles. It is for this reason that the explicit definition 2.1 is the best for

Our purposess.

In this section we treat only extensions by abelian (totally intransitive)
Lie algebroids; that is, by vector bundles. The general case, which includes the
most important applications, is treated in §3, 1If P(B,G) is a principal bundle with

abelian structure group then

Bxﬂ :P;H -»—-)%--»-»TB

is an extension of TB by the trivial vector bundle B XH 3 1if G is compact and B is
simply-connected then the cohomology class of -'% inﬂz(TB, B Xﬂ) =
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HjeRh(B,ﬂ) is the sum of the Chern classes of the component $0(2)-bundles of P. In

the case where G is not compact and m B is arbitrary, the class of

B
T—g— in %Z(TB, B XH) = HﬁeRh('ﬁ,H) ! may still be regarded as a characteristic
class of P(B,G). The question of the relationship of the results of this section
and of §3 to the extension theory of Lie groupoids and principal buundles will be

taken up elsewhere.

This section closes with a proof that the cohomology J{*(A,p,E) coincides
with that defined, on the level of the modules of sections, by G.S. Rinehart (1963).

The definition of the cohomology of Lie algebroids has been given many times
previously, under a variety of names. See, for example, Palais (1961b), Hermann
(1967), Nelson (1967), and N. Teleman (1972). However, much of this work was done
at the level of the module of sections and was only concerned with the algebraic
formalism. The first major result in this area was the Poincarée-Birkhoff-Witt
theorem of Rinehart (1963), which enabled Rinehart to define Lie algebroid
cohomology as derived functors of HomU(A)(B x R, =). Rinehart's results were
sheafified by Kamber and Tondeur (1971).

The results and constructions of this section from 2.4 on, in particular
their establishment within the geometric context of smooth vector bundles are due to

the author, and first appeared in Mackenzie (1979).

Until 2,4, let A be an arbitrary Lie algebroid on a base B. It is not
assumed that A is transitive. Let p: A + CDO(E) be a representation of A on a
vector bundle E.

Definition 2.1. The standard complex associated with the vector bundle E and the
representation p of A is the sequence Cn(A,E), n » 0, where Cn(A,E) denotes the
vector bundle Altn(A;E), and the sequence of differential operators

a: rA,E) > TC™(ALE) which is defined by

n+l e+l N
AE(X),e0e X L)) = rzl =17 p(X ) (£(X yeee X 1))

+ E (_l)r+s

r<s

{0 5 98 IR PTG SIPD
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for £ & ICT(A,E) and X seees e TA.

xn+1

The cohomology spaces :uP(A,p’E)’ or ﬁﬂn(A,E), are the cohomology spaces
of this complex, namely %n(A,E) = zn(A,E)/aBn(A,E), where
n n n+l n
2" (A,E) = ker d: IC (A,E) » TC" (A,E) and o8 (A,E) =
im d: TC" 1(a,E) » TC™(A,E) for n > 1, 8°(A,E) = (O). [/

It is routine to verify that d2 = 0, When A is totally intraansitive (so

that it is a vector bundle together with a field of Lie algebra btackets), the
operators d are C(B)-linear. This is easy to check. Hence in this case, each

&" induces a vector bundle morphism Cn(A,E) *> Cn+1(A,E), also denoted

dn. It is not true, however, that in this case the dn must be of locally constant
rank, and so the images and kernels may not be sub bundleg. This 1is so even if A is

an LAB. Examples are easy to construct, using the same device as in III 1,28,

For a general Lie algebroid A, with q # 0, the maps

" TCn(A,E) > TCn+1(A,E) are first-order differential operators, and do not induce

morphisms of the underlying vector bundles.

Thus the jin(A,E) are quotients of infinite-dimensional real vector spaces,
and are at this stage rather formless. However for a transitive Lie algebrold A, we
will show in §5 that the ;%n(A,E) are computable.

When B is a point and A a finite-dimensional real Lie algebra, thegfln(A,E)
clearly reduce to the Chevalley-Eilenberg cohomology spaces (see, for example,
Cartan and Eilenberg (1956, XIII§8)). When A is the tangent bundle TB and p is the
trivial representation of TB in a product vector bundle B x V (see III 2.10),

n (B,V). 1In 2,7 we

deRh
will calculate j{n(An,q“,E) for a Lie groupoid Q and a representation Py induced

;xn(TB, B x V) is clearly the real de Rham cohomology space H

from a groupoid representation p: 2 + I(E).

Definition 2.2. (i) The Lie derivative ex: FCn(A,E) +* TCn(A,E) for X € TA,
is defined by

n
ex(f)(xl,...,xn) - p(X)(f(Xl,...,Xn)) - rzl f(Xl,...,[X,xr],...,xn).

Here f € FCn(A,E) and Xr €eTA, 1 € v <n.

(i1) The interior multiplication 1yt Pcn+1(A,E) + Ic™(A,E), for
X e TA, n > 0, is defined by
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1)((f)(x1 yees ,xn) = f(x,x1 yeoe ,xn) ,
for £ e Tc"(A,E), X eTA, 1 <x<n /]

OX, IX and d satisfy a set of formulas identical in form to those which hold

in the calculus of vector-valued forms on a manifold. Those which are used in the
sequel follow.

= =101 for

Proposition 2.3: (i) lx(uf) = ulx(f), lux(f) = ulx(f) and 1 “Y ¥ e

X,Y € TA, u € C(B), £ € IC"(A,E);

(11) By(uf) = uB (£) + q(X)(u)E for X € TA, u € C(B), £ € rc™(a,E);

(141) 8 (E)(X eee X ) = ub (£)(X 000 X )

+
1y

il 3

1 DT ) 1D (K X))

£or X,X,...,X € TA, ue C(B), £ & IC(A,E);

6 =006 - 80 IA:
(iv) (X,Y] O - OX for X,Y € TA;

(v) ex = lx'd + d°1x for X € TA;

(vi) 0)? d = deg

< for X ¢ TA.

Proof: Standard. /!

With the definition of wedge-product given in §5, (4ii) can be written
8 x(£) = wb (£) + du1 (£),
where du 1s taken with respect to the representation q of A on B x R.

Proposition 2.4. Let L -*j-* A 3+ TB be a transitive Lie algebroid on B. Then
for X e TA and f ¢ I‘Cn(L,E), the Lie derivative Ox(f) is in I'Cn(L,E), the

map Bx: I‘Cn(L,E) +> I'Cn(L,E) is in I‘CDO(C“(L,E)) and X > exdefines a representation
of A on cn(L,E),



Proof: For the first statement, note that

n
0DV 5eee V) = POOCEW eee ¥ D) = r§1 f(Vl,...,ad(X)(Vr),...,Vn)

for Vr e L, XeTA, f¢ PCn(L,E). The remaining assertions follow from 2.3
(11),(111),v). /1!

In the cohomology theory of Lie algebras, & is a representation of a Lie
algebra 5 on the associated spaces Cn(ﬂ,V). In the context of general Lie
algebroids however, the map 6: I'A + rcpo(c™(A,E)) 1is not C(B)-linear, and
therefore cannot be said to be a representation. As in the case of
ad: X +*+ (Y +> [X,Y]), TA + I'CDO(A), which 6 of course generalizes, this lack of
C(B)-linearity can be avoided by lifting 6 to the l-jet prolongation of A. However
the action of A on Cn(L,E) suffices for our purposes.

Although Gx = 1xod + dOIX is meaningless for the ex of 2.4, its
consequence, d°0x = eX?d’ continues to be valid, This follows from 2,3(vi). From
this formula we have the following crucial result.

Theorem 2.5. Let L »i> A S TB be a transitive Lie algebroid on B. Then the
coboundaries

4% ¢*@,p) » c™a,p)

are of locally constant rank, and consequently there are well~defined vector
bundles Z™(L,p,E) = ker d®, B(L,p,E) = im d" ! and H™(L,p,E) =

n n n n +

7" (L,0,E)/B"(L,p,E) such that TH (L,p,E) = X (L,0 ,E).

Further, 6: A+ CDO(Cn(L,E)) induces a well-defined representation, also
denoted 9, of A on Hn(L,E).

n
Proof: Let Yy be a connection in A, and let Y be the connection 6ey in

+1
Cn(L E). Then the equation 9, °d dn ° e for X € TA implies in particular

that 6 (X)(d(f)) = d(® (X)(f)) for X € PTB fe PC (L,E); that is, that
) (0E)) = 4 () (£)).  Thus d maps ¥* to ™! and so, by III 7.13, d is of

locally constant rank.

That the representation ® of A on Cn(L,E) induces a well-defined

representation of A on Hn(L,E) follows from this same equatiomn exod = de
X € TA. 1/
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Theorem 2.6, Continuing the notation of 2.5, for the representation 6 of A

on Hn(L,E) we have

LB = BNL,E).

In particular, Hn(L,E) is a flat vector bundle, and & maps every connection

in A to a single flat connection, denoted Vp,n’ in Hn(L,E).

+
Proof: Applying 2.3 to the Lie algebroid L and the representation p we have

ev = dnv + 1V°d, for V ¢ IL.

Now take f ¢ Cn(L,E) with df = 0. We have ev(f) = d(tv(f)) + 0 and so
9vﬂ[f]) = lev(f)] = [d(tv(f))] = 0.

Thus [£] € B(L,E)".

The remaining statements follow from applying 1.17 to
8: A > CDO(H"(L,E)). /1

We hope that the proofs of 2.5 and 2.6 give the reader some amusement.
Thanks to 2,5 and 2.6 it will be possible, in §5, to consider the cohomology of TB
with coefficients in H*(L,E), and to relate the spaces:?(*(TB,H*(L,E)) to the
cohomology of A.

In the case of the transitive Lie algebroid of a Lie groupoid, the Lie
algebroid cohomology is the equivariant de Rham cohomology of the corresponding
principal bundle.

Theorem 2.7. Let @ be a Lie groupoid on B and let p: 2 + I(E) be a representation

of Q@ on a vector bundle E. Then there are natural isomorphisms
n ~ . n G
H"(AR,p, ,E) = Hyoen(PoV)
where P = Qb’ G = ﬂ: and V = Eb for some chosen b € B.

Proof: This is an immediate consequence of A 4.13. /!
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Corollary 2.8, 1If @ is an a-connected Lie groupoid on B and p: AQ > CDO(E) is any

representation of AR on a vector bundle E, then there are natural isomorphisms

n

n ~ ~ H
M (82,0,E) = Hy o (P,V)

where H is the structure group of the monodromy bundle ;(B,H) of P(B,G). 1/

In particular, for a flat vector bundle E on B, and a flat connection V in
E,
M(TB,V,E) = H] _ (B v)"lB
’ deRh™ ’
the equivariant de Rham cohomology of the universal cover of B, coanstructed from
forms w € A*(ﬁ,v) which are equivariant with respect to the holonomy action

of nl(B) on the fibre type V. 1In this way Lie algebroid cohomology may be regarded
as a generalization of de Rham cohomology in which coefficients in local systems of

vector spaces are perumitted.

Thus in the case of the Lie algebroids of Lie groupoids, the Lie algebroid
cohomology is a known invariant, though one which has only been extensively studied
in the case where the structure group is compact (see, for instance, Greub et al
(1976)). One of the strengths of the Lie algebroid formulation, however, is that it
is a cohomology theory of algebraic type, comparable to the cohomology theories of
Lie algebras and of discrete groups, and that what is significant from the point of
view of the algebraic cohomology theory is also significant geometrically. We will
spend much of the next three sections justifying this observation and developing its
consequences. The first step in this process is the interpretation of;tZ(A,E)
in terms of equivalence classes of extensions of A by E, and for this we need the

following general concept of curvature.

Proposition 2.9. Let A and A' be Lie algebroids on B, not necessarily transitive,
and let ¢: A + A' be a morphism of vector bundles over B such that q'¢¢ = q. Then

n R¢(X,Y) = ¢([X,Y]) - [4(X),¢(¥)]

defines a map I'A x TA + TA' which is alternating and C(B)-bilinear, and thus defines
2
a section of Alt (A;A'), called the curvature of ¢.

For X,Y,Z € TA we have
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(2) G, R (Y, D)) - R, (IX,¥1,2)} = 0,
where G is the cyclic sum.

Proof: 1In the first paragraph only the C(B)-bilinearity is not clear, and it
follows by calculation. Formula (2) follows from the Jacobi identity
in TA', 1/

The curvature map ﬁY: TB ® TB + L defined in IITI 5.1 for a connection
Y: TB + A in a transitive Lie algebroid is related to this RY by RY = jﬂiY.
Equation (2) generalizes III 5.11, and may be called an abstract Bianchi identity.

Vector bundle morphisms ¢: A + A' with q'®¢ = q will be called anchor-preserving
maps.

Proposition 2,10, Let ¢: A + A" and ¥: A' + A" be anchor-preserving maps of Lie
algebroids. Then

R¢°¢ = Rw°(¢ x ¢) + W'R¢-

Proof: Calculation. /!
We return now to the conventions made at the start of this section: A is a
Lie algebroid on base B, not necessarily transitive, and p is a representation of A

on a vector bundle B.

Definition 2.11. An extension of A by the vector bundle E is an exact sequence

(3 LU Y

of Lie algebroids over B, where E is considered to be an abelian Lie algebroid.

A transversal in the extension (3) is a vector bundle morphism

X: A * A' such that wey = idA: A back-transversal in (3) is a vector bundle
morphism A: A' + E such that Aeil = idE.

A transversal is flat if it is a morphism of Lie algebroids; equivalently,

if 1t has zero curvature. The extension (3) is flat if it has a flat transversal.

/1

The definition of an exact sequence of Lie algebroids is given in III 2.14.
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As with connections (see the discussion following III 5.1) there is a

bijective correspondence between transversals X and back-transversals A, given by

(4) 1A+ You = idA,,

and a corresponding pair satisfy Aex = O, Since 7 is a surjective submersion and a
morphism of vector bundles over B, transversals always exist. Any choice of

transversal determines an isomorphism of vector bundles A' S A®E

From ToX = idA it follows that q'ex = q, so a transversal is automatically
anchor-preserving. From this and qem = q' it follows that im(q) = im(q'). Hence
A' is transitive iff A is transitive, and A' is totally intransitive iff A is

totally intransitive,

For transversals x: A > A' of (3), we will normally use as curvature the

map EX: A®A>E with 10§X = R,. Note that ﬁx e IC2(A,E).

Recall from III 2.16 that an extension such as (3) induces a
L

representation pA of A on E, which can be written as
AV
e (X)(W) = [x(X), w1,
X e TA, u € TE, for any transversal X.

Definition 2.12. Given the Lie algebroid A and the action p of A on E, the
1
extension (3) is an operator extension of A by E if pA = p,

1 w
Two operator extensions E +2+ A° —-3» A, s = 1,2 are equivalent if there is

a morphism of Lie algebroids ¢: A1 > A2 over B (necessarily an isomorphism) such

/1

that ¢°11 =1, and w2°¢ =7

2 1°

The set of equivalence classes of operator extensions 1s denoted by
Opext(A,p,E), or by Opext(A,E) if p is understood. There is a natural bijection
between le(A,p,E) and @%ext(A,p,E) described in the following proposition.

Proposition 2.13. (i) Let f ¢ FCZ(A,E) be a cocycle, that is, let

G (e (£(¥,2)) - £({X,Y],2)} = 0
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£
for all X,Y,Z € TA. Denote by A" the vector bundle A ® E equipped with the
anchor qf(x ® u) = q(X), and the bracket

(X ®u, Yov]=([x3] ¢ {p(X(V) - p(M)(w) - £C X,Y )}

1
on I‘Af. Then Af is a Lie algebroid on B and E +—+ Af -—L’ A is an operator
extension of A by E. (Here 1t E+A#®E and % A ® E > A are the natural maps.)
£
The transversal 1,3 A+ A has curvature Rl = f.
1

(ii) Conversely, let E N Al 5 A be an operator extension of A by E and
let x be a transversal., Then I_{X is a cocycle, that is, d(ﬁx) = 0, with respect to
the coboundary induced by p. Further

R

gx:Ax-»A', X e ue+ x(X) + 1(w)

R
is an equivalence of E +-> A X 33> A with E +~+ A' —+> A, and gx maps 1, to X.

(1ii) Let g ¢ I‘Cl(A,E); recall that

dg(X,Y) = p(X)(g(Y)) - o(Y)(g(X)) - g([X,Y])
for X,Y € TA,
Given any f ¢ ZZ(A,E), the map

gt Af > AFMB g e Lk x e (u+ g(0)

is an equivalence of extensions.

1 n

(iv) Conversely, if E »-25 A% -3 A, s = 1,2, are operator extensions,
and ¢: Al > A2 is an equivalence, then for any pair of transversals xl, )(2

1 2
for A", A", there is a unique g ¢ IC (A E) such that

og o -1
¢ = gxz g&"l,

namely g = }\20 ¢vxl, and dg = f2 - fl.

13
Indeed each cochain g e I'C (A,E) induces a permatation x k» X° of the

1 T
transversals in any operator exteusion E #+-+ A' -+ A, If X is a transversal,

then xg = X + 1og is another, and R g = EX - dg.

X



Proof: A straightforward manipulation. 1/

The linear structure on ﬂZ(A,E) may now be transferred to @pext(A,E).
Recall that if A is totally intransitive, QMZ(A,E) is a C(B)-module and is otherwise
merely an R-vector space. The multiplicative structure is given by the following

construction.

Proposition 2.14. Let E 2o ar -Js A be an operator extension of A by E.

Let E be a second vector bundle on B and H: A > CDO(E) a representation of A

on E. Then if ¢: E > E is an A-equivariant morphism of vector bundles over B, there
is a unique extension E +=> & -+> A of A by E which induces s and which is such that
there is a morphism of Lie algebroids $: A+A making

—— A —> A

]

hd
1) e (m}

|

B tm—

|

commute.
Proof: Choose a transversal X: A + A' and define a bracket on T(A @ E) by
X ou, Y o] = [x,3) @ B - 6D - & (X,D}

With this bracket and with anchor E(x ® E) =q(X), A @ E becomes a Lie algebroid
on B; denote it by A. It is easily checked that A is independent of the choice

1 w
2~ ~
of x, up to isomorphism, that E »-=> A -3 a s a p-operator extension, and that
X'+ m(X') @ ¢A(X') has the properties required of 5. /!

E +-> A -*>* A is the pushout extension of E +~+ A' -++ A along ¢.

It is difficult, and unrewarding, to give a proof of 2,14 without using 2.13.

Now, for an arbitrary Lie algebroid A, and an extension E +-> A' -++> A, the
map E *+ E, u > kp, where k € R is a constant, is equivariant and the corresponding
pushout is the scalar multiple of [E +=+» A’ =+> A] e @pext(A,E) by k. If A=1 is
totally intransitive, and u € C(B) is a function, then E * E, u F+ u(p(n))p is

equivariant, and the pushout extension similarly defines the C(B)-module structure.
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To define the addition on 0pext(A,E) the construction of pullback extensions
is required. This construction can be given in greater generality than the

construction of pushouts.

Proposition 2.15. Let ¢l: A1 + A and ¢2: A2 + A be morphisms of Lie algebroids over
B such that

im ¢i + im ¢i = Ax for all x ¢ B.

Then the pullback vector bundle

~ 1 2 1 _ 2
K={x ox ca oa” | o xp = o (x)}

(see C.5) is a Lie algebroid with respect to the anchor ;(x1 @ x2) = ql(Xl) = qz(xz),
and the bracket
@ X Y = R4 .
[X1 TR 2] (Xl,le [X2,Y2]
1} A1 ® A2 +> Al,

1 2 2 -
T, A @A > A are Lie algebroid morphisms over B, and if A is any other Lie
algebroid on B and ¢1: A > A1

Further, the restrictions to A of the projections 7

R wzg A+ A2 are morphisms of Lie algebroids over B

1 1 2 2 - o~
such that ¢oy¢ = ¢ oy , then there is a unique Lie algebroid morphism §: A + A
such that ﬂlow = “’1’ e Y = wz.

Proof: The pullback vector bundle is defined in C.5. The remainder is
straightforward. //

A is called the pullback Lie algebroid, and may be denoted A1 ® AZ.
A
The direct sum Lie algebroid (III 2.18) is a particular instance. The second

paragraph of 2.15 embodies the pullback property. We will normally denote the
maps e Al, A A2 by $2, $1 respectively.

Proposition 2.16. Let E »>2s A -3+ A be an extension of A by E and let
$: A" + A be a morphism of Lie algebroids over B. Then

g +ts & -

> A"

is an extension of A" by E, where Tis ubr u) 0, and, further
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E »m——3 Ao —T3

commutes.
Proof: Routine verification. //

1~ 1
E +2+ & -7» A" is called the pullback extension of E +-+ A' -++ A over ¢.

The addition on @pext(A,E), known as the Baer sum, can now be defined in the

usual way (see MacLane (1975, pp. 113-114)): given operator extensions
E > 2% = A, s = 1,2, form firstly E ® E =+ A" 6 AZ ~>» A © A, If A is

transitive, the direct sums A & A and A1 ® A2 are to be read as ® ; if A is
TB

totally intransitive, the #'s are merely vector bundle sums over B; we do not need
any other case. Next take the pullback of this over the diagonal map A + A ® A, and
lastly take the pushout of the result over the sum map E ¢ E + E. The details are
left to the reader.

The bijectimljuz(A,E) +*’@Gext(A,E) is now an isomorphism of vector spaces
for any Lie algebroid A, and of C(B)-modules when A is totally intransitive.

The zero element of 342(A,E) corresponds, of course, to the flat extensions
of A by E. We refer to the extension A° constructed in 2,13(1i) from the zero

cocycle as the semidirect product of A by E and denote it by A % E, or by A X E

if p is understood.

Any transversal X in A & E has the form x(X) = X @ g(X) for some
g e FCl(A,E), and x is flat iff dg = 0. Thus ;%I(A,E) can be interpreted as the
space of flat transversals in A % E modulo those flat transversals of the form
x(X) = X @ p(X)(u) for some u £ IE.

More generally, recall from 2.13(iv) that in any operator extension

E *= A' > A of A by E a cochain g € FCI(A,E) induces a permutation of the

transversals of A', namely x > xg = X + 1og, From the formula R g = EX - dg

it follows that the cocycles g ¢ EEI(A,E) are precisely those cochains whose

permutations preserve the curvature of transversals. 1If g is a coboundary
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du, u € I'E, then

(x + 10d)(X) = x(X) + 1(p(X)(1))

= x(X) + [x(X),1(w].

Thus we have

Proposition 2.17. Let E a3 A be an operator extension of A by E. Then
j‘l(A,D,E) may be realized as the space of those automorphisms A' + A' of the
form X' =+ X' + 1g(wX'), where g is a vector bundle map A + E, which preserve the
curvature of transversals of A', modulo the space of automorphisms A' + A' of the
form X' - X' + [X',1(u)], where p € TE. //

It is interesting to interpret this result for connections in a principal

bundle with abelian structure group.

Lastly we have the calculation of ﬂ{o(A,E).

Proposition 2.18:

HOAE) = {weTE | o)) =0 ¥X & Ta}

= (e 7

If A is totally intransitive then (FE)A is a sub C(B)-module of TE. It need
not correspond to a sub vector bundle of E, since the rank of p need not be locally

constant. This is so even if A is an LAB.

For A not totally intransitive, (I‘E)A is merely an R-vector space. For A
transitive, (I’E)A was calculated in 1.19.

We close this section by establishing that the cohomology defined in 2.1
coincides with that of Rinehart (1963). The importance of this is that Rinehart
gives a construction which yields a “"universal enveloping algebroid" for a given Lie
algebroid and - proving a Poincaté—Birkhoff—Witt theorem for it - obtains the
cohomology 2.1 as the derived functors of the appropriate Hom functor (op. cit.,
Theorem 4.2). Although the results presented here and in the next three sections
are best formulated in terms of the standard cochain complex 2.1, it may eventually
be necessary to relate it to a Lie groupoid cohomology defined as the derived

functors of a fixed-point functor (as in, for example, Mackenzie (1978)).



211

The polnt which needs to be established is the equivalence of the two
definitions of module.

Let A be a Lie algebroid on B. Denote by A# the vector bundle A ® (B X R).
Define a Lie bracket on T(A#) by

X e £, Yogl=I[XY] e (@X)g) - q(Y)(£)).
# #
(A" is now itself a Lie algebroid, with anchor q (X ® £f) = q(X).)

Definition 2.19 (Rinehart (1963)). A C(B)-regular A#—module is a vector bundle E on
B together with an R-linear map ;: T(A") ® TE + TE which is a representation of
the R-Lie algebra F(A#) on the R-vector space I'E, such that

(1) SEEIQ) = £5I() ¥ € c(B), ¥eTah), ueIE,

(11) p(0 ¢ 1) = 1d,. /1l

Proposition 2.20. Given a representation p of A on a vector bundle E, there is a
C(B)-regular A#—module b F(A#) ® TE + TR defined by

PX & £)(w) = p(X)(W) + fu.

Conversely, given a C(B)-regular A#—module S, the map p: TA ® TE » TE,
(X, u) > B(X ® 0)(u) defines a Lie algebroid representation of A on E.

The correspondences p ++ p are mutually inverse.

Proof: Note that p(0 © f)(u) = S(f(O e 1))(u) = fu, by (i1) in 2.19. Given this,

the verifications are easy. For example,

B(X © 0)(p(0 ® £)(w)

o(X)(fw)
=o([X ©0, 0 £])() + p(0 ¢ £)(p(X ® 0) (k)

50 © q(X)(£)) (W) + £o(X) (1)

(X (£)u + £p(X) (W), //

I am grateful to Rui Almelda for pointing out in 1982 the omission of (ii)
in 2.19 from the account given in Mackenzie (1979).



CHAPTER IV 212

§3. Non-abelian extensions of Lie algebroids and the existence of transitive

Lie algebroids with prescribed curvature.

We now present the classification theory of non-abelian extensions of Lie
algebroids, and its application to the problem of constructing a connection with

prescribed curvature form.

Given a non-abelian extension of Lie algebroids K sisopr s A, each
X' € TA' induces a Lie covariant differential operator V ++ 1-1[X',1(V)] of K. 1In
the abelian case these operators depend only on 7(X'); 1in the non-abelian case,
however, X" € TA' with m(X") = m(X') will induce an operator which differs from that
induced by X' by an element of Tl'ad(K) < TCDO[K]. The extension therefore induces,

not a representation of A on K, but a morphism E: A + E%%%%% which we call,
following Robinson (1982), a coupling of A with K. This section begins with the
construction of 9%%%%% , which we call the Lie algebroid of outer covariant

differential operators, and denote by OutDO[K].

Given a coupling E: A + OutDO[K], there is a natural representation, pE, of
A on ZK, and from 3.2 to 3.12 we are concerned to show that E defines an element
of ;u3(A,pE,ZK), called the obstruction class of £ and denoted Obs(E), From 3.14
through to 3.19 we give the detailed comstruction of the coupling arising from a
(nonabelian) extension and prove (3.18) that for such a coupling the obstruction
class is zero. From 3.20 through to 3.31 we are concerned with establishing the
converse of 3.18, The main construction result is 3,20 which shows (3.22) that a
coupling E with obstruction class zero arises from an extension. From 3.23 through
to 3.31 we classify the extensions which induce a given coupling Z; the analysis
shows that jdz(A,pE,ZK) acts freely and transitively on the set of equivalence
classes of E-operator extensions of A by K. 1In 3.32 to 3.34 we address the question
of semidirect (or flat) extensions, and note that not every coupling with zero
obstruction class arises from a semidirect extension; on the other hand there may
be several inequivalent semidirect extensions inducing the ome coupling. The section
closes with a brief application of 3.20 to the construction of produced Lie
algebroids.

The cohomological formalism developed in this sectlion is of a standard type,
and closely follows the theory of nonabelian Lie algebra extensions, as developed by
Hochschild (1954a,b), Mori (1953) and Shukla (1966). Some aspects of this formalism
have been noted before (Palais (1961b), Hermann (1967), Teleman (1972)), but worked

on the level of the modules of sections rather than the Lie algebroids themselves.
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What is remarkable is that this cohomological apparatus yields results of
considerable geometric significance. From 3.20 we obtain a solution to the
algebraic half of a long-standing problem (Weil (1958), Kostant (1970)): When is a
2-form the curvature of a connection? From 3.20 it follows that an LAB-valued 2-
form R € A?(B,L) on a manifold B is the curvature of a connection in a Lie algebroid
iff there is a Lie connection V in L such that EV = ad R and V(R) = 0. 1In Chapter V
we will answer the question of when the resulting Lie algebroid can be integrated to

a Lie groupoid, in the case where the base is simply-connected.

The second major application of the results of this section is to Theorem
4,1 (see also Theorem 5.1) where the classification of nonabelian extensions is the
key to the proof that a transitive Lie algebroid on a contractible base admits a

flat connection.

In addition, the reader will probably be pleased to see how the standard
identities of infinitesimal connection theory arise naturally in cohomological

terms.

The results of this section first appeared in Mackenzie (1979). 1In the

present accouunt, some of the proofs have been reformulated for clarity.

Definiton 3.1. Let K be an LAB on B. Then the quotient Lie algebroid

Der(K)/ad(K) *L» CDO[K]/ad(K) -3» TB
is denoted by

out(K) +&+ outpolk] -3+ TB

and elements of T'OutDO[K] are called outer covariant differential operators on

K. /!

Quotient Lie algebroids are defined in 1.11. That ad(K) = im(ad: K + Der(K))
is a sub LAB of Der(K) follows from l1.2. That ad(K) is an ideal of OutDO[X] from the

formula

1) {D,(jead) (V)] = (Jead)(D(V))
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for D € TCDO[K], V € I'K, which is proved by an easy manipulation of the Jacobi
identity. We now have

=
— R&4y

Der(K) +—i— CDO[K] —3—= TB

l |

Out(K) s—d—v OutDO[K] —3%— TB

with both rows and columns exact.

From now until 3,31 we consider a single Lie algebroid A on B. The anchor

of A is denoted qA. It is not assumed that A is transitive.

Definition 3.2. A coupling of A is an LAB K together with a morphism of Lie

algebroids Z: A + OutDO[K]; we also say that A and K are coupled by Z. /1!

This is what would once have been called an "abstract kernel for A"; the
present terminology comes from Robinson (1982). Every transitive Lie algebroid
L +-> A -++ TB induces a coupling of TB to L, namely §°VY for any connection
¥: TB + A. See 3.17 below.

Now fix a coupling Z of an LAB K to A until 3,13. Since
h: CDO[K] —-** OutDO[K] is a surjective submersion, as a map of vector bundles over
B, there are vector bundle morphisms V: A + CDO[K], X > VX’ such that
Hﬂ = E, We call V a Lie derivation law covering E. (See 3.8 for the formal

definition.) Since th = q it follows that qeV = qA; that is, V is an anchor-
preserving map. Therefore the curvature of V is a well-defined map

Ryt A ® A~ CDO[K]. Since ﬁ°V = E is a morphism, it follows that #’Rv = 0 and
so RV takes its values in ad(K) € Der(K); we denote this map A ® A + ad(K) by EV’
Now, as with E above, there are alternating vector bundle morphisms A: A ® A + K
such that adeA = ﬁv. This f;llows from momentarily considering EV to be defined

on A2A and lifting it from A“A » ad(K) to A2A + K across the surjective vector
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bundle morphism ad: K + ad(K). We call any alternating map A: A ¢ A + K with
adeh = RV a 1lift of RV'

E: A » OutDO[K] induces a representation of A on ZK, the centre of K. To
gsee this, let V be any Lie derivation law covering Z. Then for X ¢ TA, the operator
Vx: TK + IK restricts to I'ZK + T'ZK, for if Z € I'ZK and V ¢ TK then

v,V (z =V v,2 - [v.(m,z
(v, x( )] X([ »21) - 1 X( ),2]
= VX(O) -0=0,

since Z is central. Write p(X) for the restriction of VX to I'ZK + TZK, Then

p defines a vector bundle map A + CDO[ZK] = CDO(2ZK) which is easily seen to be a Lie
algebroid morphism. If V' is a second Lie derivation law for E then Vk - VX is in
I'(ad(X)), for all X € TA, and therefore vanishes on TZK. Hence p is independent of

the choice of V.

Definition 3.3. The representation p: A + CDO(ZK) just constructed is called the

central representation of E and is denoted p . !/

Our concern now is to show that every coupling £ of A to K defines an
element of:wt3(A,p=,ZK). This will take us until 3.13.

Lemma 3.4, Let V be a Lie derivation law covering E and let A be a lift of
Rv. Then for all X,Y,Z € TA the element

e{vx(A(Y,z» - MX,Y],2)}

of I'K lies in TZK.
Proof: Apply jead. We obtain, firstly,

Jead(V, (A(Y,2))) = [Vy,(Jead) (MY, 2],
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by (1), and we have jeadoA = joiv = RV by definition. So jead of the cyclic sum is

g {[VX’RV(Y’Z)] - RV( [X,Y] yZ)}
and this is zero by the general Bianchi identity 2.9. /!
Write £(X,Y,Z) for the element in the lemma. It is easily checked that f is
an alternating and C(B)-trilinear function of X,Y,Z € TA, and it therefore defines
an element of FC3(A,ZK), also denoted f.

Lemma 3.5, df = 0 with respect to the coboundary induced by p.

Proof: This is a long but straightforward calculation, and requires no
ingenuity. 1/

So f ¢ EEB(A,O,ZK). f is called the obstruction cocycle defined
by V and A for the coupling Z, We may write f = £(V,A).

Lemma 3.6. Fix a Lie derivation law V covering E and let A and A' be two lifts
of Ry, with corresponding obstructions f = £(V,A), £' = £(V,A'), Then
A' = A = iog for some g € PC (A,ZK) and dg = £' - f.

Proof: Since jeade(A' - A) = Rv - RV = 0 there is a unique g: A ® A + ZK with
ieg = A' - A, Since A' and A are alternating, it follows that g is so. Thus

g € FCZ(A,ZK). Now

i(£'(X,Y,2) - £(X,Y,2))

] Vo (10 5(¥,2)) - 1og([X,Y],2)}

(& {p(X) (g(Y,2)) - g(IX,¥]1,2)})

i(dg(X,Y,2))

for X,Y,Z € TA, 1

We now need to show that the cohomology class of f is independent of the
choice of V.

Proposition 3.7. Let V and V' be two Lie derivation laws covering 2. Then
V' =V + jeade! for various maps %: A + K, and
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Ry = Ry = =ad(7, (4(¥)) = T (2(X)) - LIX,Y] + [2(R), (D)),

Proof: The existence of % follows as before. For X,Y € TA we have
- = M - - 1 t
Ry = R (X,Y) V[X’Y] V[X’Y] (Ve Vgl + 19,91
= (jeadof)[X,Y] - [(joadol)(x),VY]
- [VX,(joadvlL)(Y)] - [(jeade2)(X),(jeadot) (W],

Using (1), this becomes

(Jrade2)[X,¥] + (Foad) (Y, (2(X))) - (§ead)(V, (£(V))) - (jead) [2(X),2(D)],
whence the result, /!

This can be expressed more succinctly by extending the definition of the
exterior covariant derivative given in IIISS5. While we do this, briefly
disregard the coupling E.

Definition 3.8. Let A be any Lie algebroid and let K be any LAB on the same base.

A lie derivation law for A with coefficients in K is an anchor-preserving map
V: A + CDO[K]. //

Definition 3.9. Let V be a Lie derivation law for A with coefficients in K. The
(exterior) covariant derivative induced by V is the sequence of

214 K) defined by

operators V: Fcn(A,K) + I¢

o+l 1 «
) = LD X, X
r=1 T

VE (Kpyeee s »

Xn+l n+l

A oA

T+s
f([Xr,XS],Xl,...,X

+ 1 (D ). 1/

<s nt+l

The requirement that V be anchor-preserving ensurés that the RHS actually is
C(B)-multilinear. There is a formula for VeV in terms of the curvature of the Lie

derivation law.

The equation in 3.7 can now be written
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, = Ry = —ad(V(Q) + [2,&]).
This clearly resembles III 5.12 and III 5.13. The general result is the following.

Proposition 3.10, Let A be a Lie algebroid on B and let L' +-+ A' —++ TB be a

transitive Lie algebroid on B. Let ¢1,¢2: A + A' be two anchor-preserving maps and
write ¢2 = 01 + j'o 2, where £: A + L', Then

R, -R, =-(V(2) + [£,2])
4 4

where V: A + CDO[L'] is the Lie derivation law defined by j'(VX(V'))
= [¢1(X),j'(V')]-

Proof: Identical to that of 3.7 or III 5.12, /1

IITI 5.13 now follows by applying 3.10 to ¢2 = idA and ¢1 = Yyoq: A + A,

We return to the coupling E., Notice that the definition of f can now be

written £ = V(A), and f thus measures the extent to which A satisfies the Bianchi
identity with respect to V.

Proposition 3.11. Let V be a Lie derivation law covering E and let A be a lift
of RV. Let V' be a second Lie derivation law covering E and write V' = V + joadof,
where £ is a map A + K. Then

A' = A - (V(R) + [#,L])

is a lift of Ry and £(V',A') = £(V,A).

Proof: Certainly A' is alternating, and adeA' = ﬁv - ad(V(2) + [£,2]) =R
by 3.7. It remains to show that V'(A') = V(A).

v

Now V' is a linear operator, and so
VI(A') = V(A) = V' () - 7°(V(L) + [%,2]) - V(A).

For X,Y,Z € TA,

(VA - V(A))(X,Y,2) =@ {(jeadet)(X)(A(Y,2))}



219

=G {[2(X),AY,2)]}.

Similarly
V() + [2,21)(X,Y,2) = V(V(L) + [2,2])(X,Y,2)
+ B {(jead L) (VL) + [2,4D)(Y,ZN}.

First calculate V(V(R)). By regrouping terms and using the Jacobi identity

one obtains
V(VD)X,Y,2) = -6 (R (X, (22},
and since joadeA = RV’ this cancels with the term (V'(A) - V(A))(X,Y,2).
Next, by expanding the cyclic sum and using VX( [v,W]) =
7, (V),W] + [V,VX(W)] repeatedly, one obtains
V(12,21 (X,Y,2) =B [V(O(X,1),4(2)].

Lastly,
G {(Joade2) (X) ((V(L) + [2,21)(Y,2))}
=& {[a0),%(1,2)]} +& {[2(x), [2(1), (2]},

The second term of this vanishes, by the Jacobi identity, and the first cancels

with v([2,2])(X,Y,2).

Thus we obtain V'(A') - V(A) = 0, as desired. //

3.11 is a solid calculation, no matter how one approaches it. However in
the setting provided here, it 1s at least the case that V'(A') - V(A) decomposes
into geometrically significant groups of terms. This insight is not available in

Lie algebra cohomology, from where the calculation comes.

Putting 3.6 and 3.11 together, we obtain
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Theorem 3.12., Let A be a Lie algebroid on B and let K be an LAB on B, Let E
be a coupling of A with K. Then the cohomology class in cu3(A,p:,ZK) of
£(V,A), where V is a Lie derivation law covering Z, and A is a 1lift of RV’ depends

only on & and is independent of the choice of V and A. //

This class is called the obstruction class of the coupling 2, and will be

denoted Obs(E).

The following observation will be important later,

Proposition 3.13. Let A, K and E be as in 3.12., Let V be any Lie derivation law
covering 2, and let f' be any cocycle in Obs(E)., Then there is a lift A' of

R such that £(V,A') = £'.

Proof: Let A be any lift of RV’ and write f = f(V,A). Then f and f' are
2
cohomologous; choose any g € TC (A,ZK) such that f' = £ + dg. Define

A' = A + fog; then ad®A' = adeA = I_{Vand 3.6 shows that £' = £(V,A"). /!

We now describe the coupling assoclated to a general (nonabelian) extension
of Lie algebroids, and its obstruction class. Until 3.19, let A be a fixed Lie
algebroid on B and let K be an LAB on B.

Definition 3.14. An extension of A by K is an exact sequence of Lie algebroids over
B

(2) K +3s ar -Taa,
as defined in III 2.1l4.

1 w
Two extensions of A by K, K FUL LS. SN A, t = 1,2, are equivalent if there

is a morphism of Lie algebroids over B, ¢: Al > A2, necessarily an isomorphism, such

that 0011 =1 and 04 = M. /7
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We define the concepts of transversal, back-transversal, flat transversal
and flat extension exactly as for extensions by vector bundles (see 2.11). The
discussion following 2.11 also applies, except that an extension (2) by a general

LAB need not induce a representation of A on K. Instead the representation formula
defines a Lie derivation law.

The example of an extension of Lie algebroids which is of most importance to
us is the extension U +-+ A —-++ TB associated with a transitive Lie algebroid. All
the calculations of this subsection are formally equivalent to results for

infinitesimal connections. (See III§5.)

Fix an extension K +2» A' —¥» A of A by K until 3.19.
Proposition 3.15. Let Xx: A + A' be a transversal in K »1s A’ -5 A. Then
®) (RW) = 1x(®, 1N
for X € TA, V e I'K, defines a Lie derivation law for A with coefficients in K.

Proof: 1t need only be checked that vX, A » CDO[K] is anchor-preserving, and this
Al A
follows from q 06X = q . //

Lemma 3.16. With the notation of 3.15,

Proof: For X,Y € TA and V ¢ TK,

(R X(X,Y)(V)) = XX, ¥),1(V) ] = [x(X), [x(¥), 1 (V) 1) + [x(¥), [x(X),1(V)]]
v

[X[X,Y), 0N ] + [1(v), [x(X),x(D]]

(by the Jacobi identity in TA')
[RX(X,Y),I(V)]

and the result follows. //

X
v
Hence the composition A —--+ CDO[K] --++ OutDO[K] is a morphism of Lie
algebroids. If X': A + A' is a second transversal then x' = X + t°% for some map
1] 1
g2 A+ Kand ¥ = ¥ + ad . Hence liovx = l]wvx .



CHAPTER IV 222

Definition 3. 17. The coupling Hovx A * CDO{K], where x 1s any transversal in the
extension K -+ A' s A, is the coupling of A with K induced by the extension. 7/

Note that the choice of a transversal X determines both a Lie derivation

law vX covering the coupling induced by the extension, and (by 3.16) a 1ift EX of

R » Thus each X determines an obstruction cocycle.
v

Proposition 3.18. For every transversal X,
X =
f(V ,RX) = 0.
Proof: f(X,Y,Z) = © {Vﬁ(ﬁX(Y,Z)) - §X([X,Y],Z))} and, applying 1 this becomes
G;{[x(x),Rx(Y,Z)l - R (1%,¥1,2)}
which is zero by the general Bianchi identity of 2.9. /7

This equation, f(VX,EX) = 0, is called the Bianchi identity for x.

In particular, the obstruction cohomology class for the coupling detemined

by K +— A' -+> A is zero.

The following result shows that every Lie derivation law covering the

coupling determined by an extension, arises from a transversal.

Proposition 3.19, Let V be any Lie derivation law covering the coupling determined
by K »Ls A' -Is A., Then there is a transversal x: A * A' such that X = v.

Proof: Let X' by any transversal. Since %”V = qOVX', there is a map T: A+ ad(K)
such that V = Vx' + joL, Since ad: K + ad(K) is a surjective submersion of vector
bundles, % can be lifted to £: A » K, Define X = X' + 192, Certainly x is a
transversal, and for all X € TA and V ¢ IK,

{TXW)) = [ (0,1 ] + 1{200,V]

(W) + Geade® W)

1(VX(V)),

as required. /7



Thus the nonzero elements of the obstruction class arise from haviang chosen
a Lie derivation law v and having then failed to choose the natural 1lift, namely
iX’ of va; se; 3.6. On the othef hand, it is not true that if A is a 1lift of
RVX, and if £(V",A) = O, then A = RX; there are usually, for example, many closed

non-zero two—forms on a manifold.

We arrive now at the construction and enumeration of extensions
corresponding to a coupling which has obstruction class zero. The first result is

the basic construction principle.

Theorem 3.20. Let A be a Lie algebroid on base B and let K be an LAB on B.

Let V: A * CDO[K] be a Lie derivation law such that 9°V: A + OutDO[K] has zero
curvature, and let R: A € A + K be an alternating 2-form on A with values in K.
Then, if

) EV = adeR, and

(i1i) the Bianchi identity Y(R) = O,
hold, then the formula
[X oV, YoW =[X,Y] ¢ {vx(w) - VY(V) + [V,W] - R(X,Y)}

defines a bracket on T(A ©® K) which makes A ® K a Lie algebroid on B with respect to

the arrow q' = qon. , and an extension

1

1 L

2

K +==+ A' —==33> A

1
A+ A' 18 a transversal with V 1. Vand R, = R.

of A by K such that IFE X

Proof: This is a straightforward calculation. We verify the Jacobi identity as an

example.

Given Xr ® Vr e TA', r = 1,2,3, we have for the K-component of
® ® ®V
G[[x1 VX, eV, X, 3‘] the formula
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Gl W)y -9, (v, (w))+v, (v (v))
[%),%,]"'3 Xyt Xy 2 X3 X, L

-V (WL, VD) 4V (R LX) + (v (v ),V ]
Xy 172 Xy 1772 X273

[sz(v1)’v3] v v, 1,0, ] - R LX0),0,)

R([xl,le,x3)}.

The term G;[[VI,VZ],V3] vanishes by the Jacobi identity in K. The fifth
term can be rewritten as & VX (R(XZ’X3))’ by cyclic permutation, and then cancels
with the last, by the Bianchilidentity (i1). Rewriting the first three terms via
-cyclic permutations, we have & RV(XI’XZ)(V3) and this is, by (i), equal to
GS[R(xl,xz),v3], and so cancels with the second-last term. The remaining terms
cancel by the equation Vx([V,w]) = [VX(V),W] + [V,Vx(w)] for X e TA, V,W e IK, which

characterizes the elements of CDO[K], !/

We will treat the uniqueness of this coustruction in 3.23 below.

3.20 gives, in particular, the following construction principle for

transitive Lie algebroids with a prescribed curvature form,

Corollary 3.21. Let L be an LAB on B and let R ¢ FCZ(TB,L) be an alternating 2-form
on B with values in L. Then there is a transitive Lie algebroid L +-+ A -+> TB and
a connection Yy in A with EY = R iff there 1s a Lie connection V in L such that

(1) Ry = adeR, and (11) Y(R) = 0. /!

3.21 provides a solution to the algebraic part of a long-standing problem:
Given an alternating 2-form on a manifold B, when is it the curvature form of a
connection in a bundle P(B,G) over B? In the case of real-valued 2-forms this
problem is solved by the integrality lemma of Weil (1958); see also Kostant (1970).
Weil's result corresponds to the case of 3,21 in which L = B X R; note that 3,21 is
slightly stronger in that we require only some flat conmmection V with V(R) = 0,
whereas Weil requires R to be closed with respect to the standard flat connection
(see 11T 5,17 for the equivalence). In the case of non-abelian coefficients it is
obviously necessary for the 2-form to take values in an LAB, rather than in a single

Lie algebra, and this necessitates the introduction of the Lie connection V.
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The presence in 3.20 and 3.21 of the Lie derivation law V certainly makes
their application difficult. However V, and condition (i), are essential links
between the algebraic properties and the curvature properties of the desired Lie
algebroid. For example, if in 3.21 L is abelian, then it must be flat as a vector
bundle, in order for a transitive Lie algebroid L +-+ A -++ TB to exist (by III
5.10(i1)).

This phenomenon should be compared to the situationm in III 5.15 where a
transitive Lie algebroid is coustructed from a family of Maurer—Cartan forms,
subject to a cocycle condition and a compatibility coandition which involve an
Aut(ﬂ)—cocycle, which turns out to be a cocycle for the adjoint LAB. The Aut(ﬂ)—
cocycle in ITI 5.15 corresponds exactly to the Lie derivation law in 3.21, and

conditions (ii) and (iii) of ITITI 5.15 correspond to conditions (ii) and (i) of 3.21.

The remaining part of this question on the realizability as curvature forms
of given 2-forms, concerns the integrability of the transitive Lie algebroid found
by the method of 3.21. This problem is solved,under the assumption that B is
simply—-connected, in Chapter V.

Corollary 3,22. Let A be a Lie algebroid on B, let X be an LAB on B, and let
Z be a coupling of A with K. Then, if Obs(E) = 0 ¢ j‘a(A,ZK), there is a Lie

algebroid extension

K »=%+ A' =+ A

of A by K, inducing the coupling Z, namely that coustructed ian 3.20, using any Lie

derivation law V which covers E, and any lift A = R of RV.

Proof: This follows from 3.20 by applying 3.13 to the cocycle 0 in Obs(E). //

3,22 and 3.18 together show that a coupling E: A + OutDO[K] arises from an
extension of A by K iff 0bs(z) = 0 e K. 3(a,0%,2K).

There are usually many distinct such extensions. We come now to the problem

of their description.

Proposition 3.23. Let X LN A' -3 A be an extension of Lie algebroids, with K an

LAB. Then for any transversal x: A + A', there is an equivalence of this extension
1 Lt

with the extension g +—Z+ A®K --$+ A constructed via 3.20 from VX and R namely

>
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8;(: A®K>A", X®VEr x(X) + 1(V).
Proof: For example, that gx preserves the brackets merely asserts that

XCO + 1V, XD + 1] = XX,Y] + (T = W) + [V, - R (X,1)
/
for all X,Y € TA, V,W € TK, and this is easily verified. /7

In the terminology of MacLane (1963), 3.23 shows that every extension can be
given a "crossed-product” representation. In particular, the extension coustructed

in 3.20 is determined up to equivalence by V and R.

3.23 is the correct uniqueness result for the problem of constructing
transitive Lie algebroids with a preassigned curvature form and adjoint connection.
However we will also need in what follows an enumeration of the extensions of A by K
in terms of %Z(A,ZK).

From now until 3.31, let A be a fixed Lie algebroid on B, let K be an LAB
on B, and let E: A + OutDO{K] be a coupling of A with K such that
- 3 g
obs(E) = 0 & M (a,0”,2K).

Definition 3.24. An operator extension of A by K is an extension K +-+ A' —-»+ A

which induces, via 3.17, the coupling E. !/

The set of equivalence classes of operator extensions of A by K is denoted
by @pext_:(A,E,K), or by@pext(A,K) if £ is understood. We will show that
7{LZ(A,0= ,72K) acts freely and transitively on @pext(A,E,K). It will then follow
that Wpext(A,E,K) can be put in bijective correspondence with %Z(A,DE,ZK),

by the choice of any extension as reference point.

The first step is to define an action of ZZ(A,ZK) on the class of all

operator extensions.

Definition 3.25. Let K i+ A' =¥+ A be an operator extension, and let g be
in zz(A,ZK). Then the action of g on the extension yields the extension

X -)—‘+ Al --T>r-> A
g

where Aé = A' as vector bundles, the maps 1 and 7 are the same in both extensions,

the anchor ' A > TB and q': A' + TB ar 1 d the bracket
s q and qz: Ag are equal, an erace[’]gonr(Aé)



is given by

[X,Y]g = [X,Y] + ug(nX,n¥). 1/

The cocycle condition for g ensures that [ , ]g obeys the Jacobi identity.
Since the values of g are in ZK < K, the maps t and 7 remain morphisms with respect

to the new structure, and the coupling is unchanged.

Proposition 3,26. Continue the notation of 3.25. 1If x: A+ A' is a transversal
for A', then it is also a transversal for A', and the two Lie derivation laws
A+ CDO[K] are equal. The curvatures of X are related by

-g -
R = R - ieg.
X X &

Proof: Easy calculation. /!

In particular, K »1s Aé -1 A is an operator extension. Clearly
Al =A' .
( g)h Ag+h
Proposition 3.27. Let X be a transversal in an operator extension
K +5 Al -1, A, and let £: A + K be a map. Then

-5 - X
Rypreg = K = (D) + [1,2D).

Proof: This is formally identical to III S.12. /!

In particular, if 2 takes values in ZK then

RX+1'i°E = RX - iedf.

From this we deduce that the action of ¥ 2(A,ZK) factors to an action ofﬁuz(A,ZK).

Proposition 3.28. TLet K »2s At =%> A be an operator extension, and let
h e FCI(A,ZK). Then XK +-+ Aéh -+> A is equivalent to K +=+ A" ~++ A,

Proof: Let X be a transversal of A'. Regarded as a transversal of A&h’ it has

curvature EX - todh (by 3.26). So, by 3.27, the transversal X + teieh in Aéh

has curvature EX' Since h takes values in ZK, the Lie derivation law determined

by x + 10ioh in A;“lis the same as that determined by x in A'. So we have two
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extensions, A' and A&h’ with two transversals, x and x + teiedh, respectively, which

have the same curvature and Lie derivation law. It now follows from 3.23 that the
extensions are equivalent. 1/
The equivalence A' + Aéh is € X ++ X - (1eioh) (nX). Briefly,
€ = 4id - hem,
h
We therefore have an action of ﬂ{Z(A,ZK) on the class of all operator

extensions., It is easily checked that the action sends equivalent extensions to

equivalent extensions, so we in fact have an actiom of %Z(A,ZK) on @pexc(A,K).

We now prove that this action is free, and transitive.

Theorem 3.29. Let K »1s A’ -1 A be an operator extension, and let g € EEZ(A,ZK) be
a cocycle, and suppose that there is an equivalence ¢: A' + Aé. Then g 1is
cohomologous to zero, g = dh, and ¢ = eh, where h € rcl(A,ZK) is the cochain
determined by h = -Ae¢ey for any transversal X and associated back-transversal A.

Proof: From 3.26 it follows that

= =g
jog = R - R
87 %y T %

for any transversal X. Now by exactly the same calculation as in IIT 5.13, we

obtain

> X X

Rx(vrx,mz) - v"X(AY) - vw(xx) - AlX,Y] + [2X,AY]
for X,Y ¢ TA',

Similarly, working in Aé with the same transversal X, and recalling from
3.26 that the two Lie derivation laws for X, with respect to A' and Aé,
are equal, we get
R(nx,mn) = & (nex, me)
= V"x(A¢Y) V“Y(A¢X) A oX, Y] + [A4X, A¢Y].

Substituting these in the equation for ieg, we get

(log) (7X, 1Y) = vﬁx(m - AY) - vj‘ﬂ(xx - A4K)
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- (A = A9X,Y] + {[XX,AY) - [A¢X,Ad¥]}.

Is A = A¢ equal to 6w for any map 6: A + K? If it is, then (X - A¢)x
= 0nx = 6 and since AX = 0, it follows that 8 = -A¢x and A — A$ = -A¢xW. Writing

now h = =Apx we have

(10 g) (vX,7Y) V::x(hnY) - V:(rY(hﬂx) - hw(x,Y]

+ {{2¢X + huX, A¢Y + hny] - [A¢X,A¢¥]}

{V:x(hvrx) - vﬁY(hnx) - hnlX,¥] + [hnX,hyl )
+ {[A¢X,hn¥] + [haX, A¢¥]}.

Set 7Y = 0. Then the LHS and all terms on the RHS except the last, vanish.
So [hwX,A¢Y] = 0 for all X € TA' and Y € im(v), and since 7 is onto A and A%¢ is

onto K (for X 1s a surjective submersion), this proves that h takes values in ZK.

The equation for 10g now reduces to (ieg)(nX,nY) = dh(wX,nY), which proves
that g = dh, since m is onto A.

After 3.28 it was remarked that & = 1id - teiehew. Neglecting the i, we

have

€ = 1d + tedode)enm

id + 10Xe¢e(id ~ 10})

id + 1eXep - 10X (since $et = t and Aol = id)

XoM + 10io¢

¢ (since m = med and xem + 10X = id). /1

1
Theorem 3.30. Let K I, Ar J A, ¥ = 1,2, be two operator extensions.

Let x1 and Xy be transversals of Al and A2, respectively, which induce the same Lie

derivation law (see 3.19), and define g ¢ PC (A,ZK) by ieg = RX - RX . Then
1 2

g 1s a cocycle, g e% (A,ZK), and ¢ = 12’). + x2°1' is an equivalence (A ) N
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Proof: That R - R_ takes values in ZK follows from the assumption that
X, X 1 X

V' =V, since adsR_ =R and adeR_ = R (by 3.16).
oGk % sz
Now
(10 dg)(X,Y,2) = 1(& {p(X)(g(¥,2)) - g(IX,Y],2)}

X
- 1 R - R
- & {v, (RXI(Y,Z)) By, x,¥1,2)}

X
2 = -
-6 {v, (RXZ(Y’Z)) - sz([x’Y]’Z)}’

which is zero by the Bianchi identities for x, and X, (compare 3,18).

1

To prove that ¢ preserves the brackets, requires manipulations of a type
that must now be familiar, //

Putting together 3.25 to 3.30, we have

Theorem 3.31. Let A be a Lie algebroid on B, let K be an LAB on B, and let E
be a coupling of A with K such that O0bs(E) = 0 € ji3(A,ZK). Then the additive group
ofﬂz(A,p: ,ZK) acts freely and transitively on{pext(a,Z,K). /1!

One may say that 0pext(A,E,K) is an affine space overlying the vector
space ﬂz(A,p:,ZK) .

3.31 yields in particular a classification of transitive Lie algebroids up
to equivalence. This should be contrasted with the Chern-Weil theory. Classically
one tries to distinguish principal bundles by studying their connections.
Infinitesimal connections actually belong in the Lie algebroids and one shows that
two Lie algebroids are non-isomorphic by exhibiting a connection in one that cannot
exist in the other. This is usually done by means of cohomological invariants
derived from the curvature of all connections via the Weil morphism and in this
context Lie algebroids cannot be distinguished from their reductions: such studies

are topological, not geometric.

In view of the application of 3.31 in §4, some comments about semi-direct

extensions are in order.
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Definition 3.32, Let A be a Lie algebroid on B, let K be an LAB on B, and let
V: A + CDO[K] be a flat Lie derivation law; that is, let V be a representation of A
on K. Then the V-semidirect extension of A by K is the extension

12 n
K28 0 K --3sa
v

where A & K is the vector bundle A ¢ K with anchor q'(X ® V) = qA(X) and bracket
v
[Xev,Yew = [X,Y] ® {vx(w) - VY(V) + [v,W]l}. //

It follows immediately from 3.23 that every flat extension is equivalent to

a semidirect extension.

Not every coupling whose obstruction class 1s zero has a flat Lie derivation

law covering it. A characteristic example follows.

Example 3.33. Let Q be the Lie groupoid associated to the Hopf bundle
37(54 SU(2)). Let E _Sl_’iﬁ‘g_)_ induced
i ‘ 4 SU(2)

by LQ +=+ AQ -+ TS . Then there is no flat Lie derivation law covering E; in

denote the coupling of TS4 with LQ =

fact, LR admits no flat Lie connection.

To see this, note first that ad: A2 -+ CDO[LQ] is an isomorphism, since
ad+: LR + Der(LR) is fibrewise the adjoint representation of %u(2), and gu(2) is
semisimple. Now it is sufficient to observe that S7(SA,SU(2)) itself admits no flat
connection, and this is elementary (since S4 is simply-connected, a flat comnection

would trivialize the bundle). //

On the other hand, there may be nonequivalent semidirect extensions
associlated with the one coupling.
Example 3.34, Let B be a manifold with HﬁeRh(B) # 0, and let I be a nonabelian
Lie algebra with centre 5 # 0. Define K = B xs . Let V° be the standard flat Lie
connection in K and let £: TB + K be a 1-form such that

A= (L) + [2,2]) = (62 + [2,2]) is closed, but not exact.

Let A° denote the semidirect extension TB Ko K and let A' denote (Ao)_A,
v
in the notation of 3.25. Then A' is flat, for it 1s easily seen that

x(X) = X @ 2(X) defines a flat tramsversal, Thus, by 3,23 A' is equivalent to the
semidirect extenslon corresponding to v s s joadef., But, by 3.29, A' is not

equivalent to A®, for ~A is not exact. /!
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A complete interpretation of jis in Lie algebroid cohomology would require a
notion of similarity for couplings, according to which couplings would define the
same obstruction class iff they are simlilar, and a notion of effaceability for
elements of 7ft3, which would characterize those realizable as obstructions. Compare
Hochschild (1954b), Thegse matters may have a geometric significance of their own,
but we have not considered them here since they are not necessary for the results of
§4,

We close this section with a concept of produced Lie algebroid. This

construction should be compared with IT 2,21 (see also the comments in III 7.30).

Theorem 3.35., Let L +-> A —++ TB be a transitive Lie algebroid on B and let
¢: L > L' be a morphism of LAB's over B. Suppose that there exists a representation

p : A+ CDO[L'] such that
(1) p+ = ad'o¢: L + Der(L'), where ad' is the LAB adjoint L' + Der(L'); and

(11) ¢ is A~equivariant with respect to the actions ad and p of A on L and

Then there is a transitive Lie algebroid L' +-+ A' -»+ TB and a morphism of
Lie algebroids 3: A * A' guch that ($)+: L + L' is equal to ¢, and such that
P = ad'oz, where ad' 1s now the adjoint representation A' + CDO[L']. Further, A' is

uniquely determined up to equivalence by these conditiouns.

Proof: Let Y be a connection in A and define on the vector bundle TB @ L' a bracket

structure by
(X eV, You]=[XY) ¢ {p(yO)(W') - o(vOI(V') + [V',W'] - ¢§Y(X,Y)}

where X,Y € TTB, V' ,W' € TL'. It is easily checked that this makes TB ® L' a
transitive Lie algebroid on B; denote it by AY. Further, X |+ qX ¢ ¢wX is a Lie
algebroid morphism A + AY, where w is the back-connection in A correspondiang to Y.

The required properties are easily verified.

If L' +=+ A' -+ TB is another transitive Lie algebroid and $: A+ AT
a morphism with the required properties, thené? : AT+ A', X o V' > X+ Vv
may be checked to be an equivalence. (Note that p = ad'oz ensures that
PO = [8¥K,3'W' 1) [/
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The remark following 1.14 shows that every base-preserving morphism of
transitive Lie algebroids is of the form constructed in 3,35, The remarks following
I1 2.23 apply equally in the case of Lie algebroids.

Note that (ii) is, in part, a requirement that ¢: L + L', regarded as a
map B * Hom(L,L'), be constant in the same sense in which one may say that the
morphism ¢: GR + GR' arising from a morphism of Lie groupoids is constant because

¢ commutes with inner automorphisms.

Using this as a model, the reader may like to give a construction of a

produced Lie groupoid, given

and suitable compatibility conditions on ¢.

§4. The existence of local flat connections and families of transition

forms.

This section is concerned with a single result, aud its immediate

consequences.

Theorem 4.1. Let B be a contractible manifold and let L »-+ A -=++ TB be a
transitive Lie algebroid on B. Then A admits a flat counnection. /!

This result first appeared in Mackenzie (1979); the proof given now is a
revision., 4,1 is an infinitesimal analogue of the well-known result that a
principal bundle - or Lie groupold - on a contractible base admits a global
section. The principal bundle result is achieved by contracting the base, and using
the homotopy classification of bundles; the proof of 4.1 achieves a similar end by
using the cohomology theory of §3. From 4.1 it will follow that the coustruction of
a transitive Lie algebroid from a family of transition forms (IIT 5.15) gives a
classification of all abstract transitive Lie algebroids.

We begin with some observations which apply to any transitive Lie algebroid

L -+ A ->> TB on an arbitrary manifold B.
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Definition 4.2, Let L +-+ A —++ TB be a transitive Lie algebroid. Then the
a-connected Lie subgroupoid of II[L] which corresponds to ad(A) < CDO[L] is denoted
Int(A), and called the Lie groupoid of inner automorphisms of A, or the adjoint

groupoid of A. /1!

For any connection Y in A, the adjoint connection VY takes values in ad(a),

and so, by III 7.6, may be said to reduce to Int(A).

Now assume that B is contractible. The idea of the proof is roughly as
follows: Since B is contractible, it is presumably true thatéz(z(TB,ZL) = (0).
Hence there is only one equivalence class of operator extensions of TB by L. So if
we can show that there is an operator extension of TB by L which is flat, then the

given Lie algebroid, being equivalent to 1t, must also be flat.

To carry out this idea, two matters must be arranged rather carefully.
Firstly, in order to obtairlde(TB,ZL) = (0), it is necessary to realize
JAZ(TB,ZL) as the de Rham cohomology of B. Since B is contractible, it is certainly
true that ZL is isomorphic to the trivial bundle B xﬁ ;3 it must also be shown that
the representation of TB on ZL transports to the trivial representation. Since B is

simply-connected, this can be achieved by III 5.20.

Secondly, in order to obtain a flat Lie algebroid equivalent to the given
one, it must be shown that the coupling TB + QutDO[L] of the given Lie algebroid is
covered by a flat Lie connection TB + CDO[L] (see 3.32 to 3.34). Although L is
isomorphic as an LAB to a trivial bundle B XB , one cannot apply III 5,20, for it is
not known that the given Lie algebroid has an adjoint comnnection which is flat.
Neither can one apply III 5.20 to the coupling itself, for there is no known general
construction of a Lie groupoid whose Lie algebroid is OutDO[L]. (This is so even in
the case of Lie algebras.) However, all these difficulties can be circumvented

simultaneously.

Consider, then, a transitive Lie algebroid L *1* A -3 TB on a contractible

base B, We may as well assume from the outset that L is a trivial LAB B XH. Since
Int(A) is a Lie groupoid on the contractible base B, it is trivializable;
equivalently, it admits a global decomposing section o: B + Int(A)b, for some b € B.
From 0 we obtain, as in III§5, a global morphism 6: B x B + Int(A) and a flat

connection 6, in ad(A).

Since ad(A) < CDO[L], we may also consider 6, to be a flat Lie connection
in L =B % H. Therefore, by III 5,20, there is an automorphism

Yp: B X 3 + B Xﬂ which maps 9* to the standard flat connection VO. That is,
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) V(8 (X)(V)) = X(¥(V))

for X € I'TB, V: B *3 .

Let y: TB + A be a connection in A. Since v

ad(A), there is a map %£: TB > B XH such that

and e* are both connections {n

(2) v =0, +ades.

Our intention is to transform (2) into 97 = v° + aden’ by using (1).
Define a new embedding of 1, = B xs into A by j' = jow'l.

Lemma 4.3. Let B be an arbitrary manifold and L *i* A -3> TB a transitive Lie

algebroid on B. Let ¥: L » L be an LAB automorphism of L, and let j' = jow-l.
Then for any connection y: TB + A, the adjoint connections VY and TARRS

21
induced in L by the two Lie algebroids L sls A-%> 18 and L +d— A % TB, are

related by
7Y = W),
X X

Proof: For X € I'TB and V: B *H ,

31 (7 YD) = [¥(X), 17 (WV))]

[v(X),3(N)]

Y
(7))

1 (o). 11
Returning to the proof of 4.1, we have from (2) that

V) = 8,(0 W) + [£(0,V].
Therefore

W7 = (20X (0 W) + W (4D ,V])

and therefore by the lemma, and equation (1),
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7 Y (9)) = XD + (PR X), (D) 1.

Since ¥ is surjective, this establishes that
3) VY = 0+ ad(eh)

where L' = yof.

Al
We now work exclusively with B xg AL, A -3+ TB. Equation (3) implies
immediately that, firstly, the representation of TB on B xa induced by A is the
trivial one, and, secondly, that the coupling E of TB with B XH induced by A

admits v° as a Lie connection covering 1it.

We therefore have # %(18,7°,8 x7) = chiekh(B’ﬁ) = (0) and so, by 3.31, there
is a unique equivalence class of E-operator extensions of TB by B XH « Since

Z admits V° as a covering connection we can, by 3.32, construct the semidirect

4]

operator extension

B xs ++ TB x (B xﬂ) ~-++ TB,
VO

A}
and it must be in the same equivalence class as B XH S, A -3> TB. So there is an

igomorphism of Lie algebroids TB “o (B x 3) + A, and A therefore admits a flat
v
connection. This completes the proof of 4.1. //

The proof has actually established that A is isomorphic to a trivial Lie
algebroid TB ¢ (B x 3). This stronger formulation can in any case be deduced from
4.1 by an application of III 5.20.

Consider now a transitive Lie algebroid L *1* A -3+ TB on an arbitrary base

B. Given any cover {Ui} of B by contractible open sets, there is an isomorphism of
Lie algebroids over Ui

H *® x + .
Si TUi (Ui ﬂ) AIJ
i
In this sense, 4.1 has established that transitive Lie algebroids are locally
trivial.

+ i
Si. Ui x ﬂ > LU is an LAB chart; denote it by wi. Denote by 6 the flat

connection X b+ Si(X ® 6) induced in AU by Si' We refer to the ei as local flat

connections in A. Exactly as in IIISS,iwe define transition forms Xij by



ol = ot -1

=8 +j0£ij, Xij = P, 0L

3 %71y

for every nonvoid Ui . (Note that the xij are not, strictly speaking, defined in

terms of the ei alone.)
Proposition 4.4. Xij € Al(Uij’ﬂ)’ defined above, is a Maurer~Cartan form,

Proof: Since ei and Bj are two flat connections in AU , 1t follows from III 5.12

that 13
' Y+ (8, ,0,1 =0
ij 15°713 '
ei
(Here V¢ is the covariant differentiation induced by the flat Lie connection
i

(]
V' .) Now, by expanding out the bracket-preservation equation for Si, it easily

follows that

i
8
(4) Y (wi(v)) = wi(x(v)),

for X € r'rui, URA +5.

the Maurer-Cartan equation for X,, follows. !/

Since % = wioxi 14

1j 3’

Exactly as in III§5, we obtain the compatibility equation

X(ag () = 3y (KN + [x, 00,2, =0,

13 13

where a,.: U

13° Uiy + Aut(s) are the transition functions for the atlas {wi} of L.

We have thus established a converse to III 5.15 - that every transitive Lie

algebroid generates a family of transition forms Xij and an LAB cocycle {aij} such
that the three conditions of III 5.15 are satisfied, namely

(1) each xij is a Maurer—Cartan form,

(11) X = xij + aij(xjk) whenever Uijk 0,

(1ii) A(aij) = advx1j for all Uij # 0.

If {Oi: TUi *> AU } is a second system of local flat connections with
i

respect to the same open cover, and {wi: Ui XE + LU } is an LAB atlas with
i
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[8! (X),¥' (V] = ¥ (X(V)) for X € PTU,, V: U, + ﬂ, then, writing
i i i i

1,
60 =0, + pen n, ¢ A (U,,8)
17 % T ey, 1 g
and
T = .
wi = wioni, o, Ui *> Aut(ﬂ),
we obtain
(5a) Gmi + [mi,mi] =0,
(5b) M) = adem,,
-1
o=
(5¢) Xij n, {—mi + Xij + aijmj}’
-1
t =
(5d) ajy =y a0y

(compare equations (10) of III§S).

Definition 4.5. (i) Let L #=> A —»> TB be a transitive Lie algebroid on B. A
system of local flat connections {ei: TU, * AU } and an LAB atlas
i

{w,: U, xg » 1 } are compatible if
i i ﬂ Ui

16, (), (M = ¥ X(V))

holds identically; we then refer to the ei and wi collectively as a compatible

system of local data.

(ii) Let B be a Lie algebra and let B be a manifold. A system of transition

forms {Xij € Al(Uij,B)} and an LAB cocycle {aij: y,, *» Aut(ﬂ)} for some open

ij
cover {Ui] of B, which satisfy equations (1)-(1ii) above are called a system of

transition data on B with values in5 .

(1ii) Let H be a Lie algebra and let B be a manifold. Let {Xi '8y }

and {xij,aij} be two systems of transition data on B with values in B and with

respect to the one open cover {U,} of B, Then {x,.,a, } and {x',,a' } are
i i37 i 1ij; 1

R ]
equivalent if there exists a system of Maurer-Cartan forms mi € Al(Ui, ) and a

system of functions n: Ui > Aut(s) such that (5b), (5¢), (5d) are satisfied. 1/

Evidently systems of transition data which arise from the one Lie algebroid,

or from equivalent Lie algebroids, are equivalent.
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Proposition 4.6, Let {Xij’aij} and {xij,aij} be two equivalent systems of
transition data on a manifold B with values in a Lie algebra 5 and with respect to the
same open cover. Then the Lie algebroids constructed from {Xij’aii} and {x{j,a' }

1]

are equivalent.

Proof: Let LA Al(Ui,ﬂ), n, Ui + Aut(g) be the data establishing the
equivalence. Let A and A' denote the Lie algebroids constructed via III 5.15

from {Xij’aij} and {Xij’aij}'

Define ¢: A' + A locally by
1, X®V)'+> (1, X ® (mi(X) + ni(V)));

it is easily verified that this is well-defined, and gives the desired

equivalence. /!

Clearly one may modify 4.5(iii) and 4.6 to take account of systems of
transition data defined with respect to different open covers, and one may take an

inductive limit; we leave the working-out of this to the reader.

Examples of transition forms may be obtained easily, by taking the right-
derivative of transition functions of known examples of Lie groupoids. For example,
with @ the Lie groupoid of SU(Z)(SZ,U(I)) and charts defined by stereographic
projection in the usual way, the transition form for 82 X R +=»> I§H%Zl - T52
is essentially the Maurer-Cartan form for U(l). Transition forms for CDO(E),
CDO[L], CDOCE>, etc., can be constructed directly from transition functions for the
bundles E, L, etc. This method was actually used by Teleman (1972, §6) to construct

CDO(E).

Using local flat connections one can prove a stronger version of 1.6 which

is of independent interest.

Theorem 4,7. Let ¢: A + A' be a morphism of transitive Lie algebroids over B. Then

there is an open cover {Ui} of B and isomorphisms

: ® x > S': ® ' '
Si TUi (Ui 5) AUi, 91 Tui (Ui ><H)*AUi

such that (Si)-% ¢oSi is characterized (as in IIT 2.4) by the zero Maurer—Cartan
form and a map Ui + Hom(ﬂ,ﬂ') which is constant.
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Proof: Let {U 1 by any cover by contractible open sets, and let {s } be given
by 4.1, Denote by 8" and wi the flat connections and LAB charts associated

i

i i .
with Si. Define e'i = ¢o® ; then 8' is a flat comnection in Aﬁ . Now the adjoint
i
A
connection ve is a flat Lie connection in a trivializable LAB Lﬁ on a simply~-

connected base Ui; by an obvious modification of IIT 5.20 there is an LAB chart
i
1

wi: Ui x 5' > Lﬁ which maps the standard flat counection v to Ve . Denote by

i
Wi
Si the isomorphism TO, @ (U1 x 5') > Aﬁi defined by W; and ',
We now have a morphism of trivial Lie algebroids

vyl . 1y,
(Si) °¢°Si. TUi ® (Ui Xs) + TUi ° (Ui "5 )

denote by f : U B > U x B' its restriction (¢i)-& ¢+o¢i. To determine the
Mauter—Cartan form for (s ) ° ¢os calculate

((s ) o¢os (X @ V)

-1 i
(s (4870 + 39, (M)

(s (o0 + jrogoy ()

X ® fi(v).

Thus the Maurer-Cartan form is zero.

Now the compatibility equation for wi = 0 and fi is

X(f (W) - £ (X(W)) =
i i

and, by B§2 equation (6), this implies that the Lie derivatives X(fi) of fi as a

Hom(s,ﬂ')—valued map on U

e are zero. Since Ui is connected, it follows that fi is

constant. /1

This 1s the proof given in Mackenzie (1979). A similar proof can be given
for 1.15.

The following is an abstract reduction theorem.
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Theorem 4,8, Let L +-+ A -++ TB be a transitive Lie algebroid. Then if A has a
connection Y whose curvature ﬁ takes values in a sub LAB K which is stable under

VY, then A has a system of transition forms taking values in the fibre type of K.

Proof: Immediate from III 7.25 and 4.1, //

§5. The spectral sequence of a transitive Lie algebroid.

For a transitive Lie algebroid L +-* A -++ TB and an arbitrary
representation of A on a vector bundle E we construct a natural spectral sequence
:us(TB,Ht(L,E)) =>;}(n(A,E) which gives the cohomology of A in terms of those of TB
and L. The construction follows closely the construction of the spectral sequence
of an extension of Lie algebras, due to Hochschild and Serre (1953), and is at the
same time a generalization of the Leray-Serre spectral sequence of a principal

bundle in de Rham cohomology as constructed by, for example, Greub et al (1976).

The construction of this spectral sequence was originally motivated by a
problem in groupoid cohomology. In Mackenzie (1978) a cohomology for locally
trivial groupoids is constructed. This cohomology has the characteristic property
that it classifies only those extensions E +-+ Q' ~++ @ which admit a global
transversal @ + ', and on this account it is called rigid; it is nonetheless what
is generally known as a continuous cohomology theory. Such extensions are
determined by their restriction to the vertex groups and it is shown that the rigid
cohomology is in fact naturally isomorphic in all degrees to the continuous

cohomology of any vertex groupe.

For the case of coefficients in vector bundles, this construction actually
suffices (op.cit., Theorem 4). TFor coefficients in general group bundles, however,
more general extensions exist and one desires a cohomology which will classify all
extensions which are, in a suitable sense, locally trivial. (We will detail

elsewhere why this is an interesting question.)

In approaching a general cohomology theory for locally trivial groupoids,
one expects that a vertex group extension will correspond to a plurality of groupoid
extensions; one must also consider the possibility that not all vertex group
extensions will 1lift to a groupoid extension. One also expects that certain
groupold extensions will arise from the cohomological structure of the base
manifold. This section addresses the corresponding questions in the theory of

transitive Lie algebroids, as a first-order approximation and guide to the situation
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for locaily trivial groupoids. Thus we study the images and kernels of the
restriction and inflation maps: given an extension of transitive Lie algebroids

E +=+ A' -+ A, its restriction is the induced extension of the adjoint bundles,

E +-+ L' -++ L; the inflation map constructs certain extensions E +-+ A' -++ A from
transitive Lie algebroids on B with adjoint bundle EL. The images and kernels of

these maps have natural expressions in terms of the spectral sequence.

The question of the image of the restriction map is an infinitesimal version
of a previously studied question (for example, Greub and Petry (1978), Haefliger
(1956)): when can a principal bundle P(B,G) be lifted to a group H given as the
domain of a surjective morphism H -++ G? In groupoid terms this is the problem of
lifting a vertex group extension K +-+ H -++ G, to a groupoid extension. 1In 5.15 we
obtain one simple criterion for the lifting to be always possible on the Lie
algebroid level, This technique will be developed elsewhere.

A second major reason for the study of this spectral sequence is that it
provides an abstraction and algebraization of the Leray-Serre spectral sequence of a
principal bundle in de Rham cohomology. Because the construction is algebraic, and
because coefficients in general vector bundles are permitted, it is possible to
apply techniques developed for the Lyndon-Hochschild-Serre spectral sequence for an
extension of discrete groups, or of Lie algebras, to the de Rham spectral sequence
of a principal bundle. 1In this section we give only a single and elementary

instance of this, 5.10, 1In a future paper we will take this process further.

The results of this section are from Mackenzie (1979); 1in a few cases the

statement of results has been sharpened.

Definition 5.1. Let A and A' be Lie algebroids on the same base B and let

p: A + CDO(E) and p': A' + CDO(E') be representations of A and A'. Then a change of
Lie algebroids from (A,p,E) to (A',p',E') is a pair (¢,¥) where ¢: A > A' is a
morphism of Lie algebroids over B and Y: E' + E is a morphism of vector bundles over

B, such that

Y (4(X)I (")) = p(X)(¥(n"))
for u' ¢ E', X € A. //
A change of Lie algebroids induces a morphism of cochain complexes

w0’ ey » c™(a,E) £1 > Yoflo ¢
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and hence morphisms (¢,y)*: }ln(A',E') +ﬂn(A,E). If A and A' are transitive,
then (¢+,w) is also a change of Lie algebroids and induces morphisms

(¢+,w)*: Hn(L',E') > Hn(L,E). If E = E' and y = id we write ¢#, ¢* for
(¢,1d)#, (¢,id)*.

Associated with a given transitive Lie algebroid L »1s A -9+ 18 and
representation p: A + CDO(E) there are two natural changes,
+ - L -
(j,idE): (L,p ,E) > (A,p,E) and (q,8): (A,p,E) > (TB,p,E ). Here p is the
representation of TB on EL induced by p (see 1.17). These induce maps

3%: " (a,0,E) > TH(L,p ,E) and q* = (q,8)%: JH"(TB,5,E) » M ™(4,0,E)

which, following MacLane (1963), we call the restriction and inflation maps

of (A,p,E). Note that j*eq* = 0. Our chief concern is with the kernels and

cokernels of these maps.

For n = 2 the restriction and inflation maps have natural definitions in
termg of extensions. Given a p-operator extension E LN A’ -1 A, the extension
E NLEN L' LI L is a p+~operator extension of L. by E and for any transversal
x; A > A' with cocycle ix, the map x+: L + L' is a transversal of ﬂ+ and has cocycle
j (ix). (Note that x+ is defined by virtue of q'ex = q.) It is easy to see that
this defines+a mapwgex:(A’p,E) + Topext(L,p ,E) which represeants j* modulo 2.13.
We call E 2> L' -I+s L the restriction of E LN A' -5 A. There is a commutative

diagram

Similarly the inflation map q* can be realized in terms of

- L L
@pext(TB,p,E ) > @pext(A,p,E). Given an extension E  +-+ J -++ TB, construct the
pullback extension (2.16)
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C_<|—-—-»f_.
£

g

and then the pushout (2.14)

[

R i

=

or the steps may be interchanged. We call E +-» 3 -++ A the inflation of the
transitive Lie algebroid EL +-+ J -++ TB, It is easy to see directly that the
restriction of the inflation E +~> J —»+ A is semi~direct; in this sense the
extension E +-—> 3 ~++ A has no algebraic component to its curvature and we will
therefore also call it a geometric extension of A by E. An extension

E +-+ A' -++ A whose restriction is semi-direct will be called a restriction semi-

direct, or RSD, extension. Not all RSD extensions are geometric; see 5.14 below.

,1

* 1
The quotient space 5%&—%; is given by the term E3 of the spectral sequence.

For the image of j* there is first of all the following result.

+ +
Proposition 5.2. j*:;urkA,p,E) > FHn(L,p ,E) takes values in (PHn(L,o ,E))A,
where A acts on Hn(L,E) via the Lie derivative 6 of 2.5.
# # n n
Proof: Observe that j Oex = SXOJ : TC (A,E) » IC (L,E) for X € TA. Here the eX on
the left is defined in 2.2 and that on the right is the action of A on Cn(L,E)

defined in 2.4. It follows that for f € 32 "(A,E),

# #
8,37 (D) = 37 (8, (8))

j#(dle(f)) +0 by 2.3(v)

act’e 1 ()

and so Sx(j*[f]) = [0]. 1/
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For n = 2 the action 6 can be transported to an action of A on the vector
bundle 0pext(L,p+,E) via 2.13. Since 9+ = 0 (by 2.6) the equation
[} (E +=+ L' =++ L) = 0 may be interpreted as signifying that the Lie algebra
extension E hnd L' -+ L <’ as a function of x € B, has zero derivatives in all
directions q(X) € FTB. Thus 5.2 implies that a necessary condition for an
extension E +-* L' =+> L of the adjoint bundle L to be the restriction of an
extension of A is that the Lie algebra extensions Ex >=> L; aad Lx be constant with
respect to x, where constancy is taken to refer to 6. As in 1.13, this constancy is
an abstraction of equivariance with respect to actions of adjoint type. See also
III 7.30.

There are two further conditions necessary on an element of (I‘HZ(L,E))A
before it can be guaranteed to lie in the image of j*. These are most naturally

formulated in terms of the spectral sequence, to which we now turn,

Our references for spectral sequences are Cartan and Eilenberg (1956),

MacLane (1975) and Greub et al (1976). We deal with the spectral sequence of

+
a canonically bounded descending filtration; thus chn 2 Fk 1Cn, Foc" = ¢” and

+1
et = (0). We use an explicit approach; thus Er = Zr /BS’t where
Zs,t - {f e Cs+t | df € FS+rCS+t+l}, Bs,t - dZs-r+l,t+r—2 ¥ Zs+1 t-1 for
r r r- 1 -1
t +1 s+t t
r > 1, and Bg' =, The isomorphism E 1 > 1 (Er’ ) induced by the

s,t ,t

st s
inclusion Z [=] Z is denoted Ur « Such a spectral sequence is strongly

+l =
convergent (Cartan and Eilenberg (1956, XV.4)); the filtration
FoR™(C*) = 1in(H"(Foc*) » HN(C*)) is also canonically bounded and the

s s+t

~ %
isomorphism ES’t = _FH__(Ct) is, on the cochain level, the identity map.
o s+l s+t
F 0 (c*)
Here E:’t = Zi’t/B:’t where Zi’t = {f e S¢St | 4f = 0} and
t +t +t-1 +1,t-1
B = (5T T a4z T
Note that E:’ = Er+1 = Ei’t for r > max{s,t + 1}, The edge morphisms are
denoted by ept E;’O -+ ES 0<= HS(C*) and ep! Ht(C*) -+ E0 t s Eg >t The
0,n a+l,0
transgression relation E2 ~> E2 is denoted tg « Forn=11it is a well- and
0,1 O,n n+1,0 O,n
fully-defined map, namely d2 . If En+2 = (0) = E +2 then dn+1 is an isomorphism
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+ +
and the composite E; Lo, E2+i’0 -+ Eg;? = Eg’n may be considered a Cartan
map <" with tgn as inverse relation.

Let 1, »1+ A -$» TB be a transitive Lie algebroid and let p: A + CDO(E) be a

representation of A.

We will filter the cochain complex T'C*(A,E); to cut down on notation,
denote TC"(A,E) by I"(A,E). Define F°I"(A,E) = {f ¢ I"(A,E) | £(X|,000 %) = O
whenever (n - s + 1) or more of the Xi are in ker q}. Then Fsrn(A,E)gg

+ +
P 0LE), FOINALE) = T(ALE), o r"(A,E) = (0) and, by convention,

FSFn(A,E) = (0) for s > n + 1, This is the standard filtration on an exact sequence
of Lie algebras (see Hochschild and Serre (1953)) and is also of the same type as
the filtration associated with ag -DGA (Greub et al (1976, 9.1)).

+
5%, 2505 (a,E) » r°(1B,c5(L,E)) by

Define a

t
CHAICTe AP ST AN A I 161 ARPRI L AN" SRR §)

for any connection y: TB + A. It is easy to see that as’t is independent of the

+1 s+
choice of Y and has kernel F° IFS t(A,E). It is also surjective; to see this,
define
+
et r8¢s,ct(L,E)) » FPrSt(a,E)
by

st
s,t _ )
e (f)(Xl,...,Xs+t) e g saf(qxo(t+l)""’qxc(t+s9(mxo(l)’°“’wxc(t))

where w: A + L is any back-connection and the summation is over all permutations of

{1,000,8 + t}. It is straightforward to verify that a°’ (e>’%(f)) = f.

Therefore, 2%t quotients to an isomorphism a;’t: Eg’t + FS(TB,Ct(L,E)).

Proposition 5.3.

45t
g5t 0 Es,t+1
0 0
s,t s,t+l
% %

S
r5(r8,ct(L,B)) ——TBad) . rS(qp ct*l(y gy)

commutes.
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+
Proof: Take f ¢ Zg’t = Fr® t(A,E). We have to show that a°

+
PHAR (R peensX)
t
is equal to d(as’ (f)(xl,...,xs)), for all X

L»eeesXg € TTB.

t+l
Take V ¢ T'L. Expanding out 2%’ (df)(Xl,...,Xs)(Vl,...,

Preee Ve Verr)s

we get

LIICAPPRR N ¢

t+1 ’...’YXS)

1

_ il -
= 1 DT DV e VYR e YK

i+j ~on

+ ¥ (-1) f([vi,vj],vl,...,vt+1,yxl,...,yxs)

1<i<j<t+l

S
i+t -
+ izl (CIORATC S T{{ AN SN PRI )

" . s
T DT YDV e VYR e YK
1<i<i<s ]

t+l s

+ ) 7 D
1=1 j=1

i+j+t+l ~ ~
3 JAUAR 3 R R T N RE

Here each term in each of the last three summations vanishes, for each term has (t +1)

+
arguments in TL and f € For® t(A,E). The first two terms can be rewritten as

t+l
i+l + s,t .
121 EDT D ET O Ry XV o0V )

i+j s,t .
+ ) DO X e XUV 1LY e

1<4<j<t+1

Verr)

and are therefore equal to d(as’t(f)(xl,...,xs))(vl,..., as required. i

Vear)s

In the case of Lie algebras, Hochschild and Serre (1953) have an elegant
device by which to simplify this proof, but it cannot be properly formulated in the

case of transitive Lie algebroids.

t

* %
Identifying Ef’t with HS’ (Eo’ ), we now have isomorphisms
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t t t
af’ : Ef’ > I°(TB,H(L,E)).

Following through the identifcations, 1if f € z?’t represents a chosen element
s s s+t s,t s t :
of El’ , then f is in F I "(A,E) and a > (f) ¢ I (TB,C (L,E)) takes values in

t t t
'z (L,E); the cohomology class [as’ (f)(Xl,...,XS)] e ' (L,E) is
s,t
o ([f])(Xl,...,Xs).

Proposition 5.4.

St
gSet S SN gStlst
1 1
s,t s+l,t
0.1 al
r®(18,H%(L,E)) o', 1**1 (18,1%(1,E))
commutes,
Proof: Similar to the proof of 5.3. //

*
Thus al’t induces isomorphisms E s,t N (TB,H (L E)). Given

+
f e 22 C: FSFS t(A E) representing [f] ¢ E2

by the cocycle which to (Xl,...,X ) assigns the cohomology class in rat (L,E)

ot , the class ay st ([£]) is represented
represented by a® (f)(X ,...,X ).

Theorem 5.5. For a transitive Lie algebroid L #+-+ A -++ TB and representation

p: A + CDO(E), there is a natural convergent spectral sequence
t
M (1B, n5(L,E)) => HK(a,E).

Proof: Only the naturality remains to be described. If

(¢,¥): (A,p,E) » (A",p",E') 1s a change of transitive Lie algebroids, then

(¢,¥) : T*(A',E') + I'*(A,E) preserves the filtrations and so induces a morphism of
spectral sequences E:’*(A’,E') + E:’*(A,E). Also, there is a change of Lie
algebroids (1dTB,(¢+,w)*) from TB + CDO(H*(L,E)) to TB ~» CDO(H*(L' L,E')). It is now
straightforward to show that the induced morphisms ME (TB,H (L' E')) *-ﬁis(TB H (L E))

commute with the morphisms of the spectral sequences, and similarly on the E_ level.

/
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Remark, If K +-+ A' -++ A is an exact sequence of arbitrary Lie algebroids, then
there is a similar spectral sequence ﬂts(A,Ht(K,E)) =>3un(A',E) for any

representation of A' on a vector bundle E.

Proposition 5.6.

*
M (18,E") ! > Han,p
a;,o z
E‘z"o (A,E)
and
* A
M a8 ] > (rH"(L,E))
~ 0,n
n ~
lﬂn(A,Q =y B0 3 T
F X%,
commute.

Proof: Take [f] € En’0 with f € Zn’0

« Then f ¢ F“r“(A E) and
n+2 n+1 2 2
af ¢ F (A E) = (0). so f e Z"(a, E) and (£] e M (A,E) is ey ([f]). On the
other hand, c: ([f]) is represented by a m,0 (£), which lies in Z™ (TB £, Now
#, n,0

q (a’ (f))(Xl,...,Xn) f(qul,...,Yan) for Xi e TA, and since

YgX = X - jwX and f ¢ Fnrn(A E) vanishes whenever n — n + 1 or more arguments are in
#, n,0

3(L), it follows that q' (a ’ (f)) = f.
0 n
The second half is proved similarly. WNote that M (TB,H (L,E))
= (I‘Hn(L,E))TB and this is equal to (I‘Hn(L,E))A by 2.6. //

We can now express the images and kernels of q* and j* in terms of the
spectral sequence. The image of q* is E:’O < Fn;Kn(A,E) and this, for n = 2,
characterizes the geometric extensions of A by E. Similarly the kernel of j*
is Flﬁln(A,E), so the RSD extensions of A by E are precisely those in
Fljllz(A,E). Of course Flﬂlz(A,E) 2 Fzﬂz(A,E) and the quotient, which represents

the failure of RSD extensions to be geometric, is isomorphic to Ei’l.
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Lastly, the image of j* is isomorphic to Eg’n and so Eg represents those

extensions of L which can be lifted to extensions of A.

2,0 ~ 2 1,1 ~ 1,1
For m = 2 these §_ spaces reduce: E_° = E3'O, ESS = E3' , and
E:’Z = Eg’z. In turn, Eg’o is the cokernel of dg’l: Eg’l > E;’O, while E;’l is the
1,1, 1,1 3,0 0,2 0,2 _0,2 3,0
kernel of d2 : E2 + E2 and EA is the kernel of d3 : EQ > E3 « Thus
these spaces are all accessible in terms of d2 and d3.
The situation is summarized in the following diagram.
. i RSD
Geometric extensions extensions
2
-EZ’O;'EZ’O:FQZ(A,E) FI,HZ(A,E) ») F]7l (AE) :El’l :El,l
3 o 7 ) %ﬂz © 3
FH (A,E)
2,0 ~2, L i 2 * 2 A~ 0,2
g0 SHirm,Ey —Lo M  —L mwie,Ent S e
i/ .
H “(aE) = A 20,2 ~ 0,2
%) 7 Bs = E,
FA(AE)
Liftable
extensions
of L

this we

details.

We now calculate d;’l, r > 0, when the action of L on E is trivial. For

need the concept of pairing of spectral sequences. We summarize briefly the

M N P
Let A be an arbitrary Lie algebroid and let p , p , p be representations of

A on vector bundles M, N, P.

Then M and N are paired to P if there is a bilinear

vector bundle map M @ N > P, denoted o, such that

o)) P (uan) = oM (Wpv + upe (X0 (V)

for all X e TA, u € TM, v € TN,

If M and N are paired to P and K is an ideal of A, t
pairing

hen there is an induced



c™k,M) © CM(KR,N) > c™R(K,P)
defined by
1
() (£, 8)(Ky5eee,X ) = e ) €t K1y o K o(m) "B Ko 1) 2" * * X o(mn) )

where the sum is over all permutations on {l,...,m + n}. Here the representation of
A on Cm(K,M) is by the Lie derivative 2.2 - if A is transitive then X, being an
ideal, must be a sub bundle of the adjoint bundle L of A and so, by 2.3(iii),

0: A > CDO(Cm(K,M)) is indeed a representation of A.

As for differential forms, we have
m
(3) d(f,g) = df,g + (-1)f,dg,
where f € FCm(K,M), g e FC“(K,N). There is therefore an induced pairing
e
H(R,M) ® HU(R,N) + HT (K,P),

still denoted by, .

Now consider a transitive Lie algebroid L +-+ A ->> TB. Applying the above,
m n mn m n mwn
there are pairings ¢ (L,M) © ¢ (L,N) +C (L,P) and 4 (L,M) € H (L,N) +H (L,P).

There is also a map
m n mn
C(AM) ©C (AN) »C (A,P),
defined as in (2), which 1s bilinear and satisfies (3). Here the vector bundles do

not (generally) admit representations of A and (1) has no meaning. We will call this
map the formal pairing induced by the pairing M ¢ N + P,

In particular there is a formal pairing
1 +. 1] ﬂH’n
c®(TB,H"(L, M) ® c® (TB,H"(L,M) » ¢ ° (TB,H" (L,E))
and, applying a form of (3), there is a bilinear map
s m s' n s+s' mn
OB H (LMY x M (TBH(L,E)Y) »3H T (TBH (L,E)).

Proposition 5.7, Let L +=* A -+ TB be a transitive Lie algebroid, and
let pM, pN, pP be representations of A on vector bundles M, N, P, Let E(M), E(N),
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E(P) denote the corresponding spectral sequences. Then

s _m s' n s+s' mtn
FT (A,M)AF (AN F r  (A,P)

and
s,t s',t' st+s',t+t’
E, (M) x E, (N) E, (P)
' t - st’ t '
(TR, (L,M) x H® (1B,H" (L,N)) D KSR (L,e))

L
commutes, where the bottom row is the map described above multiplied by (-1)St .

Proof: Exactly follows Hochschild and Serre (1953); one proves the corresponding

result at the E, level and then follows through the formation of the homologies.

0
!

We also need two elementary observations. Fix a transitive Lie algebroid

L +=> A ~-+> TB and a representation p: A » CDO(E).

Lemma 5.8. Let Lab hand Aab -+> TB be the quotient Lie algebroid

A = A/[L,L] (see 1.1 and 1.11), and leth :+ A+ A _denote the natural
ab ab

projection. Then each connection Y: TB + A maps to a connection §°Y in A b
- + - a
whose curvature R oy % aRY belongs to ;EZ(TB,Lab) and which represents the

h 1 1 fL > A -++ TB.
cohomology class of L b
Proof: Immediate from 2.13. /!

2
Denote the class of Ly > Ay, —>> B in Z{ (TB’Lab) by Rob*

Lemma 5.9, Let L be any totally intransitive Lie algebroid and let E be a vector

bundle on the same base. Then, with respect to the zero representation of L on E,
wtw,m = cla e,
’ ab)
0 1
Proof: The coboundary d: C (L,E) + C (L,E) 1is zero and the next coboundary,

d: Cl(L,E) +> CZ(L,E) is df(X,Y) = ~f([X,Y]). From the first formula it follows
that Hl(L,E) = Zl(L,E) and from the second it follows that FZI(L,E) consists of
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those maps I'L + I'E which vanish on T[L,L] = [TL,TL]. Hence the result. //

Theorem 5,10. Let L »-+ A ->+ TB be a transitive Lie algebroid and p a

representation of A on a vector bundle E for which EL = E. Then the map
n 1 n+2
W (TB,H (L,E)) » J (TB,E)
n,l
corresponding to d2 is given by

Fk*(l)FARb

where R € 9{ (T8, L ) is the class characterizing L ab =+ A b -»+ TB and the

pairing is that induced by H (L,E) ® L/[L,L] > E via 5.9.

Remark: The condition EL = E forces E to be flat.

-1

s 1) (F) is represented by

Proof: Let f ¢ Efn(TB,Zl(L,E)) represent F. Then (a
+
’l(f) er” 1(A,E), where

n+l
n,l - i -
TR peeesX ) = (DT 121 (G0l {C SIPPRIN L SIRDI > HR
Therefore ( nt2, 0 ; ! ( 1 1) )(F) is represented by a" (d( (f))), and this

reduces to

i+j n ~.
1§j CDTED TER e X o) (01K, ¥R D)

since all other terms in d(en’l(f))(YXl,...,YXn+2) involve wey, and wey = 0,
Now w[YX YX 1= ﬁy(xi,xj) so, recalling the definition of the pairing

H (L,E) 0 L ab + E, the sum

D" Y-
1<

i+j+l . =
f(xl,...,xn+2)(RY(xi,Xj))

is seen to be the (value at (Xl,...,xn+2) of the) cocycle representing
n
-1)F,R . 1/
This result is a direct analogue of Theorem 8 of Hochschild and Serre (1953)
for extensions of Lie algebras. It decomposes d;’l into the pairing - which
concerns only the adjoint bundle L and the coefficient bundle E and may be regarded
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as a purely algebraic matter — and the class Rab’ which is a topological

invariant. Thus we have the following corollaries.

Corollary 5.11. (i) If L = [L,L], for example if L is semisimple, then

n’
d2 =0 for all n > 0.
(ii) If the abelianized Lie algebroid Lab F Aab -++ TB is flat,
1
then dp’" = 0 for all n > 0. /1
The sequence of terms of low degree is (without any assumption on the
coefficients)

. 1
Hrs,ey »95s Ha,e) -5 (ral,E))® s W2 (1 EY) 25 M2 (aE).

The transgression here is simply dg’l and so if either of the conditions of 5.l11 is
satisfied, it follows that JMZ(TB,E) is injected intogilz(A,E) and the space of

geometric extensions of A by E may be identified with 7{2(TB,E).

In the general case, the map (I‘l-ll(L,E))A ->@pexc(TB,E) can be interpreted
as assigning to suitable f ¢ PZI(L,E) the pushout of L +-+ A —=++ TB over
f: L + EL. These pushouts are those extensions EL +=+ J =++ TB which, when

inflated, give the semidirect extension of A by E.

Corollary 5.12. If EL = E and either condition of 5.11 is satisfied, then the space
of geometric extensions of A by E is isomorphic Cc>j%2(TB,E). //

Corollary 5.13. 1If EL = E and either condition of 5.11 is satisfied, then the space
of RSD extensions, modulo the space of geometric extensions, is isomorphic
to M (ms,nte,E) S Miam,ctaEd. v/

In general d;’l maps:ul(TB,Hl(L,E)) 1nto‘ﬂl3(TB,EL); if the element of
ﬁ{B(TB,EL) is zero, then there is an extension of TB by E whose inflation is the
given RSD extension. This phenomenon may thus be considered a species of

obstruction theory.

The following example illustrates the circumstances in which E;’l # 0.

Example 5.14., Let 5 be a reductive Lie algebra with a one-dimensional centre,

for example g’(n,k). Let B be a manifold with ngRh(B) = 0 and H;eRh(B) # 0.

Let A be a transitive Lie algebroid on B with adjoint bundle L = B XH and let
p: A > CDO(B X R) be the trivial representation q. Then E;’l =
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Hrs,at, B x ®) = H(TB, B x B) (since g% 155 ez = H;eRh(B) #0 and
303 1,1 ~ 1,1

1,1
5 = HdeRh(B) =0. So E3 ker d2 = E2 # 0.

It is interesting that the Lie algebroids of the examples of Milnor (1958)
with g > O are instances. /1l

Concerning general criteria for an extension of the adjoint bundle L to lift
to an extension of A, we can at present only say that in addition to the condition
that E +=+ L' -++ L lie in (FHZ(L,E))A, there are the two consecutive conditions

that dg’z and dg’z map the extensioun to the zero extension.

Proposition 5.15. Let L -+ A =»> TB be an arbitrary transitive Lie algebroid and
let p be any representation of A on E. Then if;?(z(TB,Hl(L,E)) = 0 and
;u3(TB,EL) = 0, every extension of L by E which lies in (I‘HZ(L,E))A lifts to an
extension of A by E.

Proof: The space of such extensions has been identified with Eg’z and this is

0,2 0,2 3,0

isomorphic to the kernel of ¢ In turn, 33’0 is a quotient of

3 ° 73 3 ° 3
EZ’O and so is zero, and Eg’z is the kernel of dg’zz Eg’z +> E;’l. Now
2,1 0,2 ~ 0,2 ~ 2 A
EZ’ = 0 also, by hypothesis, so we finally have Eé’ = Ez’ = (TH (L,E)) .
/1l

The conditions of 5.15 are fulfilled if B is simply-connected and
2 3

HdeRh(B) = HdeRh(B) = 0, or 1f B is simply-connected, L is semisimple and
ngRh(B) = 0, In particular, we have the following result.

Corollary 5.16, Let L *-> A =>+ TB be a transitive Lie algebroid on a simply-
3 . 2 _

connected base B for which HdeRh(B) = 0 and for which either HdeRh(B) =0 orl is
semisimple. Let p be a representation of A on a vector bundle E. Then 1if
v *—*5 ' -**B is an operator extension of the fibre type of L by the fibre type of
E, there is an operator extension E +-+ A' -++ A whose restriction E +-+ L' -+»> 1L
has fibre type V ->—+3 ' -**ﬂ .

2 A~
Proof: Notice that, because B is simply-connected, we have (TH (L,E)) =
2 2
H (H,V)B =H (H,V) by 1.19 and 2.6, 1/

For the case where ﬂlB # 0, the comments in IIT 7.30 apply.
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Concerning the multiplicity of lifts possible for a given E +-+ L' =»+ L,

K
this is measured by ker j , which can in principle be constructed from

E§’O and E;’l; when EL = E and one of the condtions of 5.11 is satisfied, we have
seen that these spaces reduce to E;’O and E;’l,

These techniques will be developed further elsewhere.

For the Lie algebroid of a Lie groupoid, this spectral sequence is closely
related to the Leray-Serre spectral sequence in de Rham cohomology of the associated

principal bundle.

Let 2 be a Lie groupoid on B, and let p: & »> I(E) be a representation

G =8

b V=8

of @ on a vector bundle E, Choose b € B and write P = Q :, b

There is a natural action of © on H*(LR,E). Each £ ¢ Q induces a change of
Lie algebras (as in 5.1) (AdE-l,p(E)) from (Ogé)*: LQ'BE + End(EBE) to
(pzz)*: LS'Z’O‘E > End(EaE). (See III 4.15 for the necessary formula.) Hence ¢
induces an isomorphism (Adg-l,p(i))*: l-l*(LQ,E)mg > H*(LQ’E)BE’ and it is routine to
verify that this defines a smooth action. 1In particular, G acts on H*(B,V) and it
follows from II 4.9 that H*(LQ,E) 1is equivariantly isomorphic to P x HZ b .
Note that this bundle is flat.

In A 4.13 it is shown that the cochain complex I'C*(AQ,E) is naturally
isomorphic to the G—equivariant de Rham complex A*(P,V)G and it follows (2.7)

that jL*(AQ,p*,E) (p, V) . The following result is now immediate.

d eRh
Theorem 5.17, Let P(B,G) be a principal bundle and let G act on a vector space V.

Then there is a natural convergent spectral sequence
x
(TB __H_ﬁﬂ_:__) => H

G
dern(PsV) /!

If B is simply-connected then the E, term simplifies to

2
d Rh(B H (5 v)) = Hd Rh(B) ® H (5 V)~ If in addition G is compact then
deRh(P V) d Rh(P V) and H (3 V) = Hy Rh((;) ® V and we obtaln the standard

Leray-Serre spectral sequence in de Rham cohomology.
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For the Leray-Serre spectral sequence of a principal bundle with compact
group, there is an extensive aund deep theory (see Greub et al (1976)). It seems
reasonable to expect that for general groups, the equivariant spectral sequence 5.17
will admit generalizations of the structure theorems already established in the case

of compact groups.

The most fundamental result one wishes to prove is that the spectral
sequence collapses from Ej on when A admits a flat connection. For the Leray-Serre
spectral sequence of a principal bundle with compact group, or of aH—DGA with 3
reductive, this 1is a deep result (Greub et al (1976, 3.17)). It depends strongly on
the fact that when B is reductive the primitive elements in H*(ﬂ) are precisely the
universally transgressive ones and that, using the Weil homomorphism, the problem
can be reduced to showing that the transgressions are zero. The Weil homomorphism
for a transitive Lie algebroid has been set up by N. Teleman (1972) but it remains
to be seen if it is worthwhile to rewrite more of the theory ofﬂ -DGA's in terms of

transitive Lie algebroids.

We close this section with some brief comments on cases in which the Lie
algebroid spectral sequence collapses to a Gysin sequence. Let L +-> A -+> TB be an
arbitrary transitive Lie algebroid and let p be any representation of A on a vector
bundle E.

Assume firstly that Hn(L,E) =0 for n » 2. Then the sequence of terms of

low degree can be continued

1,1
d b
coe —-‘Pml(TB,HI(L,E)) ____2__’ %3(TB,EL) _gt—) %3([\,5) _— eee

see — ﬂln(TB,EL) L o, — M rs,ut,E))

dn-l,l
__2——>j[n+l(TB’EL) —_— see

This is essentially Theorem 7 of Hochschild and Serre (1953). When EL = E,
: n,l 1y
5,10 applies and the identification of d2 with (~1) ARab b

- in this case — be regarded as a generalization of the Euler class of a circle

shows that Ra may
L
bundle: Suppose that E=E = B X R with p the trivial representation, and also
1 ~
assume that H (L, B X R) = B x R. By 5.9, this last assumption is equivalent
~ 2 2
to L/[L,L] = B x R, Now R, eM(TB, B xR) =

H
1 deRh
H'(L, B X R) ¢ Lab + B x R is reduced to the multiplication R X R > R,

(B) and the pairing
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1 1 A 2 2
Also, tg : (TH (L, B X R)) > (TB, B x R) becomes R * HdeRh(B)’ tF> R and
1 1 A
b is the image under tg of a generator of (IT'H (L, B x R)) . It may thus be
considered to be the Euler class of L *~* A -»+ TB (compare Greub et al (1973,

6.23)).

sO R
a

Secondly, assume that Hn(L,E) = 0 for n = 1,2. By the Whitehead lemmas for
Lie algebrag, this is the case for semisimple L. We then have
jlz(TB,EL) = j%z(A,E), so that all extensions are geometric, and an exact sequence

. 3
23 18,EY »95 3 E) -5 (e, -8B K4 (rs,EY -95s W 4,E).

If, in addition, Hn(L,E) = 0 for n » 4, then this sequence can be continued, and it

then includes the Gysin sequence for SU(2)-bundles.
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For many years the major outstanding problem in the theory of differentiable
groupoids and Lie algebroids was to provide a full proof of a result announced by
Pradines (1968b), that every Lie algebroid is (isomorphic to) the Lie algebroid of a
differential groupoid. This problem was resolved recently in the most unexpected
manner by Almeida and Molino (1985) who announced the existence of transitive Lie
algebroids which are not the Lie algebroid of any Lie groupoid. (It is easily seen
(III 3.16) that a differential groupoid on a connected base whose Lie algebrold is
transitive must be a Lie groupoid.) The examples of Almeida and Molino (1985) arise
as infinitesimal invariants attached to transversally complete foliations, and

represent an entlrely new insight into the subject.

We now construct a single cohomological invariant, attached to a transitive
Lie algebroid on a simply-connected base, which gives a necessary and sufficient
condition for integrability. The method is from Mackenzie (1980), which gave the
construction of the elements here denoted eijk and the fact that if the &5k lie in
a discrete subgroup of the centre of the Lie group involved, then the Lie algebroid
is integrable. (In particular, a semisimple Lie algebroid on a simply-connected
base is always integrable.) However in Mackenzie (1980) the author believed that

sufficient work would show that the €4k could always be quotiented out.

With the discovery of counterexamples to the general result by Almeida and
Molino (1985), it is easy to see that the ejji form a cocycle; it should be noted
that Almeida and Molino independently made this observation for the correspounding
elements in Mackenzie (1980). The method now yields a cohomological obstruction to
the problem of realizing a transitive Lie algebroid on a simply-connected base as

the Lie algebroid of a Lie groupoid.

A counstruction related to that given here was announced by Aragnol (1957).

This reference was pointed out by Professor Molino, after the completion of the work

recorded here.

The results of §1, taken together with those of those of IV§3, give
necessary and sufficient conditions for an LAB-valued 2-form to be the curvature of
a connection in a principal bundle, providing that the manifold on which the form is

defined is simply-connected. These results thus generalize - and reformulate ~ a
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classical result of Weil (1958) (see also Kostant (1970)) on the integrality of
Chern classes. The case of real-valued forms was also noted in Almeida and Molino
(1985).

§1., Results

Throughout this section, all base manifolds are connected. We call a Lie
algebroid A integrable if there is a differentiable groupoid & such that AQ < A,

In ITI§5 we showed that the right derivatives A(sij) of a cocycle

i
in IV§4 we showed that an abstract transitive Lie algebroid A on an arbitrary base B

{s_j} for a Lie groupoid f are transition forms for the Lie algebroid AQof Q. Then

admits a system of transition forms Xg5° Our problem now is the following: Given

an abstract transitive Lie algebroid A and a system of transition forms Xi" is it
J
possible to integrate the Xi’ to functions s, which obey the cocycle condition? If
J 1]
this can be accomplished, then the resulting Lie groupoid will have A as its Lie

algebroid, by the classification theorem III 5.15.

Consider, therefore, a transitive Lie algebroid L ++ A -++ TB on an

arbitrary (conunected) base B. LetB denote the fibre type of L, and let {Ui} be a
simple open cover of B.

By IV§4, there are local flat connections ei: TUi + AU and LAB charts
[} i
i 1
: = identically. Let
by Uy xﬂ > LUi such that V. "(¥,(N) = ¥, (X(V)) cally Xij € A (U_ij ,ﬂ)

and a, . : Uij > Aniﬂ) be the resulting system of transition data. From IV§4 we have

ij
(@) Gxij + [Xij’xij] = 0, whenever Uij £ 0,
(2) Xik = Xij + aij(Xjk)’ whenever Uijk 0,
(3) A(aij) = advxij, whenever Uij £ 0.

Let E be the connected and simply-connected Lie group with Lie algebra H.
From (1) and the simple-connectivity of Uigs it follows that there are functions
%j: Uij + G such that A(Sij) = Xij; such functions are unique, up to right-
translation by constants. From equation (8) of B§2, it follows that
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A(Advsij) = advA(sij) = adoxij = A(aij)’

where the first and last A refer to the group Aut(ﬂ), and so, by the uniqueness

result just referred to, there are elements ¢,, € Aut(ﬂ) such that

1j

4 = (Ad 0

@ g T (M0 0y

If the 3y take values in Ad(§> Int(ﬂ) < Aut(g), the equation A(Ados ) = Aa j)
may be solved with respect to Ad(G), and it will be possible to take ¢ = id in

(4). We now show that this can be done whenever B is simply—connected. The key is

the following general result, which is a refinement of IV 4.1.

Theorem 1.1, Let L +=> A -** TB be a transitive Lie algebroid on an ardbitrary
base B. Let y: U » Int(A)b be a decomposing section of the Lie groupoid Int(A)
over a contractible open set U, Let ¥ also denote the chart U x 3 +> LU obtained

by regarding Int(A) as a reduction of H[L] (Here 5 b.) Then there is a local

flat connection ¢: Ty » Ay such that v° W*(V ).

Proof: The decomposing section y: U » Int(A)b induces, as in III§5, a local flat
connection k: TU + ad(A)U. By equation (8) of III§5, applied to Q = Int(a), the

induced chart

Ad(YP): U x ad(ﬂ) > ad(L)U

maps Vp to VK. Here Ad refers to the Lie groupoid Int(A): note that

Ad(w)x: ad(s) > ad(Lx), for x € U, is T(Iw(x))id: T(Int(ﬂ))1d + T(Int(Lx))id
and since I is linear, it is its own tangent and so

¥(x)
AW, (§) = Wx)opou(x)”
for ¢ € ad(g).
Choose any connection Yy in A; since the adjoint connection vY and w*(Vo)
are both in ad(A) we can write

(5) Vo= 4, (V) + ad(yen)

for some £ € A (@] 5). Equation (5) shows that ¢*(V ) and V cover the same coupling
and so, by IV 3.19, there is a connection Y': TU *» AU such that VY = w*(v Y. It

remains to show that there is a flat such connection.
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1
Let A' be the semidirect extension TU x LU’ where V = V' = w*(Vp). Now A'

v
and AU both define elements of @pext(TU,LU) and since WZ(TU,ZLU) = HieRh(U’ZT) = (0)
(by the contractibility of U, as in IV§4) it follows that A' and AU are equivalent.
Thus there is an isomorphism ¢: A' + AU such that

LULjr‘AU > TU

L A —desy

commutes, Define 6: TU + AU by 6(X) = ¢(X ¢ 0). Then 6 is a flat connection and

(7o) = (600 ,3M]

[6(x ® 0),¢1"(V)]

¢(0 ¢ VX(V))

4" (T (1)

j(vx(v)).

So Ve =V= vp*(Vo), as required. 1/

It is interesting to note that the full force of the classification of
extensions by% 2 and 7‘3 is used in this proof.

We can now make a fresh start. Assume that B is simply-connected. Given

any simple cover {Ui} of B we obtain decomposing sections ¥;: U; * Int(4)y 2and, from
]
Theorem 1.1, local flat connections 6; with (wi)*(Vo) =yi Proceeding as before,

we now have 31j; Uij > Int(A):. iince Int(A) is o-connected and B is simply-
c_onnected,~it follows that Im:(A)b is connected. It is therefore equal to Int(ﬂ), and
so to Adi(;). Now the equation A(Adosij) = A(ail) may be solved with respect to the
group Ad(G) and we have ¢ij = M(gij) for gij e G. 8o, redefining s
have

i3 2% 5138150 *°

(6) 3y = Ad0sij.
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1 ~
. . £
Consider the map sjk ik ij Uijk + G for a nonvoid Uijk Using formulas (1) and (2)

in B§2 and the cocycle equation (2), we have

Ms, s.'s ) = Msy) + Ad(s ) 85

%5181k %13 k 8i3)

-1 -1
= Xy * ajk{A(sik) + aikA(sij)}

- -1
X ¥ ajk{'aikxik * 3%yl

= X a0y T X0

=X = 0.

S| EAE R R

. 1 ;
Since Uijk is connected, it follows that s, k K8 13 is constant; denote its value

~ -1
by e1 k* Clearly e e ZG, for Ad(eijk) = ajkaikaij = idﬁ. In fact, {eijk) is a
Eéch 2-cocycle. For if U # 9, then
ijke
-1 -1 -1 -1 -1

© ik e®1ke®i§ 15k = (Bafye jk)(siksi!l. kz)(sjz 128455k

Interchanging the first two bracketed terms, this becomes

(s-ls s-ls )(s s-ls s_l)
SUSERAS Pl I'EARE WAk WAL TS ) T
Now the second bracketed term is eijle;;k and is central, so we can interchange
Sjk with it, and the expression then collapses to the identity.

Thus we have e = {eijk} € ﬁZ(B,zaj. It remains to prove that e is well-
defined. This requires a little care. Let {Wi: Ui + Int(A)b} be a second section-
atlas for Int(A) with respect to the same open cover. Write w{ = wini where
n, Ui > Int(A): = Int(ﬂ) = Ad(ES. Let {ei} be a second family of local flat
connections, compatible with {Wi}. Write 9; = ei + wf‘ni' Then, repeating

equations (5) of IV§4, we have

(7a) Gm1 + [ml,mi] =0,
(7b) A(ni) = adomi,
(7¢) Xij = n{l{—m1 + Xij + aijomj}’
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(7d) al, = nlla..n..

Since m, is a Maurer-Cartan form, we can integrate and get r u, > G with

¢
A(ri) = mi. Then A(AdOri) = advA(ri) = ad°mi = AM(n ) so there exists ¢i € AdC
i
such that n,_ = (Ader )¢ . Writing ¢ = Adg and redefining r to be r g , we now
i i"7i i i i i®i’

have

(8) n = Adori.

Now, by using equations (1) and (2) of B§2, one easily sees that 7(c) is equivalent

to
A(sij) = A(tilsijrj)

so there are elements cij € G such that

-1
' =
Sij T Sijrjcij'

Applying Ad to this equation, we find that cij € ZE. It is now straight-forward to
verify that

(c )

M =
€13k T Cijk

-1
kiK1
and so {ei.k} and {eijk} represent the same element of ﬁz(B,ZE). It is also
straightforward to show that this element is well-defined with respect to the
inductive limit. There is thus a well-defined element e ¢ ﬁZ(B,ZE), independent of
the choice of section-atlas for Int(A). We call e the integrability obstruction of

A on account of the following theorem.

Theorem 1.2. Let L +~+ A —>> TB be a transitive Lie algebroid on a simply-connected
base B, Then there is a Lie groupoid Q such that AQ = A iff e lies in ﬁz(B,D) for

some discrete subgroup D of ZE.

Proof: (=>) This requires some work. First note that  may be assumed to
be a-connected, and it then follows that Ad(R) = Int(AQ). Choose b € B and denote
Q: by G; since B is simply-connected and @ is o-connected, G is connected. Let i

denote the simply-connected covering group.

Choose an atlas {o;: U; > @} for @. Then {¥; = Ado;} is an atlas for
U
Ad(Q) = Int(AQ). Let 6; denote the local morphism U; x U; > QU? defined in IIIS§5.
i

Then, by (8) of III§5, (8;)4 is compatible with ¥;, and so we can use (wi,(ei)*} to
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define e, Write X; = A(;Aj) where g;j: Ui‘ > E. Note that the ;1, are the would-
be cgcycles found from AQ, whereas'vsij are the actual cocycles for g, Now

A(posij) = Xij = A(sij)’ where p: G * G is the covering projection.

So plglj = Sijwij for some Element wjj € G. Now, applying Ad to this and noting
that Adosij = aij and Adopasij = Adogij = aij (equation (E? of the construction), we
find that 5 € ZG. Now the covering projection pﬁTaps 76 Oﬂi? zG, E? general Lie
Eroup conside:fiions, and so we can write wij = p(wij) where LA € Z2G. Now redefine
Sij to be Sijwij and we have

~

posij =s

ij*

~

(Note that this redefinition does not affect condition (6), since wij
Now

is central.)

~—1~

plegyp) = plsyys43844)

-1
= SkBik®iy

1 G
50 e takes its values in the discrete subgroup ker(p) of ZG.

(=) Assume that e ¢ ﬁZ(B,D) for a discrete subgroup D of ZG. Define G = G/D
and let p be the covering projection. Let Sij: Uij > 6 be the system of maps which
define a representative {ei‘k} for which e € D. Define ;i = pos_ .. Then

J

- i3k " i eI
: -ondi = . le e

{Sij' Uij + G} satisfies the cocycle condition Sjksiksij 1 € G

the resulting Lie groupoid. The Lie algebroid AQ has transition forms

A(sij) = p*oA(sij) = A(sij) and so, by III 5.15, is Isomorphic to A. //
In particular, if the ceantre of 5 is trivial, then 2G 1tself is discrete:

Corollary 1.,3. Let L »-> A -++ TB be a transitive Lie algebroid on a simply-
connected base B, with semisimple adjoint bundle L. Then A is integrable. )

For the construction of nonintegrable transitive Lie algebroids from

transversely complete foliations, see Almeida and Molino (1985).

Weil (1958) (see also Kostant (1970)) proves that a closed, real-valued 2-
form on an arbitrary manifold is the curvature of a coumnection in a C*-bundle

(where C* ls the group of nonzero complex numbers) iff the 2-form is integral. His
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proof is largely an application of the isomorphism between de Rham and Lech
cohomology. Our construction of e and proof of Theorem 1.2 is in certain respects a
generalization of Weil's proof; however our proof does not use, even implicitly, a
global connection in the Lie algebroid. The differences between the two proofs

merit exploration.

Putting Theorem 1.2 together with IV 3,21, we obtain

Theorem 1.4, Let B be a simply~connected manifold, and let L be an LAB on B. let R

be an L-valued 2-form on B. Then R is the curvature of a counection in a principal
X ~

bundle P(B,G) with P—G-ﬂ-= L iff

(1) there exists a Lie connection V in L such that EV = adeR and V(R) = 0;

and
(2) the integrability obstruction e € ﬁz(B,ZEB defined by the transitive Lie

algebroid corresponding to V and R, lies in ﬁZ(B,D) for some discrete subgroup D
of 7G. /!

If L is abelian (and B is simply-connected), then V must be flat, L must be
trivializable, and there is a trivialization B x V = L which maps the standard flat
connection in B X V to V (see III 5.,20). Thus in this case, the Lie algebroid is
determined uniquely by the closed 2-form R (IV 2.13) and the connections in that Lie
! 3w =0

deRh
(IV 2.17). There is therefore a uniquely determined Lie algebroid with a connection

algebroid with curvature R are determined by:u}(TB, B x V) = H

having curvature R and, when the Lie algebroid is integrable, there is a unique

principal bundle up to local isomorphism. This includes a result of Kostant (1970).

If L is not abelian, or if B is not simply-connected, then uniqueness in
this stroug sense fails. The appropriate results can be obtained by following back
through the results of IV§3.

There are two differences between Weil's result and the specialization of
Theorem 1.4 to L = B x R. Firstly, we allow R to be closed with respect to any flat
connection in B x R; if B is not simply-connected, this is a genuine
generalization. Secondly, we do not insist that [R] € H;eRh(B,R) = ﬁZ(B,R) be
integral, but allow it to take values in any discrete subgroup aZ, a € R, of R.

This is explained by the fact that e ¢ ﬁz(n,za) is not an isomorphism
invariant of a transitive Lie algebroid, but only an invariant up to equivalence.

(Compare the classification of principal bundles P(B,G) by ﬁl(B,G).) Let
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L+1+ A =35 TB be an abelian transitive Lie algebroid and let a be a nonzero real
number, Define ¢: L +» L by ¢(V) = oV. Then ¢ is an isomorphism of LAB's and
L *1:£* A 3> TB is a second Lie algebroid, isomorphic to L s a % TB under

1d: A » A,
L
d
L

If vy is a connection TB + A and R is its curvature form with respect to the first

.
’

i . L T8
2t o A —3py .

Lie algebroid, then its curvature form with respect to the second is % R. Clearly
one Lie algebroid is integrable iff the other is so. 1If e is the integrability
obstruction of the first Lie algebroid, then % e is the integrability obstruction of
the other. The fact is that integrability is a notion invariant under isomorphism

whereas the integrability obstruction is an invariant only up to equivalence.

Note that once a transitive Lie algebroid is known to be integrable, it has
a natural adjoint bundle, arising from its presentation as LR +-+> AQ =-++ TB or as
EngL hGnd E% ~++ TB, and the curvature of any connection y: TB + A is then well-
defined. However, for an abstract transitive Lie algebroid L +~+ A -++ TB, the
curvature of a connection y: TB + A depends not merely on A —++ TB but on the choice

of L.

This nuisance could be avoided by rephrasing the question as follows:
Given L +-+ A -++ TB and a connected Lie group G with Lie algebra the fibre type of
L, is there a principal bundle P(B,G) with Atiyah sequence A? The answer would then

be: Iff the class e, € ﬁz(B,ZG), defined with respect to G rather than E, vanishes.

Work on the question of the representation of 2-forms as the curvature of
general, non Riemannian connections has also been done by Jacobowitz (1978) and

Tsarev (1983). I am grateful to Tain Altchison for the reference to Tsarev's work.

The integrability obstruction is essentially a feature of the cohomology of
Lie groupoids. If M is a Lie group bundle on B, one may ask whether there is a Lie
groupoid M +— Q —++ B x B with respect to a certain notion of coupling of B x B
with M. This question is resolved by an intrinsically defined version
of e € ﬁ?(B,ZG) (where G is the fibre type of M) in the same way as the obstruction
class of IV§3 resolves the corresponding question for Lie algebroid extensions. 1In

this respect, the integrability obstruction is related to the obstruction classes
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found by Greub and Petry (1978). The general theory underlying these constructiouns
is dealt with in a coming paper.

§2. Epilogue

The construction of the invariant e, and the cohomology theory of Chapter IV
on which it depends, grew out of a strategy, developed by the author in the mid-late
1970's, for proving the integrability of tramsitive Lie algebroids by generalizing
the cohomological proof of the integrability of Lie algebras due to van Est
(1953,1955b). 1 believe it will be of interest to describe this process and, by so
doing, to set this particular integrability result in the context of the ongoing

evolution of the group concept.

The result which asserts the integrability of Lie algebras is
commonly referred to as Lie's third theorem. This theorem has a long

and continuing history in modern mathematics, corresponding to the

evolution of the group concept from its first rigorous formulation to the point
where it is again capable of being applied to the study of partial differential
equations. Concerning Lie groups in the now standard meaning of the term, prior to
the work of van Est (1953,1955b) there were essentially two different methods of
proving Lie's third theorem. One method, which I will call the structural

proof, first uses the Levi-Mal'cev decomposition to reduce the problem to

the two separate cases of solvable and semi-simple Lie algebras.

Lie's third theorem for these two cases is straightforward: the solvable case is
reduced, by virtue of the chain condition, to the case of 1-dimensional Lie
algebras, where the result is trivial; in the semi-simple case, the adjoint
representation is faithful and the result follows from the subgroup/subalgebra
correspondence for a general-linear group. (For details, see, for example,
Varadarajan (1974, 3.15).) This proof is essentially a rigorous reformulation of
Cartan's 1930 proof, in which Cartan was chiefly concerned to complete a proof of
Lie's, valid only when the adjoint representation is faithful., The other method,
for which we know no classical reference, integrates the given general Lie algebra
directly to a Lie group germ, and must then show that this Lie group germ can be
globalized. For the integration step, see, for example Malliavin (1972, pp. 232-4),
or Greub et al (1973, pp. 368-9); the globalization may be accomplished by the
method of P, A. Smith (1952) - note that this depends on the fact that wZ(G) = (0)
for a (semisimple) Lle group G. We will call this second method the geometric proof

since it depends on nz(G) = (0), rather than on the structure theory of Lie



algebras.

We have described the two proofs so as to stress that Lie's third

theorem is an integration result; so it was to Lie (for example, Cohn (1957,

Chapter V)), and so it remains. The geometric method divides the proof into an
'integration' step which yields a local group, and a 'globalization' step which
depends on a deep topological result; the structural proof uses deep results of Lie
algebra structure theory to reduce the integration to that of the subgroup/
subalgebra correspondence - that is, to the Frobenius theorem. (Similarly Ado's
theorem, an even deeper result from the structure theory of Lie algebras and itself
depending on the Levi-Mal'cev decomposition, can be used for the same purpose.)
Having noted the element of integration present in both proofs, note also that the
other major steps in the two proofs are formally analogous: The existence of Lie
subalgebras depends on the semi-~directness of the extension resulting from
quotienting the Lie algebra over its radical; that the extension is semi-direct
follows from the second Whitehead lemma (and the first, via the theorem of Weyl;
see, for example, Varadarajan (1974, 3.14.1)), and the second Whitehead lemma, that
is, HZ(H,V) = (0) for semisimple g, may be regarded as analogous to HZ(G) = (0) for
semisimple G, the condition which is crucial for the globalization step of the

geometric proof.

To describe van Est's proof, it is necessary to first summarize the results

from which he deduces Lie's third theorem.

van Est (1955b) in a note reformulating earlier results (1953,1955a)

constructed two convergent spectral sequences

(1) 1(G,v) ® HseRh(c) = H$+t(ﬂ,v)
(an H3(6,V) ® K\ (6/K) => Hs+t(ﬂ,k R

for a Lie group G and a representation of G on a vector space V. Here ngRh(M)
denotes the de Rham cohomology of the manifold M, H*(G,V) denotes the smooth
Eilenberg-MacLane cohomology, and K is a compact subgroup of G with Lie algebra
k;ﬂ. Both spectral sequences arise from double complexes in the standard

manner; the double complex for (II) is a K-variant subcomplex of that for (I).

When G is connected and X is a maximal compact subgroup, G/K is
diffeomorphic to a EBuclidean space (the Iwasawa decomposition) and the second

spectral sequence therefore collapses to isomorphisms H*(G,V) = H*(H,k,v). This
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result was reproved in a more modern context by Hochschild and Mostow (1962) and was
generalized extensively in the 1970's to wmodel pseudogroups on RP (see, for example,
the surveys of Lawson (1974, §6), and Stasheff (1978, §7)).

We are exclusively concerned with the first spectral sequence of van Est,
In the first paper of the series (1953), van Est noted that for a Lie group G with
1 2 . 2 —
HdeRh(G) = HdeRh(G) = (0) a similar collapse leads to H (G,V) = H (ﬂ,V). Now in

general nz(G) = (0) (Browder (1961)), and so if G is connected and simply-connected

2
the H i th i = = and so one has
e ure: cz eorem gives HdeRh(G) HdeRh(G) (0)
HZ(G,V) B }g(ﬂ,v) or, equivalently, Opext(G,V) ='0pext(5,v) under. the map which

1 m
R * %
assigns to v +1» ¢ -¥» G the differentiated extension V +=m—> h -—**5. Hochschild

(1951) proved that Opext(G,V) = Opext(E,V) for connected and simply-connected G,

by use of Lie's third theorem; van Est now shows that the process can

be reversed: any Lie algebra h is an extension 5 é—é-h - adh and thus defines an
element of HZ(S, ) where the representation of 5 = adllon 5 is the trivial one.
With E the universal covering group of Int(h), represented trivially on the vector
space 5, he thus obtains an extension > H = E with h the Lie algebra of H.
Since H is an extension of a connected and simply-connected Lie group by a vector
space, it is itself connected and simply-connected. Thus Lie's third theorem is

proved.

Once again the integration step has been reduced to the subgroup/
subalgebra correspondence for a general linear group. van Est's procedure thus uses
the (deep) topological fact that nz(G) = (0) for any Lie group G but avoids the
direct counsideration of local groups needed for the geometric proof, and uses no

deep result of Lie algebra theory.

A clear analysis of the importaunce of ﬂZ(G) = (0), and other relevant points
is given in van Est (1962). For other, more general, forms of the group concept,
theorems of "Lie third theorem" type have since been proved (for example,
Goldschmidt (1972), Ng3 and Rodrigues (1975) (Lie equations and transitive Lie
algebras), Pommaret (1977)). These results also represent a combination of

cohomology and integration.

The author's original strategy to prove the integrability of transitive Lie
algebroids was to construct a cohomology theory for Lie groupoids by means of which
a straightforward generalization of van Est's spectral sequence (I) and of the
ensuing argument, could be given. Much of this argument does hold for Lie groupoids

and Lie algebroids. For example, given a transitive Lie algebroid, the exact
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sequence ZL *-+ A ->> A/7Z] - adA exists, and, by III 6.1, adA can be integrated to
the Lie subgroupoid Int(A) of IH[L]. The induced representation ad(A) + CDO(ZL)
cannot be said to be trivial, since there is no concept of trivial representation
unless ZL is trivializable as a vector bundle, but the representation does integrate
to MInt(A) » I(ZL).

The crucial problem therefore is to construct a satisfactory cohomology
theory for Lie groupoids. A cohomology theory for locally trivial topological
groupoids with coefficients in vector bundles was presented in Mackenzie (1978), and
the corresponding counstructions for Lie groupoids can be given and follow the same
pattern. It is proved in §7 (op. cit.) that this cohomology, called the rigid
cohomology, classifies all extensions (satisfying some natural weak conditions) of

locally trivial groupoids by vector bundles.

Nonetheless this theory was not adequate for the application to the
Lie third theorem, If L +-> A -+> TB is an abelian Lie algebroid on a simply-
connected base then ZL = L and MInt(A) = B x B, and the problem is to find a Lie
groupoid £ on B with AQ = A. The rigid cohomology can only deal with groupoids

which are extensions L +> @ -=++ B X B and all such groupoids are trivializable.

The explanation is, of course, that the coefficlent bundle ZL must itself be
integrated, and a cohomology theory which will classify all extensions of Lie
groupoids by Lie group bundles 1s needed. 1It is now reasonably clear how to do

this, but for the integrability question, a full cohomology theory is not needed.

Out of this strategy the existence of transition forms (Mackenzie (1979);
see IV 4.1 and Theorem l.1) and the construction of the elements €iik in Mackenzie
(1980) emerged, and it is interesting to observe that these results themselves
divide into the same two steps. Namely, for adjoint Lie algebroids the problem is
(comparatively) easily solved - for every transitive Lie algebroid A the adjoint
ad(A) is integrable by IITI 6.1 - and the problem is to 1ift this across
ZL > A —»> adA. Further, in Theorem 1.1 and IV 4.1, the existence of the required
flat connections is easily established on the adjoint level; the difficulty is in
lifting these connections to the given Lie algebroid. It is this lifting process

which the cohomological apparatus describes.



APPENDIX A ON PRINCIPAL BUNDLES AND ATIYAH SEQUENCES

This Appendix is an account of the Atiyah sequence of a prinecipal bundle,
and its use in the elementary aspects of connection theory. The Appendix is
independent of the main text, and requires no knowledge of groupoids; it is assumed
that the reader is familiar with the accounts of connections and their curvature
forms in Kobayashi and Nomizu (1963) or Greub et al (1973).

What is now known as the Atiyah sequence of a principal bundle was first
constructed by Atiyah (1957), and was, from the first, used to construct
cohomological obstructions - originally to the existence of complex analytic
connections. 1In the case of real differentiale bundles, 1t provides a neat
encapsulation of the two definitions of a connection, and a conceptually clear and
workable definition of the curvature form. These are the only points with which we
are concerned here. Beyond this, the councept of Atiyah sequence - and its
abstraction, the concept of transitive Lie algebroid - has a multiplicity of

virtues; see Chapters III, IV and V.

The main purpose of this Appendix is to provide a lexicon for the
correspondence between the infinitesimal connection theory of III§5 and the standard
theory of connections in principal bundles. TFor this reason, most of this Appendix
is devoted to establishing the correspondence between the Atiyah sequence
formulation of connection theory and the standard theory; the actual definitions of
connections and their curvature forms are extremely concise. To the best of my
knowledge, this is the first detailed account of this correspondence to appear in

print.

Throughout, the Lie algebra of a Lie group is equipped with the right-hand
Lie bracket [ , ]R, which 18 the negative of the usual bracket. This 1s necessary
for the groupoid theory of the main text, but is in any case more logically
consistent: it is a curious anomaly of the standard presentations of principal
bundle theory that right-invariant vector fields are used on the bundle space, but
left-invariant vector fields are used to define the Lie algebra of the structure
group. This is especially curious in the case of homogeneous bundles G(G/H,H). A
brief resumé of the right-handed formulation of the elementary formulas of Lie group

theory is given in Appendix B.

There are thus some sign-changes In this account and it is partly for this

reason that we have given the curvature calculations in §4 in full detail.
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§1 is a brief resumé on principal bundles and associated fibre bundles, for
reference throughout the text. In §2 we desribe, in general, the process by which
the vector bundle z%—* B corresponding to a principal bundle P(B,G) is found; this
construction includes the coustruction of associated vector bundles. 1In §3 the
Atiyah sequence of a principal bundle is constructed, and its full structure as a
transitive Lie algebroid is delineated. The case of homogeneous bundles G(G/H,H) is
treated. In §4 the two definitions of a connection and the definition of the
curvature of a counnection are given, and their correspondence with the standard
account 1s established. Two examples of working with the Atiyah sequence in

specific problems are given.

§1. Principal bundles and fibre bundles.

This section is a brief resumg of standard material (see, for example,
Kobayashi and Nomizu (1963)) together with a few definitions (TGB,LGB) which belong

to the same circle of ideas.

Definition 1.1. A Cartan principal bundle is a quadruple P(B,G,m) where P and B are

spaces, G is a topological group acting freely on P to the right through P x G > P,
(u,g) ++ ug, and m: P > B is a surjective map, subject to the following conditions:
(1) the fibres of 7 equal the orbits of G, that is, for u,v € P, the

statement m(u) = m(v) is equivalent toJg € G: v = ug;

(i1) the division map §: P x P + G, (ug,u) I+ g, resulting from (i), is

T
continuous. Here P i P = {(v,u) e P xP l 7(v) = m(u)} has the subspace topology;

(111) n: P + B is an identification map. i

Note that 7 is automatically open, since Tr.l(ﬂ(l])) = U Ug for any Us P.
geG

For this more general concept, in which local triviality is not assumed, see
Palais (196la). (I am grateful to Iain Raeburn for this reference.) Its main virtue
for us is that it includes all homogeneous spaces of topological groups by closed
subgroups.
Example 1.2. If G is a topological group and H is a closed subgroup, then G(G/H,H,#)
is a Cartan principal bundle, where H acts on G by right multiplication, and
%: G+ G/H is g ++ gH. We call it a homogeneous bundle. //

Definition 1.3. A morphism of Cartan principal bundles, from P(B,G,7) to

P'(B',G',1'), 18 a trio of maps F: P + P', f: B + B', ¢: G + G' where F and f are
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continuous and ¢ is a continuous morphism, such that n'ef = fow and
F(ug) = F(u)¢(g) for ue P, ge G. If B =B8"and f = idB, we say that F: P » P'

and ¢: G + G' constitute a morphism over B. 1/

Definition 1.4. Let P(B,G,7) be a Cartan principal bundle. It is locally trivial
if there is an open cover {Ui} of B and continuous maps 9, Ui + P such that
00, = .
moo, idU /1!
i
The 01 are called local sections of #, or of P(B,G,m). Each 0:l induces an
igsomorphism from Ui x G(Ui’G) to n-l(Ui)(Ui,G), namely 31(1d,1d) where
Gi(X,g) = 0, (x)g. We will call the collection {o,: U, » P} a sectionzatlas
for P(B,G, 7).

The maps sij: Uij + G defined by ci(x)sij(x) = cj(x) or, equivalently,

by sij(x) = S(Gj(x),u (x)), are the transition functions for P(B,G) corresponding to

the sectiom-atlas {ci} .

Definition 1.5. A principal bundle is a quadruple P(B,G,m) where P and B are

spaces, G is a topological group acting effectively on P to the right through
P x G+ P, (u,g) > ug, and ©: P > B is a surjective map, subject to the following
conditions:

(1) the fibres of T equal the orbits of G,

(11) there 1s an open cover {Ui} of B and continuous maps o, Ui + P

such that meq, = 1dUi. //

It is easily verified that a principal bundle is a Cartan principal bundle.
A morphism of principal bundles is defined as in 1.3.

Definition 1.6. A fibre bundle is a triple (M,p,B) in which M and B are spaces

and p: M + B is a continuous surjection with the property that there is a space F,
called the fibre type of M, and an open cover {U } of B together with

x F » p (U ) such that n(w (x,a)) = x, for x ¢ Ui’ a€eF,

> Homeom(F) defined by

homeomorphisms w : Ui

and such that the maps Uij
-1
* 7 Yk
are continuous. Here Homeom(F) is the group of homeomorphisms F + F with the g~
topology of Arens (1946), and w denotes the restriction of wi to

F »{x xF+M -p (x)
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A morphism of fibre bundles from (M,p,B) to (M',p',B') is a pair of

continuous maps F:t M > M', f: B + B' such that p'eF = fep., If B = B' and f = idB’
we say that F is a morphism of fibre bundles over B. //

The continuity condition on the maps Uij + Homeom(F) is necessary because in
general it is not true that the g-topology of Arens coincides with the compact-open
topology. However if F is locally compact, Hausdorff and locally counnected, then
the two topologies coincide and the continuity condition may be dropped. This
suffices for the application in the text (II 1l.13).

Proposition 1.7. Let P(B,G,7) be a principal bundle and let G X F + F be an action
of G on a space F which 1s locally compact, Hausdorff and locally connected. Define
a left action on G on the product space P x F by g(u,a) = (ug_l,ga) and

X F
G
define a map p: M > B by p(<u,ad) = w(u). Then (M,p,B) 18 a fibre bundle.

let M be the orbit space

. Denote the orbit of (u,a) € P x F by <u,a>, and

Proof: Charts for (M,p,B) are given by wi(x,a) = <ci(x),a>. !/

(M,p,B) is called the associated fibre bundle for P(B,G) and the

EXE s w(e,5,6,0).

action G x F + F. The standard notation for M =

Proposition 1.8. Let P(B,G,7n) be a principal bundle, and let G x F + F and

G X F' + F' be actions of G on two locally compact, Hausdorff and locally connected
spaces F and F'. 1let f: F + F' be a G-equivariant map; then

¥, PxF P XF'

s "¢ <u,a> F+ <u,f(a)>

is a well-defined morphism of fibre bundles over B.

Proof: Easy. 1/

Not all morphisms of associated fibre bundles are of this form. A eriterion
for them is given in I1§4.

Proposition 1.9. Let P(B,G,n) be a principal bundle and let M =
associated fibre bundle. Then if ¢: P + F is G-equivariant in the sense that

P xF
g be an

-1
¢(ug) = g ¢(u), for u e P, g € G, the formula

u(x) = <u,$(u)> where =(u) = x,
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defines a (global) section of M. Every section of M is of this form.

Proof: The first statement is easy to verify. Conversely, given a section

¥: B+ M, each u € P determines an element ¢(u) of F by the condition
w(x) = <u,$(u)> where x = w(u).

It is easy to verify that ¢ is equivariant. /!

Let C(P,F)G denote the set of G-equivariant maps P + F. Then 1.9
F) + C(P,F)G which we will usually

establishes a bijective correspondeace F(P ;
denote by u ;.

Definition 1.10. Let P(B,G,m) be a principal bundle. A reduction of P(B,G) 1is a
principal bundle P'(B,G',7'), on the same base B, together with a morphism
F(idB,¢): P'(B,G') + P(B,G) for which ¢: G' > G and F: P' + P are injections. //

The concept of reduction is the concept of subobject appropriate to the
study of principal bundles. One may accordingly define a notion of equivalence for

reductions, similar to that for submanifolds or Lie subgroups.

In the situation of 1.10 one also says that P'(B,G') is a reduction of
P(B,G) to G'.

Proposition 1.11. Let P(B,G,%) be a principal bundle and let ¢: G > H be a morphism
of topological groups. Let Q = 13 g L be the assoclated fibre bundle with respect
to the action G x H » H, (g,h) ++ ¢(g)h. Then Q(B,H,p) is a principal bundle with
respect to the action Q X H + Q, (<u,h>,h') I+ <u,hh’> and projection

p(<u,h>) = m(u).

Proof: Straightforward. 1/

The principal bundle Q = P ; H (B,H) is usually called the prolongation or

the extension of P(B,G) along ¢. Both these words have alternative meanings within

bundle and groupoid theory, and we propose to call Q(B,H) the produced principal
bundle, or the production of P(B,G) along ¢. This term is suitably antithetical to
"reduced”, and may also remind the reader of the process in elementary geometry
where one continues a line in an already existing direction, without adding anything

which is not already implicit.

If F in 1.7 1s a vector space V and the action of G on V.1is linear, then the
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associated fibre bundle P é Lk is a vector bundle, in an obvious way, and is

usually denoted E.

Definition 1.12. A topological group bundle, or TGB, is a fibre bundle (M,p,B) in

which each fibre Mx = p-l(x), and the fibre type F, has a topological group

structure, and for which there is an atlas {wiz Ui x F + MU } such that each

wi < F » Mx’ X € Ui’ is an isomorphism of topological grou%s.
?

A morphism of TGB's from (M,p,B) to (M',p',B') is a morphism (F,f) of fibre

bundles such that each Fx: Mx + M!

tx) is a morphism of topological groups. /!

If the space F in 1.7 is a topological group H and G acts on H through
topological group automorphisms then the associated fibre bundle is a TGB. For
example, given any principal bundle P(B,G), the group G acts on itself by inner-

automorphisms; the resulting TGB 3 g & is sometimes called the gauge bundle in

the physics literature. We will call it the inner group bundle or inner TGB.

The preceding results are all valid in the case of ¢” differentiable
manifolds. There are some simplifications: firstly, there 18 no analogue of
"Cartan principal bundle" since the analogue of the topological coancept of
identification map is the concept of submersion, and a submersion automatically has
local right-inverses. Secondly, there 1is no need in 1.6 for a separate condition on
the maps Uij + Homeom(F), since all manifolds are locally compact, locally connected
and Hausdorff. The analogue of a TGB is of course called a Lie group bundle and the

name 13 abbreviated to LGB.

§2. Quotients of vector bundles by group actions.

Throughout this section P(B,G,7) is a given principal bundle.

Proposition 2.1. Let (E,pE,P) be a vector bundle over P, on which G acts to the
right

EXG+E, (£,8) > &g
with the following two properties:

(1) G acts on E by vector bundle isomorphisms; that is, each map § > &g,

E + E is a vector bundle isomorphism over the right translation Rg: P + P;

(i1) E is covered by the ranges of equivariant charts, that is, around each

u, € P there is a 7-saturated open set u = Tr—l(U), where U& B is open, and a vector
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bundle chart
b ¥ xv o+ Eg

for E, which is equivariant in the sense that
V(ug,v) = ¥(u,v)g vuel,vev, geo.
Then the orbit set E/G has a unlque vector bundle structure over B such that

the natural projection%: E + E/G 1s a surjective submersion, and a vector bundle

morphism over m: P > B. Further,

—8 4 e

E
E l l E/G
P P

?

—T » B

is a pullback.

E/G

We call (E/G,p ' ,B) the quotient vector bundle of (E,pE ,P) by the action of

G.

Proof. Demnote the orbit of § & E by <&. Define 5 = pE/G: E/G + B by

E((E)) = n(pE(E)); it is clear from (i) that ;) is well-defined. We will give
(E/G,E,B) the structure of a vector bundle by constructing local charts for it,
which will simultaneously give the manifold structure for E/G (see Greub et al,
1972, §2.5).

Firstly, make each E/G‘ =3 1(x), x € B, into a vector space: {f <&,
{n> ¢ E/Gl then p (E), P (r\) lie in the same fibre of P sod! g € G such that

E E
p (n) = p (£)g. Define
KE> + <n> = K&g + n>
and, for t ¢ R,
t<E> = <tEd>.
It is easily verified that these operations are well-defined and make E/Gl a vector
space. The restriction [iu of H to E > E/GI (x = m(u)) is clearly linear; it is

in fact an isomorphism. For if £,n € Eu and <& = <n> then g ¢ G: n = Eg and, by
(1), it follows that u = ug. So g =1 and n = &.

Given %, € B, choose u ew (x ) and let '11 Z( x V> E.” be an equivariant

chart for E defined around u . Assume, by shrinking 71 if necessary, thatw {8 the
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range of a chart Ui x G *%i for P(B,G), so that there is a section ¢

AR *ﬂicP.

Define

w{G: U

AR A E/glui, (x,v) F> <Y, (0, (1),¥)>e

Then w{?x: v+ E/G|x is the composite

wi,a (%) hci(x)
V  e—————p Eqi(x) —— /i,

and is thus an isomorphism. If wécz Uj xV » E/G'U is another chart constructed in

the same way from an equivariaant chart wj for E and”a section 0, of P, then it is

3

easily seen that

/6 -1 (/G -1
(wi,x) ° (wj,x) = Wi"f 'lij’u where u = aj(x).

Thus the charts {W{G} define smooth tramsition functions x ++ (w{cx)_]‘o (wgcx) and
» ’
so, by the reference quoted above, there 1s a unique manifold structure on E/G which
/G

makes (E/G,p,B) a vector bundle with the ¥/~ as charts.

i

We next prove that 9: E > E/G is a surjective submersion. Let ¥: 7lx V.- E
be an equivariant chart for E, let o: U * % ve a section of P, and 'l'/Gi Uxv~+ E/G'U
the chart for E/G constructed as above. Then

By —t— Uxv

R

/G
e/e], ¢—t—— uxv

commutes, for if (u,v) € %x V, then W/G((ﬂ x idv)(u,v)) = <p(o(n(u)),v)> =
<W(ug,v)> (for g € G: ug = a(m(u))) = <P(u,v)g> = <Y(u,v)> =7(‘J)(u,v)). Since

T X idv is smooth, and a submersion, it follows thaté is smooth, and a submersion.
It i3 clear that ;o#= 1r°pE, so# is a vector bundle morphism. Since 9“ 18 an
isomorphism, u € P, it follows that (é,n) is a pullback (see C.2).

The uniqueness assertion follows from the facts that there is at most one
manifold structure on the range of a surjection which makes it a submersion (e.g.,

Greub et al, 1972, §3.9), and at most one vector space structure on the range of a
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surjection which makes it linear. !

Proposition 2,2. (i) If (E,pE,P) is a vector bundle over P(B,G) together with an
action of G on E which satisfies the conditions of 2.1, and (E',pE',M) is any vector
bundle, then given a vector bundle morphism ¢: E + E' over a map f: P + M such that
$(Eg) = ¢(§) W E€E, g€G, and f(ug) = f(u), ¥ u € P, g € G, there 1is a unique
vector bundle morphism

el

E/G ——¢——) E'

E/G E'
P

f/G
B ———— M

such that ¢ = ¢/G017 and £ = £/

(11) Consider vector bundles (E,pE,P) and (E',pE',P') over principal bundles
P(B,G) and P'(B',G'), respectively, together with actions of G and G' on E and E',
respectively, which satisfy the conditions of 2.1, 1If ¢: E + E' 18 a vector bundle
morphism over a principal bundle morphism F(£f,¢): P(B,G) + P'(B',G') which is equi-
variant in the sense that ®(&g) = ¢(E)P(g), ¥ £ € E, g € G, then there 18 a unique

morphism of vector bundles

°/G
E/G ———— E'/¢’

PE/G l l pE'/G'

B —f

such that ¢/G0§ = H’OQ.

Proof: We prove (ii) only; (i) is a special case of (ii).

Define ¢/G: E/G + E'/G' by <& F+ <¥(&)>. That &'~ is well-defined and

fibrewise linear is clear. Clearly O/GO# = %'00 so since h'ob is smooth, and # is a
* 1
surjective submersion, ¢ ¢ is smooth. That pE /Go o/G E/G

since # is onto, the condition @/G°% = &'00 determines ¢

/G

= fop
/6

is immediate, and

uniquely. !/

Remarks 2.3. (i) This quotienting process includes the construction of an

P xV
associated vector bundle g v for a representation p: G + GL(V) of G on a vector
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space V. Namely, let G act on the product bundle E = P x V over P by
(u,v)g = (ug,p(g—l)v); this action clearly satisfies (i) of 2.1, 1If o: U + P is a
section of P and y: U x G » Y = w-l(U) 1s the associated chart y(x,g) = o(x)g, then

it is easy to verify that the chart ” x V. > Eu defined by

Uxv

boxoddy b x 14,

UxG6xV = > UxGxV
(x,8,v) > (x,8,p(g )V)

3

Eu='2(xv

is equivariant. (Although E + P is a trivial bundle, it does not admit global

equivariant charts in general.)

Clearly the quotient vector bundle E/G + B coincides with the associated

xV

vector bundle + B of 1.7,

(ii) The comstruction 2.1 and the universality property 2.2 can easily be

extended to equivariant actions of G on general fibre bundles over P. If this is
X F
> B. 1/

done, then the construction includes all associated fibre bundles

Proposition 2.4. Let (E,p,P) be a vector bundle over P together with an action of G
on E which satisfies the conditions of 2.1. Denote by TGE the set of (global)

sections X of E which are invariant in the sense that
X(ug) = X(u)g ¥ueP, ge6G.

G
Then I'E is a C(B)-module where fX = (fem)X, ¥. f € C(B), X € FGE, and the map

X+ X,  I(E/G) » 1%

where X(u) = (Hu)-l(x("u))

is an isomorphism of C(B)-modules with inverse

X > X, e > 1(8/0)

where X(x) = Hu(x(u)) = <X(u)>  (any u € 1 1(x)).

Proof: X ++ X is the C(B)-morphism #: T(E/G) + IE of C.3. It 1is easily checked
that, in fact, X e PGE. Given X € I'E it is clear that X is well-defined, and since
Xow = HOX and T is a surjective submersion, X is smooth. It is straightforward to

check that X ++ X and X F+ X are mutual inverses. 7/
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This result can of course be localized: if ﬂs n-l(U) is a saturated open

subset of P, where U& B is open, then the same formulas for )-(, X define mutually
inverse C(U)-isomorphisms between I'U(E/G) and I‘G(E).

§3. The Atiyah sequence of a principal bundle.

Throughout this section, P(B,G) is a given principal bundle.

Proposition 3.1. (i) The action of G on the tangent bundle TP + P induced by the

action of G on P, namely
= T(Rg)u(x), X € T(P)u,

satisfies the conditions of 2.1.

(11) The action of G on TP + P restricts to an action of G on the vertical

subbundle T'P + P, and this action also satisfies the condtions of 2.1.

Proof: (1) It is clear that G acts on TP by vector bundle isomorphisms. To
coastruct equivariant charts for TP, let ¢: U x G > Y= n-l(U) be a chart for P(B,G)
in which U is the range of a chart 0: B® > U for the manifold B. WNow T(U) “uxgt
and T(G) = G X& , 80 T(¢$): T(U) x T(G) * T(P)u can be regarded as a map

(U x G) x " Xﬂ) + T(P)u and, identifying U x G with % by ¢, this gives the

required equivariant chart.

Precisely, define

(U x 6) x (B x) » T(R)g

(x,8,£,%) > T(O) () oy (T(e)e_l( )(g), (R (X))
’ X 1

and define y: Uxv > T(P)u (where V. = B" XB) as the composition of (¢—1 x idV) and
this map. To show that Y(uh,v) = P(u,v)h, it suffices to show that

T (y gny(¥Ts TR 1(x)) = T(RY (TC0) (, gx¥> T(RY 1(x>>).

#(x,8)
where Y ¢ T(U)x, and this is the derivative of the identity o(x,lﬂm(g)) = lﬁl(d;(x,g)).

(i1) That T(R ): TP + TP sends T'P to T P follows from moR = n, In the

notation above, an equivariant chart for T P over U= U x G 15 the composite of

-1
¢ x id_ with
3
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SRR ’T"(P)u

(x,8,X) =+ T($)

(x’g)(ox, T(RS)I(X)]. /!

Note that in both cases the identification of T(G) with G XH must be made

using right translations.

&
The 1nc1usionnmap TP T TP is manifestly equivariant so, by 2.2(ii), it
induces a morphism EGE > -'% of vector bundles over B, which is clearly an

injection and which we also regard as an inclusion.

On the other hand, from meR = m it follows that T(w) o T(R )u = T(Tl’)u
u;
where u € P, g € G, so by 2.2(1) it follows that the vector bundle morphism

.

p......lr__.)];

quotients to a map w, = '1‘(1r)/G: :I‘% + TB which i3 a vector bundle morphism over B.

It is clear that T, like T(w), 1s fibrewise surjective and so general vector bundle
theory (e.g., Greub et al, 1972, 2.23) shows that 7, is a surjective submersion.

Alternatively, it is easy to see that 7, is given locally by

TP * e
pid — (8,
i
W© T T ()
n N < gl
U x (R xﬂ) AR (X,ET' i) R

where the notation is that of 3.1l.

L
The kernel of m: % -++ TB is clearly T—GP- , since T'P » P 1s the kernel of

b
*
T(n): TP + TB, and so we have proved that T—GP- L anid T—Pé-—--)-* TB 1s an exact sequence

of vector bundles over B.

This may be regarded as the Atlyah sequence of P(B,G) bu% in practice it is
generally easier to work with a slight reformulation in which T—GF- is replaced by
the bundle u + B associated to P(B,G) by the adjoint action of G onﬂ .



APPENDIX A 284

Proposition 3,2. The map j: %‘—9— — % induced by

P XH + TP, (u,X) > T(mu) (X)
1

P x
(where m ¢ G+ P, g > ug) is a vector bundle isomorphism over B of —Gg— onto

TP TP
< <S7%-

Proof: We regard

P ;5 + B as the quotient of the trivial bundle P xg + P over

the action (u,X)g = (ug,Adg x) (see 2.3(1)). That the map P x5 + TP is smooth can

be seen by reformulating T(m ) (X) as T(m) (0:,X.), where m: P x G + P ig the
u’y (u,1) 0’1

action. Thus P XB + TP is thé composite

PXB*TP XTG-T—“‘—)-?TP

where P + TP is the zero section and J = T(G), + T(G) the inclusion. It is clearly
1

a vector bundle morphism over P.

Now T(m ) (Adg X) T(m a]: ) (X) and it is easy to check that
1

g

mugo I a - RgOmu. 'I'hus (ug,Adg X) is mapped to T(R ) (T(m ) (X)), which proves
g u 1

that P Xs + TP is G-equivariant and so quotients, by 2.2(ii), to a vector bundle

morphism over B

57’;‘-5— - % , <u, O k> <T(m ) (X)>
bl |

which we denote by J.

That T(mu)l(x) €T'P, ¥u ¢ P, )15 ¢f follows from the fact that mom is
constant. On the dther hand, P XH + T PG TP is clearly injective (because each
L is so) and since T P and P XB have the same rank, namely dim g, it follows that
P x5 + T'P is a fibrewise isomorphism. Clearly j inherits this property. !/

The map P XB + TP is of course the "fundamental vector field" map
(u,X) > X*(u) of Kobayashi and Nomizu (1963, p. 51). We shall occasionally use
their notation, in which case j(<u,X>) = X*(u)d.

Summarizing, we have proved

w
x *
Proposition 3.3. P—Gi +ds —T% -—++ TB is an exact sequence of vector bundles over
B. 1/

The bundle l—:;—i + B is called the adjoint bundle of P(B,G).
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Remark 3.4. The reader may like to check that T"P é—* TP -1 w*TB 1s an exact
sequence of vector bundles over P, where w*TB 1s the pullback and T is the map
X > (u,T(m) (X )), that 7*TB admits a natural G-action, satisfying the conditions
of 2.1, that ¥ ig equivariant and that
induced by T is w,. 1/

B - TB and that the map 12— -+> TB

We proceed now to define a bracket of Lie algebra type on I‘(%); with this
additional structure the exact sequence of 3.3 will be the Atiyah sequence of
P(B,G).

From 2.4 we know that I'(%’-) is isomorphic as a C(B)-module to T°TP. Now

X € TTP is in I‘GTP precisely if X is R -related to itself for all g € G. It
G

therefore follows that I'' TP is closed under the bracket of vector fields and so we
can define a bracket on (e G) by

e TP

X,Y] = [X,Y1, X,Y € r(-E).

The bracket on I‘(lcg) inherits the Jacobi identity from the bracket on ITP,
and also the property of being altermating. TFor f € C(B),

X, EY] = [X,(£omY]
= (fem)[X,Y] + X(few)Y.
Recall that a vector field ¥ on P is called n-projectable if there is a vector

fieldy on B such that ¥ is m-related toy, that is, such that T(N)U(X(u)) =y(n(u)),
¥ u € P, or, equivalently, such that ¥ (fow) =y(f)o1l, ¥ f € C(B). (See, e.g.,
Greub et al, 1972, 3.13,) It is clear from the definition of =, that X e I‘GTP is
m-related to T, (X) € TTB and so

)_((fon) = u*(X)(f)on.
We therefore have,
(X, Y] = (fem[X,Y] + (M (X)(£)om)Y
so

e)) [X,£Y] = £[%,Y] + 7, (0(OY, %Y e r(3g), £ & C(B).

A bracket on the module of global sections of any vector bundle A over B,
which has the property (1) with respect to a morphism w,: A + TB, can be "localized”

to sections over any open subset of the base. (See III 2.2.) 1In the present case
the resulting bracket T ( ) x I‘ (TP) + 7T (—) (U & B open) is easily seen to be

equal to that obtained by transporting t:he bracket on I‘G_ TP to T (——) via the
C(u)-1somorphism T ( ) > I‘ -1 TP. "
)
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From the fact that X is m-related to m,(X) it also follows that, for

TP -z - - Jr——
XY ¢ F(T)’ [X,Y] is m-related to [Tm (X),n,(Y)] so since [X,Y] = [X,Y] is also
w-related to 1r*( [X,Y]), and 7 is onto, it follows that

TP

(2) (M (R), M (D] = XY, XY e I(5g).

From (2) it follows that the bracket on I‘(Eg-) restricts to a bracket on

P x P X

I‘(—GH-). For, given V,W ¢ I‘(—GB—), n*([iv,jw]) = [m,iV,n W] = [0,0] = 0 and so
there exists a unique section [V,W] of a such that

(3 L3001 = 3w, v e &3,

This restricted bracket is of course also alternating and satisfies the Jacobi
identity. And, for f e C(B),
JCIVLEWD) = £03(V), 30 ) + 7 (3(V))(E) 5(W)
so, since 703 = 0, it follows that
'O (V,£0] = €[V,W], £ e C(B), V,We r(-l’—-gi).
Thus the bracket on I’(P-—E-H—), unlike that on I‘(E%], is actually a 7
=

is
x

tensor field, and therefore restricts to each fibre. Since each fibre

P xf

isomorphic tos, the question arises as to whether the bracket in C
induced by that inH .

is

X

P ~
Proposition 3.5. For V e I‘(—;E—), denote by V € CG(P’ﬂ) the corresponding equi-
variant function P *3 . (See 1.9.) Then

o~ ~ ~ P x
W = w,iwl,  vwerGold), weer
where the bracket on the RHS is the right—hand bracket inH .

Remark: This result may be expressed as follows: Equation (4) implies that, for
P x
V,W e I‘(—s) and x € B, [V,W](x) = [V(x),W(x)], where [ , ]

G is the restriction
P x§ ‘
G X

X

of [ , ] to Proposition 3.5 now states that
[<u,)(>,<u,Y>]X = <u,[X,Y]R>

for u € 1r_1 x), X,Y 63. That this bracket is well-defined follows from the fact
that Adg is a Lie algebra automorphism for all g ¢ G.

Proof: First note that j(V) € I‘GTP is
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u k> T(r ) (T(u)
'

and that this vector field has a global flow, namely

¢t(“) = u exp t\hl'(u), teR, ueP.

(Proof: That :—t- ¢t(u)|o = T(m ) (\7(u)) is immediate; for the group law
u
1

0 =
¢t ¢s ¢t+s we have

¢t(¢s(u)) u exp s";'(u) . exp t\?(u exp s\?(u))
= u exp SG(u) . exp tAd(exp s";(u)-l)G(u)
u exp ti\l'(u) . exp s‘?(u)

beyg@

(W, = - 5 (1) (Faco_ )]

d ~
- — (T(¢.om ) WCo_ )] -
dt te_ (w7 t °

Now by using the equivariance of V in a similar manner to the proof of the group

law, it can be shown that ¢t°m =m, and so this last expression is actually

$_ (W)

-4 (T(mu)l(v”z(¢_t(u)))|0 T(mu)l(— L Gu exp=eT(u))] )

) (- & aaexp T )

T(m) ([F(w),F(w)1)-
1
We therefore have
T(mu>1<n7(u),ﬁ(u>1k) = (I, W (w
= 31V, 0D (w)
Y el
= T(m) ([V,W ()
b

and the result follows. /!

It may seem odd that the bracket on I‘(P—é-ﬂ-) should correspond to the right-
hand bracket inB, especially since, for fundamental vector fields, [A*,B*] =
({A,B]y)* (Robayashi and Nomizu, 1963, I.4.1). However the fundamental vector field
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map 5 > IT"P and hE I‘(P—g—ﬂ-) > I‘GT“P are not the same; a fundamental vector field
A* ig invariant iff r-g_ is stable under AdG, that is, iff m(u) ++ <u,A> 1is a well~
defined section of 13 g . 3.5 may seem more reasonable when it is recalled that
r(P ; ) is embedded in I'TP as the set of right-invariant vertical vector fields;

it is only natural then that the bracket on I‘(P—;—B] should be the right-hand one.
This is particularly evident in the case of homogeneous bundles G(G/H,H) - see
Example 3.9 below.

In the remainder of this Appendix we will use only this right-hand bracket
on the Lie algebra of a Lie group and we now drop the subscript 'R'. For a brief

summary of standard formulas, reformulated for this bracket, see B§l.

We can now make the
Definition 3.6. The exact sequence of vector bundles
w
*
Engi +1+ I% —++ TB,

together with the bracket structures on I‘('-r%) and F(P——;—i) defined above, is the
Atiyah sequence of P(B,G). /1l

We will use the various properties of the brackets, which have been
developed above, without comment in what follows. They reflect, of course, the fact

that the Atiyah sequence i3 a Lie algebroid on B in the sense of III 2.1.

We will often need the following description of the flows of right-invariant

vector fields.

Proposition 3.7. (i) Given Xe I‘GTP and ug eP there is a local flow {¢ } for X
around u, defined on a m-saturated open setu =T (U), U& B open, for which
¢(ug)=¢(u)g, Vus:?l g € G and t.

(11) Given X ¢ ISTP with local flow {¢.} as in (1), the vector field m,(x)

on B has local flow 'Jot on U determined by wtoﬂ = Troot.

(111) For v ¢ I‘(P—;J—), the vector fleld j(V) ¢ I‘GTP is complete and has the
global flow ¢ (u) = u exp tV(u).

Proof: (i) Let {¢ } be a local flow for X defined on an open @ & P around u,
write U = w(0) and ﬂ-' T (U) It is easy to verify that, for any given g € G,
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{Rg0¢t°Rg_1} is a local flow for X on mg. By the uniqueness of local flows it
follows that {¢t} and {Rgo ¢t°Rg_1} must coincide on @nag. We can thus extend

¢, smoothly to the whole of 2( = U @g and a repetition of the argument now
geG

shows that R °¢ g'l = ¢t for all g € G and t.

(11) 1s straightforward and (1ii) was proved in the course of 3.5. 71/

The proof of (1) of course shows that any local flow for X which is defined
on a T-saturated open set commutes with right-translations. We call such a flow a

saturated local flow.

Lastly, we describe the morphism of Atiyah sequences induced by a morphism
of principal bundles F(id,¢): P(B,G) » P'(B,G') over a fixed base B. It is easily
checked that TF: TP * TP' satisfies the conditions of 2.2(ii) and so induces a

A
morphism F, = TF/G: —I-%- > %r of vector bundles over B. It is also straightforward

A 1
to check that F:: P_gﬂ_ + P___g'ﬂ_ » <u,X> > <F(u),9,(X)> is a well-defined morphism
of vector bundles over B, and that

TE_PX )—J—-——)lg ——I:-—))TB

5) ¥l l 7, l
T['

P! xa ] ] TP' *
o )—j———) = =3 TR
commutes. Now TF: TP *» TP' preserves the Poisson bracket in the sense that if
X € TTP and X' € I'TP' are F-related, and Y and Y' likewise, then [X,Y] and [X',Y']
are F-related. Since, for X ¢ I‘(—) X' e I‘( G') it is easily verified that X
and X' are F-related iff X' = F,(X), it follows that

(6) F ([X,Y]) = [F(X),F (D], X,Y € r( )

A A
Since j and j' are injective, the map I‘(P—;-ﬂ—) > I‘(E—%,ﬂ—) also preserves the

brackets.

Definition 3.8. F,: I—g— > !‘%r in (5) above is called the morphism of Atiyah

sequences induced by F(id, ¢). !/

Note that m : T—z- + TB is in fact the morphism of Atiyah sequences induced

by w(id,k): P(B,G) * B(B,{1}) where k: G » {1} is the constant morphism onto the
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trivial group.

Example 3.9. Let H be a closed subgroup of a Lie group G and consider the
homogeneous bundle G(G/H,H). Its Atiyah sequence is

cxh 3,16 "™
%) E2 3, 28 3 aie/my)

where j(£g,X>) = <T(Lg) X> and n*(<X>) = T(m) (X)., There are two alternative

formulations of this sexliuence.

Firstly, the vector bundle isomorphism G XB + TG, (g,X) > T(L ) (X),
respects the right actions of H and so quotients to a vector bundle isomo%‘phism

I,: G—E-H— > T—g , where -G—-Hx—g- is the bundle associated to G(G/H,H) through the
adjoint action of H onH Likewise there 1is a vector bundle isomorphism
Jl G—X(-Lb— + T(G/H) defined by <g, X +"|> = T(noL ) (X), where H acts on the
vector space /}1 by h(X +h) AdhX +h We will show that/u is injective; that
it is well-defined and a smooth and surjective vector bundle morphism are easily
verified. Suppose <g, X +|1> and <g', X' +h > nave T(H°L ) (X) = T(TrOL )y (X").
Then m(g) = n(g') so 3 h e H: g' = gh., Now n = woR -1 8° w}e have 1
h
(M {T(R _,JoT(L ) (') - TL) (X} =
g8 plgn  8hy g1

Thus T(Lg) {AdhX' - X} is vertical. But Lg is precisely the map mg (in the notation
1
of 3.2) so AdhX' - X el'l. This shows that
<g', X' +h> = <g, aanx' +h> = <, x +h>

as required. Compare Greub et al, 1973, 5.11.

Thus the sequence of vector bundles (7) can be writtem as

3 q
8 G;h L, 6x8 %, 6x 1({H/ll)

where jl(<g,X>) = £g,X> and q1(<g,X>) = {g, X +’1>.

Secondly, the vector bundle morphism G XB + (G/H) XH, (g,X) > (gH,AdgX)
over T: G *> G/H respects the action of H on G XB and so induces a vector bundle

morphism G—;i > (G/H) XH , which is easily seen to be an isomorphism. Thus (7)

can also be written as

i q
€)) G—;B- 25 (G/H) xg -3 T(G/H)
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where j2(<g,X>) = (gH,AdgX) and qZ(gH,X) = T(moR _1) (X). Agaln compare Greub et
al, 1973, loc. cit. g 1

It would be interesting to have formulae for the bracket on P(%g) in terms

of (8) or (9). It is certainly not the case that the bracket on P((G/H)xﬂ )

TG
H

induced by the pointwise bracket [(gH,X),(gH,X"')] = (gH,[X,X']). (If this were so,

transported from F( ) via the composite isomorphism (gH,X) ~ <T(Rg),(X)> is

then whenever G were abelian the bracket on F(%%), and therefore the Poisson

bracket on IT(G/H), would be identically zero.)
See also 4.18. 1/

Many other examples of the Atiyah sequence of a principal bundle may be
obtained from Chapter III.

§4. Infinitesimal conmections and curvature.

The first advantage of the Atiyah sequence concept is that it allows the
standard definitions and basic properties of infinitesimal connections and their
curvature forms to be presented quickly and clearly, in an algebraically natural
manner. The correspondence between the two standard definitions of a connection is
seen to be a particular case of the correspondence between right- and left-split
maps in an exact sequence; curvature is seen to measure precisely the extent to
which a connection fails to preserve Lie brackets; associated connections, the
Bianchi identities and the structural equation appear in a clear and natural
algebraic manner. This approach also shows that infinitesimal comnection theory
should be regarded not so much as a theory about principal bundles as about their

first-order approximations - the Atiyah sequence or Lie algebroid.

The account given here is a fairly rapid rehearsal of the Atiyah sequence
approach as it applies to the most basic and general concepts of infinitesimal
connection theory. At each stage the correspondence of this formulation with the
standard one is established. The reader may wish to continue this programme by

rewriting further parts of infinitesimal connection theory in terms of Atiyah
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sequences.
Until 4.18, P(B,G,w) is a principal bundle.

The standard account of coannection theory begins by defining a connection as
a distribution Q on P which is G-invariant (that is, Qu = T(R )(Qu), uepP, geg)
and horizontal (¥ u € P, T(P)u = T"(P)u ® Qu). In terms of the Atiyah sequence,

this correspoands to the

Definition 4.1. An infinitesimal connection, or simply connection, in P(B,G) is a

vector bundle morphism y: TB » I% which is right-inverse to m,: Ig-+ TB; that is,
for which moy = 1d. !/

For suppose we start with a G-invariant horizontal distribution Q. The G-
invariance implies that the action of G on TP restricts to an action of G on Q and
it is straightforward to show that Q admits equivariant charts; 1in the notation of
3.1, the chart

YUx g™ > Q 9

(u,t) > hi(u,t,0)

(where hX is the horizoutal component of X € T(P)u) is equivarian%. So the

decomposition TP = T'P 4 Q quotients to the degomposition 12— = EE-P-O % . Now
Tet Z% + TB is surjective and its kerunel is EEE , 80 the restriction % TB
is an isomorphism of vector bundles over B. We define y: TB » %c_:% to be its
inverse.

Conversely, given y, we define Q to be the preimage under #: TP -++ 2% of
in yg Ig-. (Note that im vy is a sub vector bundle since y, beilng fibrewise
injective, 1s of constant rank.) That Q is a horizontal and G-invariant

distribution is easily verified.

Although the "distribution definition” of a connection is usually given pre-
eminence by being stated first, practical work is usually done in terms of

connection forms:

Definition 4.2. A back-connection in P(B,G) is a vector bundle morphism

ws I%-+ E—%ﬂ— which is left-inverse to j: P > 22-; that is, for which

G G
wej = id. /1!

It would be natural to call w a connection form, except that this could be
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confused with the ordinary usage of the term.

A connection form, in the usual sense, is a form u € AI(P,ﬂ) for which
0,g (TR X) = Ad(g-l)owu(x) ¥X eT(®), ueP get, and w(h¥) = A, ¥AcH.
The first"of these conditions states that w, regarded as a map TP + P x§ , preserves
the actions of G on TP and P X 3, and so quotients to a map w/G: I%-* E_iﬂ_ . The

G
gsecond condition now implies that u Goj = id.

L3 25 , define (3: TP + P XH by

Conversely, given a back=-connection w: E% >
(TJU(X) = (éixs)-l(m(OO)), where P4 1s the projection P XB + P—-:-ﬂ— . Now »is

G
smooth because %?x50$ = mogfp, and Px§ is a submersion; that it 1s a coumnection

form is easily verified.

That there 18 a bijectlve correspondence between connections and coanection

forms now follows from the well-known

Proposition 4.3. Let E' »> g -T» E* be an exact sequence of vector bundles over a
common base B. Given a right-inverse p: E" + E of 7 there is a unique left-inverse
At E > E' of 1t such that

(¢9)] 101 + pew = idE.

Conversely, given a left-inverse A of 1, there is a unique right—inverse p of w
such that (1) holds.

A
In either case A¢p = 0 and E" +23 B =%+ E' 1s an exact sequence. /!

The pair of maps A, p is called a splitting of the exact sequence. ) may be
called the left-split map and p the right-split map.

Note that the existence of connections in principal bundles now follows from
the general result that a fibrewise surjection of vector bundles over a fixed base

has a right-inverse.

Before dealing with curvature we need a result concerning associated
connections in vector bundles.
P xV

G
a representation g F+ (v -+ gv) of G on a vector space V.

Suppose first that E =

is the vector bundle associated to P(B,G) via

Lemma 4.4. If pn e TEand X € T Z%J then i(ﬁ) € C(P,V) is G-equivariant.
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Proof: Let {¢t} be a saturated local flow for X defined in a neighbourhood of
ueP (3.7(1)). Then, for all g € G,

K (up) = 3 o, e | = Lo, ) = $- &7 0] = s 7RG (W),
as required. /1!

We denote the section of E corresponding to i(;) by X(u).

Definition 4.5. The action of Ig onE = 2—5—! is the map

rC%%) x TE + TE, (X, 1) k> X(n). 11

Proposition 4.6. The action of Ig- onE = E—EJL has the following properties.

Here X,X,,X, € r(zgj, M,y U, € TE, and £ € C(B).

1072
(1) (X1 + XZ)(u) = Xl(u) + Xz(u)

(11)  (£X) () = £(X(w))

(i11) X(u1 + “2) = X(ul) + X(uz)

(iv) X(fu) = £fX(u) + n*(x)(f)u

§2) [X1.X21(u) = xl(xz(“)) - Xz(xl(u))

(vi) The value of X(M) at a point x € B depends only on the value of X at x

and the values of 1 in a neighbourhood of x.

Proof: (1)-(v) are trivial; we prove (iv) as an example: Recalling that

~ — - - r— - ~
?ﬂ = (fom)u, £fX = (fon)X and X(fen) = 7 (X)(f)om, we have X(fu) = X((fom)u)
= (fOW)i(;) + i(EOH); = £fX(u) + 7, (X)(f)u, whence the result.

(vi) follows from the corresponding result for Lie derivatives, or can be
proved from (ii) and (iv). /!

Using 4.6, the following result is immediate:

Proposition 4.7. 1If Y is a connection in P(B,G) and E is an associated vector
bundle, then
W = (YO, X eTmB, wuelE
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defines a linear comnection V' in E, called the connection in E induced by vy. //

That this definition coincides with the usual definition of the induced

connection in an agsociated bundle follows from Kobayashi and Nomizu 1963, III 1.3.

In the case of the induced connection in P_;ﬂ_ , there is an alternative formula.

Proposition 4.8, The action of % on P—;i is given by
TP P x
JREWY) = [X,3N1, Xerll=g), Ve r(——ci)-
Proof: If {¢t} is a saturated local flow for X (3.7), then ¢t0m¢ (u) = ms
¥ u € P, and a modification of part of the proof of 3.5 shows thazt

X,IM 1) = T@) & (), ¥#u b But Hm) XD (w) = IET))(u) and so
the result follows.®  // !

Corollary 4.9. 1If y is a connection in P(B,G), then the induced connection v ia
q’ e is given by

(RW) = (v, 191, XeTlTB, Ve r(P—;i). /1

This connection may be called the adjoint connection of Y.

We now proceed to study curvature.

Definition 4.10. Let y: TB *1% be a connection in P(B,G). The curvature of vy is

the skew-symmetric vector bundle map

- P x
RY: TB ¢ TB *—GL

defined by j(§Y<x,Y)> = Y[X,Y} - [¥X,7Y]. /1

To prove that this is indeed the standard curvature form in disguise

requires some preparation. First recall some terminology:

Definition 4.11. (Kobayashi and Nomizu, 1963, §II.5; Greub et al, 1973, §§3.15,

6.6.) Let p be a representation of G on a vector space V.

A form ¢ ¢ Ar(P,V) is called equivariant or pseudotensorial of type (p,v) if

R*($) = p(g_l)oqi, ¥ g € G. The set of equivariant r-forms on P with values in V is
denoted A'(P,V)G.
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A form ¢ € At(P,V) 18 called horizontal if, at any given point u ¢ P,

¢(X1,...,Xr)(u) = 0 whenever one or more of the Xi(“) is vertical.

A form ¢ € Ar(P,V) is called basic or tensorial of type (p,V) if it is both

equivariant and horizontal. The set of basic r-forms on P with values in V. is

denoted A;(P,V) . /!

Note that the concept of a horizontal form does not depend on the presence

of a connection.

Proposition 4.12. (i) There is a bijective correspondence between equivariant r-
TP) P x V.
g *

forms ¢ € Ar(P,V) and skew-symmetric vector bundle morphisms ¢: 4 [ A

corresponding pair ¢, ¢ are related by the diagram

¢

o et P xvy

2) Qt:':’ L %PXV
01'(% $ P xV

) ——

(11) There 1s a bijective correspondence between basic r-forms ¢ ¢ A;(P,V)
P xV
G

and skew-symmetric vector bundle morphisms $: orTB + . A corresponding pair

$, g are related by the diagram

ofrp —t e xy
l:,*r L L%va
_91‘ (R) 9 P x V
3) G
Qrﬂ* L
M ¢
#1p ———n I ; LA

Proof: Let G act on #'TP » P by (X, ® ++®X)g=Xgo s oXg. Itis
stralghtforward to show (using 3.1(1)) that this action satisfies the conditions of
2.1 and that iieipvictor bundle morphism o e TP + 4 [—) quotients to an

—= ) Given ¢ ¢ A" e, V) , regarded as ¢: TP » P x V, the
equivariance ofr‘# implies that it quotients (using 2.2({i)) to a vector bundle

morphism ¢/G M TGP P Zv . > EZ_V

{somorphism

We let ¢ be the equivalent morphism Or(z%
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Clearly ¢ inherits skew-symmetry from ¢ and satisfies (2).

Conversely, given a skew-symmetric vector bundle morphism ¢: ¢ ( ) >
P xV
consider ¢oo % o TP +

« Since hp is a pullback over m, there is a unique
vector bundle morphism ¢: 0 TP + P x V such that % 0o ¢ = goo 9 Since %PXV ig
fibrewise an isomorphism, ¢ inherits skew-symmetry from ¢.

It is straightforward to check that these constructions are mutual inverses.

(11) Let y be any connection in P(B,G). If ¢ € A (P, V)G is horizontal,
¢(X1,...,X )(x) vanishes whenever one or more of the X,(x)' s is in im(j) = EEE .
P x

Therefore the vector bundle morphism ¢ = 209 Y: € ‘g > does not depend on the

choice of y. Clearly ¢ is skey-symmetric, since ¢ is, and gnO n, = ¢ since each

Xi - ym *(x j.) = ju(X 1) i3 in _GP , where w is the back-connection corresponding

to Y.

P x V.
G »
. This is certainly a skew—symmetric vector bundle

Conversely, given a skew-symmetric vector bundle morphism ¢: o8 +
consider 200 Tyt o ( ) LA

morphism and so 1nduces, by (i), an equivariant form ¢ ¢ N (¢ V) which is

horizontal since (QOO n*)(xl,...,xr)(x) vanishes whenever one or more of the

T P
\J —— TR
xi(x) s is in & ker m..

Again, it is straightforward to check that these constructions are mutual

inverses. /!

Of course a special case of (i) was dealt with already in the case of
connection forms and back-connections.

x
Denote by cr (%;, P C V] the vector bundle Altr(%ﬁ,

rE _)PXV

P xV
G
, for x € B. Likewise

) whose fibres

are the alternating r-multilinear maps ¢

G |y G

P x
denote by C*(TB, GV) the vector bundle Alt®(TB, & . ¥). Then 1“c"(2 P . V)
is naturally isomorphic to the C(B)-module of alternating bundle morphisms

(TP) * gigjL, and it is trivial to check that the correspondence of 4.12(1)
4 ; V) with AF(P V)G where the module
structure on A" (p, V) is f¢ = (fen)¢. Similarly, FCt(TB Px V) is isomorphic as a

C(B)-module to AB(P,V).

becomes a P(B)-module isomorphism of rc (

It is well-known, and easy to check directly, that the graded module
A*(P,V)G is closed under the exterior derivative §. It follows that & can be

transferred to FC*CZE , 4 ; V):
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Proposition 4,.13.

[ r+1
Ar(P’V)G rr— A (p’v.)c
r TP P xv d r+1 TP P xV
e, ) — x5, )

commutes, where the vertical arrows are the isomorphisms of 4.12(i) and, for

r TP P xV
¢ erC ('E;—G-),
r+l
- 411 * 31t ~
LITC TR S 121( DR (0K, e e X 0) g PR LR B SRR v

i<j

where Xi € I'('-r-%).

Proof: Flrst note that, for any ¢ € Ar(P,V)G, and Xi € I‘(}%), (2) implies that
- - S ———
¢(X1,...,Xr) = g(xl,...,xr) as functions P + V.

Now, for X, ¢ I'(I?,P-), X €B, and any u € "-l(x).

B (RyyeeenX (VX)) = Cu,y 80Xy, eee X ) (0>

N

1 - - -
<o, § DM R G, X D@

PN

+ 1O (R LRLE L

/—h\__/
<u, T DM R Gox) L X )W)

/—\r/
+ ] -t IRy, X 1K TX L) ()

~

i+l
DG DRARR HC [ PRI S ICO)

1+§ ~
+ 7 (1) g([xi,xj],xl,....,xt+1)(x)
and the result is proved. !/
Note that we are using § as defined by Greub et al, 1972, §§4.3, 4.7,

without the factor of r_}-f used by Xobayashi and Nomizu, 1963, I 3.11.
Since 62 =0, it follows that d° = 0, Of course, 4 is the Lie algebroid coboundary
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of IV 2.1,

Now suppose that we have a connection Y in P(B,G), and let h: TP » Q& TP
be the corresponding "horizontal projection” (Xobayashi and Nomizu, 1963, §11.1).
Let h*: A?(P,V) *> At(P,V) be the map dual to h, that is,

ELOT AR SRR SRR SN X, € e,

Clearly h* maps Ar(P,V)G into A;(P,V).

Lemma 4,14,
%
A, 0 " AR,V
r TP P xV T* . PXV
re (=, ——) — r¢ (18, ——)

commutes, where the vertical arrows are the igomorphisms of 4.12, and v* {s the

map ¢ +> ¢oyt.

Proof: Take ¢ € AF(P,V)G; we must prove that g*sgg = y*(¢$). For X, ¢ ITB,

_]_ i
X €8, and u € 7T (%),
BACOI(Ry yee e X ) (x) = BX(H) (YR 5o ee, YR ()
= <u, WO, ee0, D) ()

= <u, o(h(ﬁl‘(u)),...,h(ﬁ;(u)».

Now for any X € I'TB, we have YX € F(%) (see the discussion following 4.1)

so YX(u) € Qu and so h(YX(u)) = YX(u). The expression therefore reduces to
<uy 9O e e, TE () = BV eee, YX ) ()
and the result follows. /!
Putting 4.13 and 4.14 together we have
Proposition 4.15. Let VQ = h*of: Ar(P,V)G + A;+1(P,V) be the covariant exterior

derivative induced by the connection Q in P(B,G) (Xobayashi and Nomizu, 1963, §I11.5;
Greub et al, 1973, §6.12), Then
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)
A", n ¢ _—t atte,n
Y
rcr%, p;v) Bij > rcﬁl(TB'P;VJ

commutes, where the vertical arrows are the isomorphisms of 4.12, .DY is the map
¢+ Y*(d¢$), and v: TB + 1% corresponds to Q. 1/

Notice that .DY is not precisely equal to either of the two exterior

covariant derivatives introduced in III§S.

We are at last able to show that the curvature EY € I‘CZ(T—Z N P :‘9 )
defined in 4.10 ‘does indeed correspond to the standard curvature form

2 =W e A;(P,ﬂ).

Proposition 4,16, Let w € AI(P,E)G be a connection form in P(B,G) and let
TP , P x§

W =g * —g*— be the corresponding back-connection in the Atiyah sequence of

P(B,G). Then
2= 2w~ J'w =R,

where Y is the connection corresponding to w.

Proof: It has just been proved that VQSwz = oby(g) = v*(dw), and @ = VQ(m) by
definition. So it remains to prove that I-(Y = y*(dw). For X,Y e ITB,

do(¥X,YY) = YX(a(v¥)) - v¥(w(¥X)) - «([¥X,YY])

-o( [YX,¥¥]) (since wey = 0)

E’(Y( [X,Y]) - [YX,vY])

<t_ooj)<iiy(x,Y))

-IiY(X,Y) (since woj = id). !/
A "structure equation” for iY can now be easily obtained.
Proposition 4.17. 1If Y is a connection in P(B,G) and w is the corresponding back-

connection, then
(ﬂ*)"‘l-iY = dw - [o,wn].
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Proof: For X,Y € rﬁng,

J(@w = [w,0])(X,Y)) = J(X(o¥)) - J(Y(uwX)) - jolX,Y] - [joX, juY]

(X, Juy] + [juX,Y] - jo[X,Y] - [jwX,joy] (using 4.8)

[Ym X, Jo¥] + [X - YTX,Y] - ju[X,Y]

[Y"*X’-Y"*Y] + [X,Y] - ju[X,Y]

j(ﬁY(w*X,n*Y)) (using jow + yem = id repeatedly),

from which the result follows. //

The minus sign in 4.17, compared to the standard equation @ = Sw + [w,w], is
due to the use of the right-hand bracket inB . Notice, on the other hand, that this
is a different equation from III 5.13; the Lie algebroid coboundary d used here is

not the same as the covariant derivative p’ of III§S.

4.17 does not possess the importance in the Atiyah sequence formulation of
the theory that @ = dw + [w,w] does in the standard treatment. The reason for this
is straightforward: the standard definfition of curvature, £ = h*(dw), is difficult
to work with in both theoretical and practical calculations and the structure
equation 18 the usual means by which curvature is calculated. The "Lie algebroid

curvature iY is, on the other hand, very easy to work with for almost all
theoretical purposes, and it can easily be localized to a family of local 2-forms

in Az(Ui,ﬂ), Uig; B, for computational work. (See III1§5.) There is thus no need
for an alternative formula. Indeed if the term "structure equation” is to be used at
all in this presentation, it should perhaps be applied to the equation iY = y*(dw)

proved in 4.16.

We will not develop the general theory any further here since it has already

been covered in the abstract Lie algebroid context (Chapters III -V).

We conclude with two examples of how to work with the Atiyah sequence/Lie

algebroid formulation in “theoretical” problems.

Example 4.18. Consider a principal bundle P(B,H, ™) on which a Lie group G acts to
the left in the sense of Greub et al, 1973, §6.28: there are actions G x P » P,

G x B + B with respect to which 7 is equivariant, and such that g(uh) = (gudh
¥geG, ueP, he H. Denote uf+ gu, P + P by Lg and x -+ gx, B + B by Lg.
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Then G acts on the Atiyah sequence of P(B,H) in the following way. G acts
on 2%- by g&X > = <T(Lg)“Xu>, on TB by gX, = T(Zg)x(XX), and on ELElL by
g<u,X> = <{gu,X>. It 1s easy to check that the projection of each of these vector
bundles is equivariant, and that j and 7, are equivariant. For g ¢ G,
(Ig)*: TTB + T'TB denotes the induced map of vector fields, (¥ ) KB (x)
= T(L ) -1 (X 1 ) g(X(g x)), and (L )*. I'TP » I'TP denotes the corresponding map

X g x
of vector fields on P. Also denote by (Lg)* the maps rG?f) > rfji) and

r( P’;h ) - r(!i%#l] defined by (L) #(®) (x) = g(X(g~!(x)); it then easily follows

s TP
that (Lg)*X = (Lg)*(X) for X € (TT)‘ Now

4) (tg)*([x,m = [(lg)*(x),(tg)*(sr)], ¥ X,Y ¢ ITB;
from the corresponding result for (Lg)*: ITP + ITP we get

(%) (L) £(1%,Y1) = [(Lg)*(X),(Lg)*(Y)], ¥ X,Yerl __)
Exhy L gk,

and thus the corresponding result for (Lg)*: T

Greub et al, 1973, loc. cit., define a connection (form) u ¢ Al(P ﬁ) to be

G-invariant if (Lg)*m =w, ¥ geG, We define a connection y: TB » E% to be G-

equivariant if it is equivariant with respect to the actions of G on TB and E% .
The reader may check that these two definitions are equivalent. We wish to show

that if vy is G-equivariaat, then EY is also, that is
(6) RY(gxx,ng) = gRY(Xx,Yx), ¥geG X ,Y ¢ T(B)X, X € B.

To prove (6), let X,Y be vector fields on B with the given values at the
chosen x € B. Then tg*(x)(gx) = gxx and likewise for Y, so

JOR (8K ,8Y ) = JoR ((L,)4X, (£,),¥) (g%)

= (v[(lg)*x,(tg)*Y] - [Yo(lg)*x,vo(tg)*Y])(gX).

Now the G-equivariance of y implies that Yo(Zg)* = (L ),oY and using this and (4),
g

(5), the above becomes

(Lg)*(Y[X,Y] - (Y%, v (gx) = j((Lg)*(EY(X.Y))(gX))-

So RY(gXx,ng) = g(RY(X,Y)(x)) =g RY(xx’Yx)’ as required.
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Thus the curvature of a G-equivariant conunection in P(B,H) is determined by

its values over any one x € B. (Compare Greub et al, 1973, loc. cit.)

The principal example of such an action on a principal bundle 1is the action
of a Lie group G on a homogeneous bundle G(G/H,H). In this case the Atiyah sequence

1s isomorphic to

3 x a x
. G;h 1, 6x§ Hid’.

where jl and q, are induced by the correspvoanding maps in the exact sequence
T(m)
> 3 —————*é-ﬂ/k (3.9). It is easy to verify that if G acts on each of the

bundles in (7) by g,<g,,X> = <g,g,,%> (X ¢ h, g or 5/“), then the isomorphism of (7)
onto the Atiyah sequence of G(G/H,H) described in 3.9 is G-equivariant. Thus a G-

equigaﬁiant counection in G(G/H,H) can be identified with a G-equivariant map
G xd/

x
- E—EIL which is right-inverse to . We now need the following

G xV G x V'

Lemma. Let and be two vector bundles associated to G(G/H,H) via
H H G xV G x V'

actions p,p' of H on V,V'. Then every G-equivariant map ¢: raaiaETE— is of

the form

(® #(<g,v>) = <g, 4, (V>

for some H-equivariant map ¢1: V + V', and every H-equivariant map ¢1: V + V' defines
a G—equivariant map ¢ by (8).

Proof: Let ¢: & ; v, 9{%XL- be G-equivariant; that is, ¢(g1<gz,v>) = gl¢(<g2,v>)
¥ gl,g2 € G, vevV. Define ¢1: V > V' by §(<1,v) = <1,¢1(v)>. Then ¢(<g,v>) =
$(g<l,v>) = g<1,¢1(v)> = <g,¢1(v)>, which establishes (8). That ¢1 is H-equivariant
follows from <1,p'(h)¢1(v)> = <h,¢1(v)> = ¢(<h,v>) = ¢(<1,p(h)V>)

= <1,¢1(D(h)V)>c

The converse is straightforward. 1/

This lemma is of course a part of the well-known result that the category of
G-vector bundles and G-equivariant morphisms over G/H is isomorphic to the category

of H—-vector spaces and H-equivariant maps.

From the lemma it follows that G-equivariant connections in G(G/H,H) are in
bijective correspondence with maps YI:B /h 9-5 which are right-inverse to T(n)1 and
H-equivariant, that is Yl(Adh x +h ) = Adh Yl(X +-b), ¥ het, X 35. By chasing

around the diagram
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I X 7w

H
1de1
X

¢x§ T H c x§/k
¥ H

it can be seen that the connection Y corresponding to Yl is given by
Y(<T(¢E)H(X +h ») = <T(Lg)1(Y1(X +h ))>. It is also easy to check that
) 5 *‘7, the left split map correspoanding to ylzﬂll'l ->3, is the restriction to
3*‘1 of the counnection form w: TG > G Xl‘l corresponding to v.

With these preliminaries established, we can calculate the curvature of a G-
equivariant connection Y over the coset H € G/H. Take X +l'l, Y +h € /"l and write
£ = Yl(X +l’l ), n = YI(Y +l'l ). Let E, ;denote the left invariant vector fields on G
corresponding to £, n; then <§(1)> = y(<X +|‘I>) and similarly for n and Y. Now

R, +h, v by = aox +ho, ver +hy) (4.16)
= su(E1),n(1)) (4.13)

+ <
= Sw(g,n)(1)

—m([g,;])(l) (since Lo(E), w(ﬁ) are constant)
= 'wl([i»n]L)

= w ([E,n])

oy, & +hy, v o +hon,

and this, together with (6), completely determines 'ﬁY. (Compare Greub et al, 1973,
§§6.30, 6.31.) 1If I'Iis an ideal ofﬂ the last expression can be expressed as

-I_{Y X +"l , Y +I1) as in 4.16, but in general Yl([)( +h s Y +l1]) has no meaning.
1

As an explicit example, take the Hopf bundle SU(2)(SZ,U(1)) where
() = {ze¢ I |z| = 1} is embedded in SU(2) by z ++ (g g)- Identify (1) with
R and $%(2) with the Lie algebra of all matrices of the form

ix, -x, + ix
3 2 ! (x1 sy Xq € R).
+ ix -ix

%y 1

3

Then %U(1l) +-+ gU(2) is x +* l}g —(i)x] and g%(2)/%(1) can be identified
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with llz. Since U(l) is central in SU(2) the adjoint action of U(1l) on g%(2) is
trivial and

-x, +
0 x2 ix1

Yy (%,,%,) F*
1 1°72
x2+1x1 0

is an equivariant right split map of (1) +=» SA(2) =»»> n?. The corresponding
s SU2) » A1) is

ix -x, + ix
3 2 1 > x,.
X, + 1x1 —ix3
A simple calculation now shows that

X, X

- 1 2

R (%) = 2
i ¥

for x,y € 2. 1/

Example 4.19. Consider a morphism ¢(1dB,f): P(B,G) + Q(B,H) of principal bundles

over a common base, and the induced morphism of their Atiyah sequences (see 3.8)

Let vy be a connection in P(B,G) with corresponding counnection form w ¢ AI(P,H), and
w: 25220
- G G T
produced connection y': TB » % in Q(B,H) by Y' = ¢,0Y. (That y' is a connection

In the abstract Lie algebroid context (III 5.5) we defined the

follows easily from n;o ¢, = 1r*.) We now show that Y' 1is the "induced connection” in

Q(B,H) in the sense of Kobayashi and Nomizu, 1963, §II.6.

The induced connection form w' ¢ AI(Q,“l) is characterized by the condition
$p*w' = f.ow (op. cit. I1.6.1) and in fact only the values of w' on im T(4)E& TQ
are given in the standard treatments. Using the Atiyah sequence/Lie algebroid

formulation, we can quickly derive the general formula for w’.

Let w' and 9' now denote the connection form and back-connection
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corresponding to Y'. Then j'w' = 4d - y'n, = id - ¢ yn.. Using this, and the fact
that any connection Yy in any P(B,G) and its connection form ¢ ¢ Al(P,H) are related
by
YEX )=K4KZ ~-uw (Z)*l > where Z is any element of T(P)
X u u u u

with T(m) (2) = X € T(B),,

it is straightforward to establish that the conmnection form w' ¢ Al(Q,h)

corresponding to y' is given by
-1
' =
9) w (Yv) B + Adh f*(Qu(X)» Ye T(Q)v

where u is any element of P with m(u) = n'(v)
X is any element of T(P)“ with T(ﬂ)u(X) = T("')V(Y)
h is the element of H for which ¢(ud)h = v

and B ¢ h is determined by B*lv =Y - T(Rh)T(¢)u(X)-

It is straightforward, if tedious, to check directly that this w' is well-
defined and is a connection form in Q(B,H). If Yv = T(¢)u(x) for some X ¢ T(P)u
then we may use this u and X in (9) and take h = 1 so that we get
w'(T(¢)uX) = f*(wu(x)). This confirms that w' is indeed the induced connection

(form) in the ordinary sense.

It may be noted that (9), although it concerns connection forms in the
ordinary sense, is most easily derived using the Atiyah sequence/Lie algebroid
formulation.

A similar formula to (9) may be derived to express the curvature form Q'
of w' in terms of the curvature form R of w. However in the Atiyah sequence
language we need only note that R = ¢:°§Y (see III§5, equation (3)). Here

Y
b B2 Q50 4o the map <o 0 #v <o), £, (0.

Clearly the definition y' = $,0Y and the resulting equation ﬁy, = &;’EY are
considerably simpler than (9) and the corresponding equation for Q' in terms of Q,

- + -
yet Y' = $2Y and Ry, = ¢*°RY also contain more information than the standard
$*w' = fou, ¢*Q' = fo0Q, //

Lastly, the following result is used in II§6.
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Proposition 4.20. Let P(B,G) be a principal bundle. Then P admits a Riemannian
metric which is invariant under the right action of G.

Proof: The vector bundle T—g— + B admits a fibre metric (see, for example, Greub
et al (1972, p. 67)), and any such metric can be pulled back to a G-invariant

Riemannian metric on P via the fibrewise 1somorphism TP » T—g . /!



APPENDIX B ON LIE GROUPS AND LIE ALGEBRAS

Throughout these notes, we equip the Lie algebra of a Lie group with the
bracket obtained from the right—invariant vector fields. TFor the Lie theory of
differentiable groupoids developed in the main text to be compatible with the
standard theory of principal bundles, it is essential to define the Lie algebroid of
a differentiable groupoid by right-invariant vector fields; consistency then
obliges us to do the same for the Lie algebra of a Lie group.

In §1 we give a brief resumé of the elementary formulas, in terms of this
convention. In §2 we list the main properties of the right (Darboux) derivative
which to group-valued maps B + G assigns a Maurer-Cartan form in AI(B,B). Our

references for Lie groups and Lie algebras are Dieudonné (1972) and Warner (1971).

§1. Definitions and notations.

Let G be a Lie group and B the tangent space at the identity. We give 5
the right bracket [ , ] defined by

X,Y1 = [X,71(D) XY eg,

>
where X is the right-invariant vector field with i(l) = X. The left bracket
[, ]L’ which is defined by

Y = K00 xyYeg
is related to the right bracket by
x,Y1; = -1x,¥] XY eg.
For a morphism of Lie groups ¢: G + H the induced Lie algebra morphism

T(¢)1: a *h is denoted ¢,. The Lie group of Lie group automorphisms G + G is
denoted by Aut(G) (see Hochschild (1952)).

For g € G the inner automorphism Ig: G + G is defined by h > ghg_l, and
(Ig)*: 9+ g by Ad(g).

For any Lie algebra 9, the Lie group of Lie algebra automorphisms 3—»3
is denoted by Aut(ﬂ), and the Lie algebra of derivations 5-*3 by Der(ﬂ). For
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vector spaces V,W the vector space of linear maps V- W is denoted by Hom(V,W) and
the Lie algebra of endomorphisms V- V by End(V) or Hl(V). For any Lie algebraﬂ ,
the adjoint representation ad:B—-) Der(s) is defined by adX(Y) = [X,Y]}. The image,
ad(s), is the adjoint Lie algebra ofﬂ and the ideal of inner derivations in Der(ﬂ).

For a Lle group G, the exponential map exp:ﬂ + G is defined in terms of 1-
parameter subgroups and is not affected by the reversal of the bracket onH +« The
>
flow of X, where X € H, is ¢t = Lexth'
Rather than change the definition of the bracket on the endomorphism Lie
algebra 5'(V), we retain the standard bracket
[X,Y] = XeY - YeX XY € Hl(V)

and reverse the identification of T(GL(V))id with H,(V). The standard
identification of T(GL(V) )id with 5' (V) is obtained by regarding GL(V) as an open
subset of 5' (V) and identifying T(ﬂ, (v))id withS, (V) by translation in the vector
space Hl(v) (see, for example, Warner (1971)). We now use the negative of this

identification; it can be alternatively expressed by mapping X ¢ T(GL(V))]..d to the
element

d
vo--r-d—texptx(v)lo vev

of Hl (V), where, on the right-hand side, the element of T(V)v is translated to the
origin., As a consequence, the representation p*:ﬂ *H' (V) induced by a
representation p: G * GL(V) is now given by

PR (X)(V) = - g—t p(exptx)(v)lo.

Consider the formula Ad, = ad, which is valid in the standard left-hand
theory. Its content is that

d
i Ad(exptX) (Y) 0~ [X,Y]L-
Multiplying by -1 we obtain
-4 Ad(exth)(Y)| = [X,Y]}
dt 0 PR

which, in the right-hand conventions, also asserts that Ad, = ad.

Note however that, for any Lie group G, the representation ad:ﬂ * Der(ﬂ) is
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the negative of the representation ad in the standard accounts; thus

Ad(exp X) = e—adX

for X EH.

Lastly, let 68 ¢ AI(G,H) be the right Maurer-Cartan form
e(xg) = T(R —l)(xg)' Then 8 satisfies the usual Maurer—Cartan equation

50 + [8,6] = 0

with respect to the right bracket.

§2. Formulas for the right derivative

Let G be a Lie group and B a manifold, and let f: B + G be a smooth map.
Then the right derivative A(f): TB + B Xa of £ isﬂ ~valued 1-form on B defined by

MEE) = T(R - JT(OK)).
£(x)

Alternatively, A(f) is the pullback £*6 of the right Maurer-Cartan form © on G, and

so A(f) satisfies the Maurer-Cartan equation
S(A(E)) + [A(D),a(£)] =0

with respect to the right bracket inﬂ.

If G = V is a vector space, then A(f)(X): B + V will be identified with the
Lie derivative X(f).

The product rule is
(¢D) A(flfz) = A(fl) + Ad(fl)(A(f2))

where fl,fzz B + G are two maps. Here and elsewhere the symbol Ad(fl)(A(fZ))
denotes the map
Xx -+ Ad(fl(x))(A(fz)(Xx)), Xx € T(B)x.
From the product rule it follows that
-1 -1
(2) ACE ) = —Ad(f T)(A(D))

where f‘_1 denotes the pointwise inverse x > f(x)-l.

If f: B+ G and st B + G are smooth maps, then Is(f) denotes the map
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X -+ s(x)f(x)s(x)-l. From the product rule it follows that
€N AT (6)) = Ad(s) {Ad(E) (aGs ™)) + acE) - ats D).

In particular,

(4) A(RgOf) = A(f), A(Lg°f) = Adg(a(£))
and
(5) A(Igo £f) = Adg(A(f))

where g € G is fixed, and £f: B + G is a smooth map.

If V and W are vector spaces and ¢: B + Hom(V,W) and £: B + V are smooth

maps, then it is easy to see that
(&) X(6(£)) = X($)(F) + $(X(£)), X € ITB.

Here, once again, ¢(f) denotes the pointwise evaluation X +* ¢(x)(f(x)). If W=V

and ¢ takes values in GL(V), then (6) can be rewritten as
(6a) X(¢(£)) = =a($)X)(¢(£)) + &(X(£)), X € TTB.

The reader is urged to check this formula directly. The minus sign and the double
appearance of ¢ in the first term on the right-hand side arise from the
identification of T(GL(V))I with EI(V) that is adopted in §1.

It is easily verified that if ¢: G + H is a morphism of Lie groups and

f: B+ G is a smooth map, then

N A(of) = ¢ 0 A(£).

In particular,

(8 A(Adof) = adeA(f).

This formula may be rewritten as

(8a) A(Ade£) (X) (V) = [A(£)(X),V]

where X € TTB and V: B *ﬂ , and the bracket is taken pointwise.

The following result is used in Chapter 1II.
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Proposition 2.1. Let G and H be Lie groups and let B be a manifold. Let ¢: ﬂ -*H
be a morphism of Lie algebras and let f: B + H be a smooth map. Define

$= B > Hom(s,h) by z(x) = Ad(f(x))e ¢. Then $(x) is a Lie algebra morphism for

x € B, and X($(V)) = ¢(X(V)) - [A(£)(X),¢(V)] for X € I'TB, V: B *B.

Proof: Write z(V) as as (Adef)(¢(V)) where Adof: B » aut(h) and $(V): B +h , and
apply (6a). This gives X(3(V)) = -A(Ade£)(X)(F(V)) + (Adef)(X($(V))). Applying
(8a) to the first term, and (6) to the expression X(¢(V)), this becomes

X(3(V)) = -[AME)(X),8(N)] + (Ade)($(X(V))). Now (Adef) ($(X(V))) = §(X(V)) by
definition. 1/

In the case where 5 =h and ¢ € Aut(B) this equation can, by (6a), be

written more simply as
A(P) = adeA(f)

where A on the left-hand side is with respect to the group Aut(ﬂ).



APPENDIX C ON VECTOR BUNDLES

In this appendix we assemble some elementary results, definitions and
notations which are needed in the text and are not readily accessible elsewhere; we

also establish our position on a few matters which are not quite standard.

Our references on vector bundles are Dieudonné (1972) and Greub et al
(1972). Throughout the text, vector bundles are real and of finite rank, unless
explicitly stated otherwise, Vector bundles are generally denoted (E,p,B), or E for
short; the fibre type is generally denoted V and atlases are generally denoted

{wi: U x> EUi}.

For a vector bundle E, the C(B)-module of global sections is denoted [lE;
for an open subset U of B, the C{U)-module of local sections defined on U is

T E.
denoted UE

A morphism of vector bundles from (E,p,B) to (E',p',B') is denoted
(¢,¢°) where ¢ is the map E + E' and ¢° is the map B + B'. If B = B' and
¢o = idB we say that ¢ is a morphism E + E' over B, or that it is base-preserving.

For vector bundles (Ei,pi’gi), i =1,2, the direct product bundle is

1 2 1 2 1 2 1 2
(EE xXE, p xp, B xB); elements are denoted (X,Y) for X e E , Y e E .

i i
For vector bundles (E ,p ,B), i = 1,2, over the same base B, the Whitney sum is

denoted (E1 ® Ez,p,B) and its elements are written X ® Y or X + Y.

For vector bundles E and E' over the same base B we denote by Hom(E,E') the
vector bundle over B whose fibres Hom(Ex,E;), X € B, are the vector spaces of linear
maps Ex + E;, and whose module of global sections gives the C(B)-module of vector
bundle morphisms E + E'. For n > 0, we denote by Homn(E;E') the vector bundle over
B constructed in the same way from n-multilinear maps E: + E; and vector bundle
morphisms OnE + E'; the sub-bundles corresponding to alternating and symmetric maps

are denoted, respectively, by Altn(E;E') and Symn(E;E')w

A morphism (¢,¢o): (E,p,B) * (E',p',B') is fibrewise-injective, -surjective
or -bijective if each ¢x: Ex ke E; x) is, respectively, injective, surjective, or
bijective. o

Given a vector bundle (E,p,B) and a smooth map f: B' + B, the inverse image
vector bundle (f*E,p,B') is f*E = {(x',u) € B' x E | f(x') = p(u)} with projection
E(x',u) = x' and the natural bundle structure. The morphism (x',u) ¥+ u, f*E + E

over f: B' » B, is denoted £.
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Definition 1. A morphism of vector bundles (¢,f): (El,pl,Bl) +> (Ez,pZ,BZ) is a

2

1 2
pullback if every morphism of vector bundles (¥,f): (E,p,B") > (E ,p ,Bz) over

f: B1 > BZ can be factored uniquely into

¥

=
v
T
-©-
v
o
[

o

L=
o
—
W e T
o
N
-

where ¥ is a vector bundle morphism over Bl. //

Proposition 2., A morphism of vector bundles is a pullback iff it is fibrewise
bijective.

Proof: (<=) Suppose (¢,f): (El,pl,Bl) + (EZ,pZ,BZ) is fibrewise bijective.
Given (y,f), as above, define ¥: E » El fibrewise by ax = (¢x)—lawx, for
X € B. It is easy to check, using local charts, that § is smooth.

(=>) From (<=) it follows that f: f*E2 > E2 is a pullback. Applying the
uniqueness condition in Definition 1 to both ¢ and E, there is a vector bundle

commutes. Since f is a fibrewise bijection, it follows that ¢ is also. !/

isomorphism E1 > f*E2 such that

f*E

Thus the concepts of pullback, inverse image and fibrewise-bijection are

equivalent. Nonetheless, it is useful to distinguish between them.

We now consider the maps induced on modules of sections by maps of vector
bundles. If ¢: E + E' is a map of vector bundles over a common base B then the
C(B)-module morphism T'E + TE', i k> ¢ou is simply denoted ¢. If E and E' are now
vector bundles over bases B and B', and ¢: E + E' is a vector bundle map over a

diffeomorphism ¢°: B > B', then the map TE + TE', u > ¢°u°¢;1 will usually be
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denoted E. An alternative formula is

) = o067 @) (u(4] ).

;: TE + TE' is semi-linear with respect to the map C(B) + C(B'), f w+ fo¢;l, which
we will also deunote by §; by semi-linearity is meant the equation §(fu) = $(£)3(n).

In the case of fibrewise-bijections a different coustruction is appropriate.
Proposition 3. Let ¢: E + E' be a fibrewise~bijection over ¢°: B + B'. Then
for u' € TE' the map
_.1 '
xFr () “(u' (e (x)))

is a smooth section of E, denoted ¢#(u), and ¢#: TE' + TE is semilinear with respect
to £' &> £'e9 C(B') » C(B).

Proof: Elementary. /!

Interestingly, if ¢: E + E' and ¢o: B + B' satisfy all the conditions for
being a fibrewise~bijection except that ¢ need not be smooth (or continuous), then

#
smoothness of ¢ follows if ¢ maps smooth sections to smooth sections.
Theorem 4, Let (¢,¢o): (E,p,B) + (E',p',B') be a fibrewise-bijection. Then the map

C(B) ® TE'+TE, f®y' i+ f¢#(u')
c(B")

is an isomorphism of C(B)-modules. Here the temsor product is taken with respect to
the C(B')-module structure on C(B) defined by f'f = (f'-¢°)f and the temsor product
is itself a C(B)-module with respect to fl(f2 B ') = (flfz) & p',

Proof: See, for example, Greub et al (1972, 2.26). !/

Lastly, we need the following general construction of inverse image vector

bundles.

Proposition 5. Let ¢l: El + E and ¢2: EZ + E be morphisms of vector bundles over a

fixed base B, and suppose that
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im(¢i) + im(¢:) =E, ¥x € B.

Then F = {u1 L u2 € E1 ® E2 | ¢l(u1) = ¢2(u2)} is a vector subbundle of

2 - =2 1 1 2 1
E 4E, themaps ¢ : F+E , u ®#u +*u and ¢ : F>E , u ®u f*+ u are vector

bundle morphisms over B, and

3 2

™

_—
1
1 __ ¢,

<
N

o ——

1 fp———
©-
[+

is a pullback square in the sense that if E' is another vector bundle on B
and wlz E' + E1 and wzz E' » E2 are morphisms of vector bundles over B such that
¢l°w1 = ¢2°w2, then there 1s a unique morphism ¥: E' + F over B such that

Pou = 3! and 3oy - v7.

2, this is

Proof: Once it is established that F is a vector subbundle of El % E
merely a formal manipulation. To show that F is a vector subbundle, define
¢ E1 ® E2 + E, u1 [ u2 (4 ¢1(u1) - ¢2(u2). Then the condition on the images
of ¢1, ¢2 ensures that ¢ i{s of maximal rank; hence F, its kernel, is a vector

subbundle (for example, Dieudonné (1972, 16.17.5)). //

We denote F above by E1 ® E2 and may also refer to it as the pullback
bundle. E
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Action: - on an associated bundle
2943 - of a 2-cocycle on an
extension 226; - of a groupoid 49;
inner automorphism - 52, 95; - of
a Lie algebroid 106, 193; linear
examples of - 96; smooth - 92;
trivial - 50, 106; See also
Representation

Additivity condition 168

Adjoint bundle: - of a Lie algeb-
roid 105, 190; - of a Lie groupoid
118; - of a principal bundle 284

Adjoint Lie groupoid of a Lie
algebroid 234, 261

Admissible section 58: local - 60
Admissible space 64

a-fibre 3

a-homotopy 64

a-identity-component subgroupoid
45, 86

a-path 64
a-property 18
Ambrose-Singer theorem 180

Anchor: - of a groupoid 13; - of a
Lie algebroid 100, 112

Anchor-preserving map 204
Arrow 2

Atiyah sequence 288: - of a homo-

INDEX

geneous bundle 291; morphism of - 289

Back-connection 140, 292
Back-transversal 204, 221
Baer sum 209

Base 2, 100

Basic form 296

B-fibre 3

B-saturation, of a local vector field 114

Bianchi identity (second) 145: abstract
- 204, 222

Canonical coordinates 136

Canonical open set 25

CDO - See covariant differential operator
Central representation 215

Centre of an LAB 188

Change of Lie algebroids 242

Coarsest topology, on a groupoid 27

Coboundary,
mology 198,

for Lie algebroid coho-
298

Cochain 123

Cocycle 39, 199: - condition 149, 237
260; construction of groupoid from - 40;
construction of Lie algebroid from - 150;
- equation 39; pointed - 41

Cohomology: equivariant de Rham - 202;
- of a Lie algebroid 199; rigid - 241,271

Compatibility condition 102
Compatible system of local data 238

Connection 140, 292: adjoint - 144, 295;
back - 140, 141, 292; equivariant - 302;
flat - 141; -~ form 293; induced - in an
associated vector bundle 294;
infinitesimal - 141, 292; Koszul - 142;
Lie - 143; local - form 152; local flat
- 148, 236, 260; produced - 143, 305;
Riemannian -~ 142; standard flat - 143

Construction principle for Lie algebroids
150, 224

Co-star 3

Coupling 214: - induced by an extension
222

Covariant derivative, exterior 145, 146,
217, 299



Covariant differential operator 104:
- on an LAB 133; outer - 213; on a
Riemannian bundle -~ 132

Covering of a groupoid 55: morphism
of - 55; regular - 57

Covering projection (monodromy
groupoid) 65, 68

Criteria for 2-form to be curvature
form 224, 266

Curvature: - of an anchor-preserving
map 203, 205; - of a connection 140,
295; - form, local 153

Decomposing section 32
Deformable section 54

Derivation 104

Derived sub LAB 188

Differentiable groupoid 84: action -
90; action of a - 92; holonomy - (of
a microdifferentiable groupoid) 63,
162; locally - 161; product - 95;
see also Topological groupoid, Lie
groupoid, Morphism

Differentiable subgroupoid 91:
o-identity component - 86; isotropy -
93; reduction 91

Embedding 37

Equivalence: - of cocycles 39; - of
operator extensions 205, 220; - of
systems of transition data 238
Equivariant: - chart 278; - connection
302; - de Rham cohomology 202; - form
295; - with respect to groupoid actions
49, 50; ~ with respect to Lie algebroid
actions 10635 192

Euler class 258

Exactness of Lie functor 117
Exponential map 127

Extension, of a groupoid 52

Extension, of a Lie algebroid 204,

220: flat - 204; geometric - 244;
inflated - 244; operator - 205, 226;

pullback - 209; pushout - 207;
restricted - 243; semidirect - 209,
231

Fibre bundle 274: associated - 275,
281l; morphism of - 275

Fibre type 274

Field of Lie algebra brackets 97

Flow neighbourhood 126

Flow, saturated local 289

Form: basic ~ 296; equivariant - 295;
fibred - 122; horizontal - 296;
pseudotensorial - 295; right-invariant
fibered - 122; tensorial - 296

Formal pairing 251

Frame groupoid 5, 23: - of an LAB 97;

- of a Riemannian bundle 96; Lie
algebroid of - 128, 132

Fundamental groupoid 5, 24, 90

r-1ift, of a path 75, 76, 80

Gauge transformation 60

Geometric extension 244

Germ equivalent local morphisms 70
Germ groupoid 26

Groupoid 2: abelian - 15; action - 4, 55;
action of a - 49; - associated to a
principal bundle 6, 28; base - 3;
equivalence relation as a - 12, 22, 90,
162; frame - 5, 23; fundamental - 5,
24, 90; germ - 26; inverse image - 11;
isomorphism of — 7; product - 15, 95;
totally intransitive - 13; transitive -
13; trivial - 14; see also Subgroupoid,
Morphism

G-simple open cover 71

Gysin sequence 257

Holonomy: - of a connection 80; - group
78; - groupoid (of a microdifferentiable

groupoid) 63-64; - morphism 165; - sub-
groupoid (of a connection) 76, 171, 182



Homogeneous bundle 273: Atiyah sequence
of - 291; equivariant connections in -
302; groupoid corresponding to - 23

Hopf bundles 43, 68, 231, 304
Horizontal: - form 296; - projection 299

Ideal (of a Lie algebroid) 166, 191:
- reduction 191

Identity 2

Image: - of Lie groupoid morphism 98;
- of Lie algebroid morphism 190

Inflation map 243

Inner automorphism: - cf a groupoid 18,
62; Lie groupoid of - 234

Inner group bundle 52, 277
Inner subgroupoid 8, 13, 92
Integrability 260: - obstruction 264
Interior multiplication 199

Invariant section 53, 281

Isotropy: - group 3; - subgroupoid 54,
93

Kernel: - of groupoid morphism 8, 39,
98; - of Lie algebroid morphism 190

LAB - See Lie algebra bundle
Left bracket 308
Left-split map 293

Left-translation 18, 58; local - 60;
- of a principal bundle 60

LGB ~ See Lie group bundle

Lie algebra bundle 10l: abelian - 189;
adjoint - of an LAB 189; adjoint - of a
Lie algebroid 190; - associated to an LGB
118; centre of a - 188; - of derivations
188; derived - 188; - of inner
derivations 189; quotient - 189; semi-
simple ~ 189; See also Morphism

Lie algebroid 100: abelian - 107; adjoint
bundle of a - 105, 190; adjoint
representation of - 107, 133, 137, 189;

- chart 149; construction of - from

325

transition forms 150; - of covariant
differential operators 104; curvature
reduction 180; - of a differential
groupoid 113; direct sum - 108; exact
sequence of - 107; flat - 141; - of
frame groupoid 132; integrable - 260;
involutive distribution as a - 104;

- of isotropy groupoid 129; local
triviality of transitive - 233; produced
- 232; pullback - 208; quotient - 191;
reduction of a - 108; regular - 100;
representation of - 106, 129, 193;
restriction of - 101; totally
intransitive - 100; transitive - 100;
trivial - 102; trivial representation
of ~ 106; See also Lie subalgebroid,
Morphism

Lie connection 143

Lie derivation law 214, 217

Lie derivative 199

Lie functor 115; exactness of - 117

Lie group bundle 277: morphism of - 277
Lie groupoid 89: adjoint - of a transi-
tive Lie algebroid 234, 261; adjoint
LAB of a - 118; adjoint representation
of - 118; flat - 141; - of inner auto-
morphisms 234, 261; local isomorphism
of - 165; monodromy - 90; orthonormal
frame - 96; quotient - 99; reduction of
- 91; Riemannian frame - 96; See also
Topological groupoid, Lie subgroupoid,
Morphism

Lie subalgebroid 108: reduction 108

Lie subgroupoid 91: - corresponding to
Lie subalgebroid 158

Lie pseudo-algebra 100
Lie's third theorem 268

Lift: - of curvature of a Lie derivation
law 215; - of a path 75, 76, 80

Lifting of extensions 250, 255

Local differentiable groupoid structure
161

Local system of coefficients 165

Local triviality 32, 233



Maurer-Cartan forms: -~ on a group 310;
- on a Lie groupoid 123; See also tran-
sition forms

Microdifferentiable groupoid 161
Monodromy groupoid 68, 90, 166

Morphism of differentiable groupoids
84, 98; kernel of - 98; local - 165, 184

Morphism of groupoids 7: base-bijective
(-injective, -surjective) - 7; base -
preserving 7; covering 55; inverse~
image - 11; - over a given map 7; -
over a manifold 7; piecewise-bijective
(~injective, -surjective) - 7;
universal - 12

Morphism of Lie algebra bundles 101:
locally constant - 176

Morphism of Lie algebroids 101, 190:
compatibility condition for -~ 102;
image of ~ 190; induced ~ 114, 135,
162; kernel of - 190; structure of -
182, 190, 192, 239

Morphism of topological groupoids 18:
induced - of local prolongation group-
oids 63; local - 70; produced - 42
Morphism of vector bundles: fibre-
wise-bijective (~injective, -sur-
jective) 313; locally constant - 176;
- of locally constant rank 176; - over
a given manifold 313; pullback - 314
Natural projection 9, 20, 191

Object 2

Object inclusion map 2

Obstruction: - class 220; - cocycle 216
Orbit, of groupoid action 49

Pairing of representations 250

Parallel: - section 172, 195; - trans-
lation 79

Path connection: C°® - 75; ¢¥ - 168;
continuous - 75; produced - 79

Principal bundle 274: Cartan - 273;
locally simple ~ 71; locally trivial -
274; morphism of - 273; produced - 276

Produced: - connection 143, 305; -
groupoid 42, 233; -~ Lie algebroid 232;
- path-connection 79; - principal
bundle 276

Pseudogroup of local admissible
sections 61

Pseudotensorial form 295

Pullback: - groupoid 11; topological
groupoid 19, 36; -~ Lie algebroid 208;

- vector bundle 315

Quotient: - groupoid 9; - Lie algebroid
191; - Lie groupoid 99; - topological
groupoid 20, 38; - vector bundle 278
Reduction: - of a Lie algebroid 123;

- of a Lie groupoid 91; - of a principal
bundle 276; Abstract - theorem 241
Regular module (Rinehart) 211
Reparametrization condition 75
Representation: - associated to an
extension 53; central - 215; - of a
groupoid 59, 93; ~ of a Lie algebroid
106, 129, 193, 294; - trivial 50, 106;
See also Action

Restriction map 243

Restriction semi-direct 244

Riemannian metric, invariant 307

Right: - bracket 286, 308; - derivative
123, 310; -~ split map 293; - translation
18, 62

RSD - See Restriction semi-direct
Saturated local flow 289

Section: admissible - 58, 60; - atlas 32,
33, 274; decomposing - 32; deformable

- 543 invariant - 53, 281; local - of a
principal bundle 274; local - of a
topological groupoid 32

Semidirect product 209, 231

I-bundle 97, 133

Simple open cover 70



Source projection 2

Spectral sequence: - of an extension
249; Leray~Serre - 256; - of a
transitive Lie algebroid 248; Van
Est's - 269

Splitting 293

Standard cochain complex 198

Star 3

Structure equation 300

Submersion (topological) 33

Symmetric: - o-neighbourhood 48;
- set 47

System of transition data 238
Tangency conditions 168

Target projection 2

Tensorial form 296

TGB -~ See Topological group bundle

Topological group bundle 27, 277:
inner - 277; morphism of - 277

Topological groupoid 17: - associated
to a principal bundle 28; - with

coarsest topology 27; globally trivial
- 32; inverse image - 19; isomorphism

of - 21, 70; local isomorphism of - 70;

local prolongation - 61; locally
simple - 71; locally trivial - 32;
monodromy - 64, 68; produced - 42,
233; principal - 27; quotient - 20,
38; trivial - 22; trivializable -~ 32;
weakly locally trivial - 33; See also
Topological subgroupoid; Morphism

Topological quotient groupoid 20, 38

Topological subgroupoid 19: a-identity
component - 45; holonomy - 78

Transition data, system of 238

Transition: - form 149, 236, 260; -
function 39, 274

Transitivity component 13, 87

Transversal 204, 221: flat - 204

Universal covering bundle 68
Unity 2

Vector bundle: associated - 275, 280;
inverse image - 313

Vector field: right-invariant -~ 110,
113, 1143 vertical - 110

Vertex: - bundle 30; - group 3, 87
Vertical bundle 86
Wedge product 251

Whitney sum 313
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